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Siciak’s extremal function via Bernstein and Markov
constants for compact sets in CN

by Leokadia Bialas-Ciez (Kraków)

Dedicated to Professor Józef Siciak
on the occasion of his 80th birthday

Abstract. The paper is concerned with the best constants in the Bernstein and
Markov inequalities on a compact set E ⊂ CN . We give some basic properties of these
constants and we prove that two extremal-like functions defined in terms of the Bern-
stein constants are plurisubharmonic and very close to the Siciak extremal function ΦE .
Moreover, we show that one of these extremal-like functions is equal to ΦE if E is a
nonpluripolar set with limn→∞Mn(E)1/n = 1 where

(0.1) Mn(E) := sup ‖|gradP |‖E /‖P‖E ,
the supremum is taken over all polynomials P of N variables of total degree at most n
and ‖ · ‖E is the uniform norm on E. The above condition is fulfilled e.g. for all regular
(in the sense of the continuity of the pluricomplex Green function) compact sets in CN .

1. Introduction. Let Pν(CN ) with ν = (ν1, . . . , νN ) ∈ NN0 (N0 =
{0, 1, 2, . . .}) be a vector space of polynomials P = P (z1, . . . , zN ) with com-
plex coefficients of degree at most νi with respect to zi (i = 1, . . . , N).

For α, ν ∈ NN0 we define the (α, ν) Bernstein constant for a compact set
E ⊂ CN at a point w ∈ CN by setting

M (α)
ν (w) =M (α)

ν (E,w) := sup

{
|DαP (w)|
‖P‖E

: P ∈ Pν(CN ), P|E 6≡ 0

}
where ‖P‖E := max{|P (z)| : z ∈ E}. The constant

M (α)
ν (E) := sup

{
‖DαP‖E
‖P‖E

: P ∈ Pν(CN ), P|E 6≡ 0

}
is called the (α, ν) Markov constant for E (see e.g. [Go], [To], [BC]). In the
same manner we can define M (α)

n (w) =M
(α)
n (E,w) and M (α)

n (E) for n ∈ N0
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by replacing in the definition ofM (α)
ν (w) andM (α)

ν (E) the set Pν(CN ) by the
space Pn(CN ) of all polynomials of total degree not greater than n. Since the
Bernstein constants depend on a point w ∈ CN , the quantities M (α)

ν (E,w),
M

(α)
n (E,w) will sometimes be called the Bernstein functions.
The constants M (α)

n (E,w), M (α)
ν (E,w) and M

(α)
n (E), M (α)

ν (E) are di-
rectly connected with the Bernstein and Markov inequalities widely investi-
gated owing to their relations to approximation and constructive theory of
functions (e.g. [Pl2], [BoMi], [JoWa], [RaSch]). An important case is when

(1.1) µ0(E) := lim sup
n→∞

logMn(E)

log n
<∞

where Mn(E) is given by (0.1). A compact set E satisfying (1.1) is said to
be a Markov set and µ0(E) is called the Markov exponent of E (see [BaPl]).

The Markov constants (M (α)
ν (E))ν∈NN0

are associated with the Chebyshev
constant (if α = ν) and consequently, with the transfinite diameter of E
(see [Za]). The Bernstein functions (M (0)

n (E,w))n∈N0 are strictly related to
the Siciak extremal function, because

ΦE(w) := sup

{
|P (w)|
‖P‖E

: Pn(CN ), P|E 6≡ 0

}1/n

= sup
n∈N

(M (0)
n (E,w))1/n

where N = {1, 2, . . .} and D0P := P (for basic properties of ΦE see e.g. [Si1],
[Si2]). We prove that also (M

(α)
n (E,w))n and (M

(α)
ν (E,w))ν with α 6= 0 are

very close to the Siciak extremal function (see Theorem 3.1 and Corollaries
3.4 and 3.5 below). It may be worth reminding the reader that logΦE is equal
to the pluricomplex Green function VE of the set E with pole at infinity (for
definition and background see [Kl]). If VE is Hölder continuous with exponent
sE then E is a Markov set with µ0(E) ≤ 1/sE .

The exact values of the Bernstein and Markov constants have been found
for a few sets only. V. Markov made a very detailed investigation and discov-
ered in 1892 a precise but intricate formula for M (k)

n ([−1, 1], w), w ∈ [−1, 1].
He described these constants using the Zolotarev and Chebyshev polynomi-
als (see e.g. [Sh]). Finally, he proved that

(1.2) M (k)
n ([−1, 1]) = T (k)

n (1) =
n2[n2 − 1] . . . [n2 − (k − 1)2]

1 · 3 · . . . · (2k − 1)

where Tn(x) = cos(n arccosx) is the nth Chebyshev polynomial (for k = 1
this was proved by A. Markov in 1889). Moreover, thanks to the alternation
theorem, we can show that M (k)

n ([−1, 1], w) = |T (k)
n (w)| for w ∈ R \ (−1, 1).

The exact values of (M (k)
n (E,w))k,n are also known for E = {z ∈ C :

|z| ≤ r} with r > 0, because by the Bernstein inequality, one can ob-
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tain M
(k)
n (E,w) = n!|w|n−k/((n− k)!rn) for |w| ≥ r and thus M (k)

n (E) =
n!/((n− k)!rk). Due to a result of Baran [Ba], we can give an example in a
multivariate space: if f is a fixed norm in RN and E = {x ∈ RN : f(x) ≤ 1}
then M (α)

n (E) = n2f(α) for any α with |α| = 1.
The paper is organized as follows. In the second section we give some

elementary properties and examples of the Bernstein and Markov constants.
We show that the mapping w 7→ M

(α)
ν (E,w) (and w 7→ M

(α)
n (E,w)) is a

plurisubharmonic continuous function in CN . In Section 3 we prove that the
upper regularizations of two extremal-like functions defined by

(1.3) ψ
[α]
E (z) := sup

ν∈NN0 \{0}
(M (α)

ν (E, z))1/|ν|

and

(1.4) ϕ
[α]
E (z) := lim sup

n→∞
(M (α)

n (E, z))1/n

are plurisubharmonic in CN and very close to the Siciak extremal function
ΦE (Theorem 3.1). It is also shown that ϕ[α]

E = ΦE for a large class of sets,
e.g. for Markov sets and for all compacts with continuous pluricomplex Green
function (Corollaries 3.4 and 3.5).

2. Basic properties of Bernstein and Markov constants. We start
with inequalities that give an obvious bound on supνM

(0)
ν (E,w) with respect

to the Siciak extremal function. Namely, we have

ψ
[0]
E (w) = sup

ν∈NN0 \{0}
(M (0)

ν (E,w))1/|ν| ≤ sup
ν∈NN0 \{0}

(M
(0)
|ν| (E,w))

1/|ν|(2.1)

= ΦE(w)

and

(2.2) sup
ν∈NN0 \{0}

(M (0)
ν (E,w))1/|ν| ≥ sup

k∈N
(M

(0)
k (E,w))1/kN = ΦE(w)

1/N .

From now on, we assume that E is a nonpluripolar compact set. Consider
the linear functional L(α)

w : P 7→ DαP (w) defined on the finite-dimensional
vector space Pν(CN ) with the norm ‖ · ‖E . Since L

(α)
w is bounded and

‖L(α)
w ‖ =M

(α)
ν (E,w), there exists a polynomial Q ∈ Pν(CN ) such that

(2.3) M (α)
ν (E,w) = DαQ(w) and ‖Q‖E = 1.

The set of all such polynomials will be denoted byM(α)
ν (w)=M(α)

ν (E,w)

and its elements will be called extremal polynomials for M (α)
ν (E,w). Anal-

ogously, we define the set M(α)
n (w) =M(α)

n (E,w) of extremal polynomials
for M (α)

n (E,w).
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Observe now that (2.1) becomes an equality if E is the Cartesian product
of N subsets of C:

Proposition 2.1. If E = E1 × · · · ×EN is a nonpluripolar compact set
in CN then for all w = (w1, . . . , wN ) ∈ CN and α = (α1, . . . , αN ) ∈ NN0 ,

M (α)
ν (E,w) =M (α1)

ν1 (E1, w1) · . . . ·M (αN )
νN

(EN , wN ),(2.4)

M (α)
ν (E) =M (α1)

ν1 (E1) · . . . ·M (αN )
νN

(EN ).(2.5)

Furthermore,

(2.6) ψ
[0]
E (w) = sup

ν∈NN0 \{0}
(M (0)

ν (E,w))1/|ν| = ΦE(w).

Proof. For a fixed P ∈ Pν(CN ) we have

|DαP (w)| =
∣∣∣∣∂α1D(0,α2,...,αN )P

∂zα1
1

(w)

∣∣∣∣
≤M (α1)

ν1 (E1, w1) max
z1∈E1

|D(0,α2,...,αN )P (z1, w2, . . . , wN )|

≤ · · · ≤M (α1)
ν1 (E1, w1) . . .M

(αN )
νN

(EN , wN )‖P‖E .

Consequently, (2.4) will follow once we take P = Q1 · . . . · QN where Qj ∈
M(αj)

νj (Ej , wj), j = 1, . . . , N , because M
(α)
ν (E,w) ≥ DαP (w)/‖P‖E =

Q
(α1)
1 (w1) . . . Q

(αN )
N (wN ). From (2.4) and since

M (α)
ν (E) = sup

w∈E
M (α)
ν (E,w),

we can easily deduce (2.5).
By a result of Siciak (see [Si2, 3.17]), we have

ΦE(w) = max{ΦE1(w1), . . . , ΦEN (wN )}.

There is no loss of generality in assuming that ΦE(w) = ΦE1(w1). It follows
that

sup
ν∈NN0 \{0}

(M (0)
ν (E,w))1/|ν| ≥ sup

ν1∈N
(M (0)

ν1 (E1, w1))
1/ν1 = ΦE1(w1) = ΦE(w),

which gives (2.6) when combined with (2.1), and the proof is complete.

Example 2.2. As a consequence of Proposition 2.1 we can obtain some
exact formulas for M (α)

ν (E,w) and M (α)
ν (E) for certain sets. To see an ex-

ample, let E be a polydisc of polyradius r = (r1, . . . , rN ) ∈ (0,∞)N , i.e.
E = P (a, r) = {z ∈ CN : |z1 − a1| ≤ r1, . . . , |zN − aN | ≤ rN}. For w ∈ CN
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such that |w1 − a1| ≥ r1, . . . , |wN − aN | ≥ rN we have

M (α)
ν (P (a, r), w) =

ν!

(ν − α)!
· |w1 − a1|ν1−α1 . . . |wN − aN |νN−αN

rν
,

M (α)
ν (P (a, r)) =

ν!

(ν − α)! rα

where rν = rν11 . . . rνNN . As another example, we can take I = [a1, b1]× · · · ×
[aN , bN ] ⊂ RN ⊂ RN + iRN = CN . In this case we get

M (α)
ν (I) =

2|α|

(b− a)α
Tα1
ν1 (1) · . . . · T

αN
νN

(1)

with a = (a1, . . . , aN ), b = (b1, . . . , bN ).

Proposition 2.3. Let E be a nonpluripolar compact set in CN . Then
for every α, ν ∈ NN0 , n ∈ N0 and w ∈ CN , r ∈ (0,∞)N we have

M (α)
ν (E,w) ≤ α!

rα
‖ΦE‖|ν|P (w,r),(2.7)

M (α)
n (E,w) ≤ α!

rα
‖ΦE‖nP (w,r).(2.8)

Moreover, if ν ≥ α, n ≥ |α| then

M (α)
ν (E) ≥ ν!

(ν − α)!
· 1

(diamE)|α|
,(2.9)

M (α)
n (E) ≥ 1

(diamE)|α|

[
n

|α|

]|α|
>

1

(diamE)|α|

(
n

|α|
− 1

)|α|
(2.10)

where diamE := max{‖z − w‖2 : z, w ∈ E}, ‖ · ‖2 is the Euclidean norm
and [k] is the greatest integer less than or equal to k.

Proof. By Cauchy’s integral formula and the Bernstein–Walsh–Siciak in-
equality, we get the following inequalities for a fixed polynomial P :

|DαP (w)| ≤ α!

rα
‖P‖P (w,r) ≤

α!

rα
‖ΦE‖degPP (w,r)‖P‖E ,

which establishes both (2.7) and (2.8).
In order to prove inequality (2.9), we take u,w ∈ E such that |(u−w)ν | =

max{|(s− t)ν | : s, t ∈ E} > 0. Put P (z) = (z − u)ν . We have

M (α)
ν (E) ≥M (α)

ν (E,w) ≥ |D
αP (w)|
‖P‖E

≥ ν!

(ν − α)!
· (w − u)

ν−α

(w − u)ν
≥ ν!

(ν − α)!
· 1

(diamE)|α|
.
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To deal with (2.10), consider ν = [n/|α|]α ≥ α. From (2.9) it follows that

M (α)
ν (E) ≥ ν!

(ν − α)!
· 1

(diamE)|α|

≥ [([n/|α|]− 1)α1 + 1]α1 . . . [([n/|α|]− 1)αN + 1]αN

(diamE)|α|
≥
[
n

|α|

]|α| 1

(diamE)|α|
.

Since M (α)
n (E) ≥ M

(α)
[n/|α|]|α|(E) ≥ M

(α)
ν (E), the above inequalities yield

(2.10).

Theorem 2.4. Let E be a nonpluripolar compact set in CN . For every
α, ν ∈ NN0 the mapping CN 3 w 7→ M

(α)
ν (E,w) ∈ [0,∞) is a plurisubhar-

monic continuous function in CN . The same holds for M (α)
n (E, ·), n ∈ N.

Proof. We will only prove thatM (α)
ν is plurisubharmonic and continuous.

The case of M (α)
n is similar.

Observe first that uP := |DαP |/‖P‖E is a plurisubharmonic function in
CN for every P ∈ Pν(CN ). Inequality (2.7) shows that the family {uP : P ∈
Pν(CN ), P|E 6≡ 0} is locally uniformly bounded from above. Hence, by [Kl,
Th. 2.9.14], the upper regularization of M (α)

ν is plurisubharmonic.
Now, it is sufficient to show that M (α)

ν is continuous. Since M (α)
ν is a

supremum of continuous functions, it is lower semicontinuous. To prove the
upper semicontinuity, take an arbitrary w0 ∈ CN and a sequence (wl)l∈N

such that wl → w0 and lim supw→w0
M

(α)
ν (w) = liml→∞M

(α)
ν (wl). Consider

a sequence of extremal polynomials Ql ∈ M
(α)
ν (wl) for l = 1, 2, . . . . In par-

ticular, ‖Ql‖E = 1 for every l. As Pν(CN ) is finite-dimensional, the norm
‖ · ‖E is equivalent to the sum of the moduli of the coefficients. It is there-
fore possible to choose a convergent subsequence (Qlm)m that tends to a
polynomial, say Q, such that for every β ∈ NN0 the sequence of derivatives
(DβQlm)m tends to DβQ uniformly on compact sets. Clearly, Q ∈ Pν(CN )
and an elementary verification shows that ‖Q‖E = 1. Moreover, the Schwarz
lemma leads to limm→∞D

αQlm(wlm) = DαQ(w0).
Summarizing, we have

M (α)
ν (w0) ≥ |DαQ(w0)| = DαQ(w0) = lim

m→∞
DαQlm(wlm) = lim

m→∞
M (α)
ν (wlm)

= lim sup
w→w0

M (α)
ν (w) ≥ lim inf

w→w0

M (α)
ν (w) =M (α)

ν (w0),

the last inequality being a consequence of the lower semicontinuity of
M

(α)
ν (w). This completes the proof.

We have the following obvious consequence of Theorem 2.4.
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Corollary 2.5. The Markov constant M (α)
ν (E) is attained at some

point wν ∈ E and some polynomial Q ∈ Pν(CN ), i.e. ‖Q‖E = 1 and
M

(α)
ν (E) = DαQ(wν). The same holds for M (α)

n (E), n ∈ N.

Note that, unlike Markov constants, the Markov exponent defined by
(1.1) may not be achieved, which is shown in [BaBCMi] on sets in dimension
N ≥ 2, and in [Go] on the real line.

3. The main result. It is clear that the constants defined with Pn(CN )
are more closely related to the Siciak extremal function ΦE than the ones
with Pν(CN ). However, both functions (M (α)

ν (E,w))1/|ν| and (M
(α)
n (E,w))1/n

are asymptotically (as ν, n→∞) very close to ΦE . We formulate this result
in terms of the functions ψ[α]

E and ϕ
[α]
E defined by (1.3) and (1.4), respec-

tively. As usual, the upper regularization of f will be denoted by f∗, i.e.
f∗(z) = lim supw→z f(w). Let

m
(α)
ψ (E) := sup

ν∈NN0 \{0}
(M (α)

ν (E))1/|ν|, m(α)
ϕ (E) := lim sup

n→∞
(M (α)

n (E))1/n.

By (2.7)–(2.10), we get m(α)
ψ (E),m

(α)
ϕ (E) ∈ [1,∞).

Theorem 3.1. If E ⊂ CN is a nonpluripolar compact set and α ∈ NN0
then (ψ

[α]
E )∗ and (ϕ

[α]
E )∗ are plurisubharmonic functions in CN and for every

w ∈ CN we have

ΦE(w)
1/N ≤ ψ[α]

E (w) ≤ m(α)
ψ (E)ΦE(w),(3.1)

ΦE(w) ≤ ϕ[α]
E (w) ≤ m(α)

ϕ (E)ΦE(w).(3.2)

Proof. Let us first prove that (ψ
[α]
E )∗, (ϕ

[α]
E )∗ ∈ PSH(CN ). Since

log(|DαP (z)|/‖P‖E) ∈ PSH(CN ) for every polynomial P , we have
(|DαP (z)|/‖P‖E)1/|ν| ∈ PSH(CN ). From (2.7) and [Kl, Th. 2.9.14], we get
the plurisubharmonicity of (ψ

[α]
E )∗. Inequality (2.8) and the fact that the

upper regularization of the upper limit of a sequence of plurisubharmonic
functions locally bounded above is plurisubharmonic (see [JaJa, Th. 3.4.17])
lets us prove that (ϕ[α]

E )∗ ∈ PSH(CN ).
The right inequalities of (3.1) and (3.2) are consequences of the fact that
|DαP (w)|
‖P‖E

≤ ΦE(w)degP−|α|M (α)
ν (E) ≤ ΦE(w)|ν|M (α)

ν (E) for P ∈ Pν ,

|DαP (w)|
‖P‖E

≤ ΦE(w)degP−|α|M (α)
n (E) ≤ ΦE(w)nM (α)

n (E) for P ∈ Pn.

For α = 0 the first inequality of (3.2) is obvious and that of (3.1) follows
from (2.2). Therefore, we now assume that |α| ≥ 1.
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We proceed to show the first inequality of (3.1). To this end, fix w ∈ CN ,
δ ∈ (0, 1) and consider Qn ∈M(0)

n (E,w). We can find εn > 0 satisfying
|Qn(w)| − εn
‖Qn‖E + εn

=
Qn(w)− εn

1 + εn
> (1− δ)Qn(w).

Put M := max{‖w‖1,maxz∈E ‖z‖1} with ‖z‖1 = |z1|+ · · ·+ |zN | and

Wn(z) := Qn(z) +
εn
M

∑
zj for z = (z1, . . . , zN ) ∈ CN ,

where the sum is taken over j ∈ {1, . . . , N} such that ∂Qn
∂zj

(w) = 0. In this
way we get ∂Wn

∂zj
(w) 6= 0 for all j = 1, . . . , N . We can assume, by decreasing

εn if necessary, that Wn(w) 6= 0. It is easily seen that
|Wn(w)|
‖Wn‖E

> (1− δ)Qn(w).

Moreover, for a fixed k ∈ N, k > |α|, with the notation

Sn,k =

∣∣∣∣(k − 1) . . . (k − |α|+ 1)

W
|α|
n (w)

(
∂Wn(w)

∂z1

)α1

· . . . ·
(
∂Wn(w)

∂zN

)αN
+ · · ·+ 1

Wn(w)

∂αWn(w)

∂zα

∣∣∣∣,
we have |Dα(W k

n )(w)| = k|W k
n (w)|Sn,k. Observe that for every fixed n,

Sn,k

k|α|−1
→ 1

|Wn(w)||α|

∣∣∣∣∂Wn(w)

∂z1

∣∣∣∣α1

· . . . ·
∣∣∣∣∂Wn(w)

∂zN

∣∣∣∣αN > 0 as k →∞,

and thus (kSn,k)
1/k = k|α|/k(Sn,k/k

|α|−1)1/k → 1 as k → ∞. By the above,
we can find a sequence (kn)n such that kn > |α|, (knSn,kn)1/kn > 1− δ and
kn > kn−1 for any n > 1.

In this way we get

sup
ν∈NN0 \{0}

(M (α)
ν (E,w))

1
|ν| ≥ sup

νn=(nkn,...,nkn), n∈N
(M (α)

νn (E,w))
1

nNkn

≥ sup
n∈N

(
|Dα(W kn

n )(w)|
‖W kn

n ‖E

) 1
nNkn

= sup
n∈N

(
kn|Wn(w)|knSn,kn

‖Wn‖knE

) 1
nNkn

≥ sup
n∈N

(Qn(w))
1
nN (1− δ)

2
nN ≥ (1− δ)

(
sup
n∈N

M (0)
n (E,w)

) 1
nN

= (1− δ)ΦE(w)1/N .
Letting δ tend to zero we obtain the first inequality of (3.1).

Finally, we take a sequence of polynomials Ln ∈ Pn(CN ) such that

ΦE(w) = lim
n→∞

(
|Ln(w)|
‖Ln‖E

)1/n
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(see [Si1]). The left inequality of (3.2) can be shown in much the same way
as that of (3.1) but we need to consider polynomials Ln instead of Qn. The
proof of the theorem is complete.

Theorem 3.1 underlines the key role of the Markov constants M (α)
ν (E),

M
(α)
n (E) in the estimate of the growth of the Bernstein functionsM (α)

ν (E,w),
M

(α)
n (E,w) and the extremal functions ψ[α]

E , ϕ[α]
E in the whole space. Fur-

thermore, the sets satisfying the condition

(3.3) lim sup
n→∞

(M (α)
n (E))1/n = 1

gain a particular meaning, reflected in the following obvious implication of
Theorem 3.1.

Corollary 3.2. Under the same assumptions as in Theorem 3.1,

m(α)
ϕ (E) = 1⇒ ϕ

[α]
E ≡ ΦE in CN .

The next observation follows immediately from inequality (2.10) and the
fact that M (α)

n (E) ≤ (max|β|=1M
(β)
n (E))|α|.

Remark 3.3. The following conditions are equivalent:

(i) m(α)
ϕ (E) = 1 for all α ∈ NN0 ,

(ii) max|β|=1m
(β)
ϕ (E) = 1,

(iii) limn→∞(M
(α)
n (E))1/n = 1 for all α ∈ NN0 ,

(iv) limn→∞(Mn(E))1/n = 1

where Mn(E) is defined by (0.1).

Let us emphasize that the compacts with property (3.3) form a wide class
of sets in CN . We have the following consequence of the definition of Markov
sets (see (1.1)).

Corollary 3.4. If E ⊂ CN is a Markov set then condition (iv) is sat-
isfied and thus ΦE ≡ ϕ[α]

E in CN for any α ∈ NN0 .

Recall that the Hölder continuity of the pluricomplex Green function VE
implies that E is a Markov set, as noted in the introduction. It seems that
also the converse holds but a proof is an open problem. However, the Hölder
continuity is not a necessary condition for the assertion of Corollary 3.2,
because (ii) is satisfied whenever VE (or equivalently ΦE) is merely continu-
ous. The sets with continuous pluricomplex Green function are often called
regular sets.

Corollary 3.5. If E ⊂ CN is a regular compact set then condition (ii)
is satisfied and thus ΦE ≡ ϕ[α]

E in CN for any α ∈ NN0 .
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The first proof of (ii) for regular compact sets was given in [To] in the
univariate case. This proof can be easily adapted to the general case of sets
in CN , as proved in [CaLe] and [BC].

The question about a relationship between the assumptions in Corollar-
ies 3.4 and 3.5, i.e. between property (1.1) and the regularity of E, is an
interesting and nontrivial problem. A partial answer is only given in the real
one-dimensional case (see [Pl1], [BCEg]).

To end the paper we exhibit a set without property (3.3). The example
seems to be known at least in the univariate case. For the convenience of the
reader, we sketch the proof.

Example 3.6. If E is a polynomially convex compact set with an isolated
point then for no α is condition (3.3) satisfied.

Proof. We can assume that E = F ∪{z0} and dist(z0, F ) > 0. The set F
is polynomially convex. For Q ∈ M(0)

n−|α|(F, z0) put P (z) = (z − z0)αQ(z).
It follows that

M (α)
n (E) ≥ |D

αP (z0)|
‖P‖E

≥ α!Q(z0)

(diamE)|α|‖Q‖F
=

α!

(diamE)|α|
M

(0)
n−|α|(F, z0)

and thus
lim sup
n→∞

(M (α)
n (E))1/n ≥ ΦF (z0) > 1.
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