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Abstract. We consider a compact set X C R in the form of the union of a sequence
of segments. By means of nearly Chebyshev polynomials for K, the modulus of continuity
of the Green functions gc\ i is estimated. Markov’s constants of the corresponding set are
evaluated.

1. Introduction. If a compact set K is regular with respect to the
Dirichlet problem then the Green function gc\ i of C\ K with pole at infinity
is continuous throughout C. We are interested in finding its modulus of
continuity. The problem of smoothness of gc\ x near the boundary of K was
considered by many authors (see e.g. the references in the survey [A2] and
more recent [CG], [RR], [AG]). A new impulse to investigate smoothness
properties of the Green functions came in 2006, after appearance of the
monograph [T] by V. Totik.

Here we consider a special compact set K C R in the form of the union
of a sequence of segments. For the corresponding Green function we use the
well-known representation

log | P(z)|

1) geude) =sun{ AT

Here and below, P = |J;, P, where P, denotes the set of all complex
polynomials of degree at most n, |P|k is the supremum norm of P on K,
and log denotes the natural logarithm.

There are many sequences of polynomials that realize the supremum
above, for example the normalized Fekete polynomials (see e.g. [P, Th. 11.1]),
the normalized Chebyshev polynomials with zeros on K (see e.g. [Gol,
Th. VII.4.4]), or any normalized sequence of polynomials orthogonal with

:PeP,degP > 1, |P|x < 1}.
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respect to a regular (in the sense of [ST]) measure. Following [G2], we con-
struct a sequence of “nearly Chebyshev” polynomials for K and find the
exact (up to a constant) value of the modulus of continuity of ge\g. It
should be noted that the general bound by V. Totik [T Th. 2.2] of the
Green functions, which is highly convenient to characterize optimal (that is,
Lip 1/2) smoothness of ge\ g for K C [0, 1], cannot be applied to our case.
See Section 6 for more details.

There are several applications of smoothness properties of the Green
functions to solving different problems in analysis (see e.g. [T]). We are
interested in applications to polynomial inequalities. In Section 7 we evaluate
the Markov factors for our set K.

2. Notation and the main result. Let K = {0} UJ.2, I C [0,1],
where [, = [ak,bk] = [Ck — O, ¢ + 5k] with ag | 0 and hg := ap — bg1 > 0
for all k.

We use the Chebyshev polynomials T}, (z) = cos(n - arccos z) for |z| < 1
and n € Ny :={0,1,2,...}. For a fixed interval Iy, let T},; denote the scaled
Chebyshev polynomial, that is, T,x(z) = T;, (55%).

Ok
For fixed m € N and ny = ng(m) with k = 1,...,m — 1, we consider the
polynomial
m—
P, () = (z/bn) H nkk /Tnkk(o)]

of degree Ny, = 14 Y27""' ng. This construction appears in [(G2] (see also
[G1]). ‘

Here and in what follows, we adopt the convention that [;(---) = 1 and
Sh(--+) =0 for j > .

We restrict our attention to the compact set K with by, = exp(—2*), az, =
by, — bg+1. By Wiener’s criterion ([W]), the point 0 is regular, thus go\k s
continuous throughout C.

We find the degrees (n);""' such that the maximal values of | Py,, (7)|
for © € I;, are smaller than 1 for 1 < k < m — 1. Clearly, |Py,,(x)| < 1 for
x < by, We call Py, a nearly Chebyshev polynomial for the set K.

Substituting the polynomial Py, into (1.1) at z = —§ yields a lower
bound on gey\ g (—9).

In order to get an upper bound on g\ g (2) for z € C with dist(z, K) = 4,
we fix any polynomial P with |P|x < 1 and, as in [AG|, interpolate P at
zeros of a suitable nearly Chebyshev polynomial. The fundamental Lagrange
polynomials are uniformly bounded by the desired value, which gives the
main result.
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Let
©(6) =1/log(1/8) for0< <1, ~=—log(2—2)/log?2.

THEOREM 2.1. Let dist(z, K) = § < b1. Then go\g(2) < Cp7(0), where
C does not depend on 6. On the other hand, gc\g(—9) > ¢7(5).

We remark that the modulus of continuity of gc\ g is given in terms of
the function ¢, which is used in the definition of the logarithmic measure
(see e.g. [Nl Ch. V.6]). The parameter + here is such that 7 (bs) = (2—/2)°.

Given Green’s function gc\ i, a standard application of the Cauchy for-
mula for P’ and the Bernstein—Walsh inequality allow us to estimate the
Markov factors M, (K) = suppep, |P'|k/|P|Kk-

COROLLARY 2.2. There exists a constant C' such that for n € N we have
log 2

expn™ < M, (K) <exp(Cn™) with =—",
pn’t < Mn(K) < exp(Cn™) M= a2 1 VD)
3. Auxiliary results on Chebyshev polynomials. Let I = [a,b] =
[c—6,c+ 6]. We are interested in estimating the values of T, (z) = T;, (%5
for x ¢ I.

Let A\p(t) = (1+ V1 —t2)"4+ (1 —v1—¢2)" for 0 < ¢ < 1. Then, in view
of the well-known representation T, (z) = 3[(z+Vv22 — 1)"+(z— V22 — 1)"]
for |x| > 1 (see e.g. [R]), we get for Ay, Ay > 4,
|TnI(C + Al)‘ — <A1>n An(é/Al)
|Tn[(C:|:A2)‘ AQ )\n((S/AQ)’

where the last fraction can be estimated in the following way.

(3.1)

LEMMA 3.1. Lett) < ta < 1/2. Then \y(t1)/Mn(t2) < 2exp[n(t3—t3)/3].
Proof. We have
(1) /An(t2) < [(14 /1 =)™ + 2] /(1 + /1 — t3)"
= (L+ (83 —t)/a)" +b",

where a = (/1 -8+ /1-t3)(1+/1—-13) >3, b = 3/(1 + /1 —13)

< 1/7, and the lemma follows. m

Next, we will use the corresponding monic polynomial Q,,; = 6"2'~"T,;,
that is, Qnr(z) = [[f_,; (x — zx) with zy = ¢+ 0. Here, &, = cos %ﬂ' for
1 < k < n are the zeros of T,. Since T}, (&) = (=1)F"In/\/1 — €2 (see e.g.
[R], 1.24]), and n < |T)(&)| < n/sin(n/2n) < n?, we have

(3.2) n(8/2)" " < |Qny(xn)| < n*(8/2)"
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4. Nearly Chebyshev polynomials for K. The desired degrees
(nk(m));”:_ll will be defined by means of the sequence (ry)p,, where
ro=ry =1and rgpy =rg+71 4+ -+ rg_1 + 3rg for & > 1. This gives
the second-order recurrence relation ryyo = 4rg41 — 2rg, k > 1, with the
solution 7, = (2v/2)7H(2 + v2)* — (2v/2)71(2 — v2)¥ for k > 1. We remark
that all r, with k& > 2 are even.

Given fixed m € N, we define ny = r,,_i for k= 1,...,m. Thus,
1
n:72+\/§m—k_2_\/§m—k
o= gl + V- @ - v
for 1 <k<m-—1andn, =1.If m > 7 then nym, nm_1,...,Nm—g,... are

given as 1,1,4,14,48,164, 560, ....1f 3 < ¢ < m—1thenn,_s = 4ny,_1—2n,.
We collect together the properties of (ng) that will be used in what follows.
Recall that by, = exp(—2*). The statements below follow from the definition
of (ny) and straightforward calculations.

LEMMA 4.1. Let m > 3. Then the numbers ny satisfy:
(1) ZZL:q—f—l nE =Ng—1 —3ng for2<qg<m-—1,

(2) 2V2)7'2+ V2P 1 < < (2vV2) L2+ V2)" R for 1 <k <
m—1

4 = nmfg/nm,l > nm73/nm72 > > nl/nz > 2+ \/ﬁ,

14144+
b bt by g byt =0y T for 1< g <m— 1,

N =Yl me = 52+ V2)" 1+ (2= v2)™ 1 < 2+ V2) N1,
ng/Nm < (1+v2)27F(2 = V2)F = (14+v2)(2+V2)7F for 1 <k <
m—1,

(7) Zz:p”k < \/inpforl <p<qg<m-—1,

(8) ZZZP nkbr < 2npby and ZZ:p ni /b < 2nq/bg for 1 <p < g <m.

Suppose the polynomial Py, is defined by means of (nk)zn;ll and the
compact set K is given as in Section 2.

LEMMA 4.2. Givenm €N, let (ny,)"* be defined as above. Then |Py;,, ()|
<1 forz e K.

Proof. The result is evident for Pj(z) = x/by and Py(z) = (x/by) -
(c1 — x)/c1. Hence we can suppose that m > 3 and use Lemma 4.1.

Fix x € K. If x < by, then 0 < T}, () /T5,,(0) < 1 for all k <m—1, so
Py(e)| < 1.

Suppose z € I, with 1 < g <m —2. Then 0 < T, () /T,,x(0) <1 for
1 <k <q—1and |T,,(x)| < 1. Therefore, we need to check

m—1

(4.1) (bg/bm) [T 1T (bq) / Trse(0)] < Ty (0)].
k=q+1
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From (3.1) we have

by —ck \ " Ay (t1) .
T (bg) /T 1:(0)| = | 2 k with
’ kk( q)/ kk< )’ < Ck ) Ank(tQ) 1
¢ bk+1 bk+1
1= _ v

Q(bq — Ck> 2 QCk '

Here, ¢, = b, — %bkﬂ, so (by — cx)/ck < bg/by and, by Lemma 3.1,
Mg (1) /Ay, (t2) < 2exp(ngt3/3) < 2exp(ngby). Therefore the left side in
(4.1) does not exceed

bgm+nm—1+“‘+nq+l . m—1
m—q—
bb bnm 2~--bnq+12 exp( Z nkbk>.
m—1 q+1 k=q+1

Lemma 4.1(4)&(8) now shows that the first fraction above is b, '* and
ZZ:;H nkbr < 2n441bg+1, 50 the product is less than b, 72m 9 1e 2ngt1bgt1

On the other hand, the right side of (4.1) is 1 (bqﬁ /2)nq Ang ( gc“ ). Clearly,

An(t)>2 and 2¢q/bg1=(2—bq)/bg. It follows that |T5,,4(0)] >bg (2 — bg)"
and we only need to show that

(m—q—1)log2 + 2ngy1bg1 < nglog(2 — by).

By Lemma 4.1(3), this can be reduced to 2(m — ¢ — 1)log2 < ng, which is
easy to check.
In the last case, when z € I,,_1, the condition (4.1) assumes the form

bm—l/bm < ’Tl,m—l(o)’ = 2Cm—1/bm7
which evidently is fulfilled.

5. Proof of the main result. Let us first prove the simpler sharp-
ness result. Fix § < b and s > 1 with bs11 < § < bs. We consider the
polynomial P = Py, . that is, P(x) = (a/by:2) [Ti2) (Toyi () /Ty (0)]
By (1.1) and Lemma 4.2, we have go\x(—0) > N~ 'log|P(—d)|. Here,
N = 1(2+v2)*"[1 4+ (V2 —1)***2], by Lemma 4.1(5). Since [T}, (—6)| >
|T,.x(0)], we see that |[P(—d)| > 0/bst2 > b;&l and

25+l 4 2 s
—0) > =
o0 = N = (VI e <2+\/>
The first fraction exceeds 1 and (2+2\/§)S = (2 —V2)® = ©V(b,), thus
go\k (—0) > ¢7(bs) > ¢7(5), which is the desired conclusion.
We proceed to estimate gc\x from above. Let us first prove that

(5.1) govk (—bs) < C(2—V2)*
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for s > 2, where C does not depend on s. In order to show this, we will
define a certain increasing sequence (D,,) with

(5.2) D,, < N,, < 12D,,,

where N, is given in Lemma 4.1(5). For each large m we will consider a
system (:J:k)kD:"‘1 of interpolating points on K. Then any polynomial Py with
D,, 1 < N < D,, can be represented in the form Py = ZkDgl Py (xy) Ly,
where (Lk)ijl are the corresponding Lagrange fundamental polynomials.
We will show that for s > 2,

(5:3) (log | Lk (=bs)))/Nim < C1(2 = V2)?,

where C7 does not depend on s or k.
Suppose |Py|kg < 1. Then |Pn(—bs)| < Np, maxi<k<p,, |Lr(—bs)|. By
(5.2) and Lemma 4.1(5), we get N,, < 12(2 4+ +/2)N = CyN. Therefore,

(log [Py (=bs)[)/N < 10g(CoN) /N + C1Ca(2 — V).

Since in the representation (1.1) we can consider only polynomials of arbi-
trarily large degrees, the second term in the sum above dominates, which
establishes the desired result (5.1).

We proceed to define the numbers (D,,) and the corresponding interpo-
lating points. Given s > 2, fix m > s+2. Let (ny)yL; and Py, be defined as
above. The bound (5.3) is not valid if we use the zeros of Py, as interpolat-
ing points. For this reason we introduce new degrees dq = ng — v, by means
of the correction terms v, = [ny27%log 8], where [z] denotes the greatest
integer less than or equal to . We remark that d, = n, for large ¢, namely
qg=m,m—1,...,my, with m; = m -log(2 + v/2)/log(4 4+ v/2), whereas for
small values of g the correction is essential. Since v; > ni, we take dp = 0.
An easy computation shows that

(5.4) 87" < byt <8 bt forall ¢.

Let us estimate the sum zzlzq vy, from above, where ¢ > 2 and the actual
summation is only till mq, in view of the previous remark. By Lemma 4.1(2),

i 1028 o= (24 vV2)"F  log8 (2 4+ v2)" 1 & _k
v < < (4+2vV2)7"

We will denote the last sum by p, so p = (4 +2v/2)/(3 +2v/2). On the
other hand, the lower bound of nj in Lemma 4.1(2) implies

log8| 1 _
— | —=(2 2)mT— 1| —1.
Vg > =g [2\@(4-\[) ]
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Thus,

m
(5.5) Z v < prg+ p(27%0og8 + 1) < prg + 2,
k=q

since p < 6/5 and ¢ > 2.

Let us take 1 = 0, 22 = b, and then d; Chebyshev points on each
interval I, with ¢ =m —1,m —2,...,2. That is, 3 = ¢;,—1, since d;,—1 =
Nm—1 = 1 and 11 ym—1(z) = 2(x —¢pm—1)/bm. Then x4, ..., x7 are the zeros of
14,,_o,m—2,etc. Thus, D, := 1—1—22;2 d, is the total number of interpolating
points for given m.

We proceed to show that (5.5) implies (5.2). Clearly, D,, = 1+
> ge2(ng — vg) does not exceed Ny, = >°'"; ng. The second inequality in
(5.2) is equivalent to Np, < 12(1 + N,, — n1 — > ;o vk), which can be
reduced, by (5.5), to 12pve + 12 4+ 12n; < 11N,,. Here, vo < (n2/4)log8
and, by Lemma 4.1(6), N,, > v/2n;. Hence, it is enough to show that
3pnalog 8 +12 < (11v/2 — 12)n4. Since, by Lemma 4.1(3), n1 > na(2 +v/2),
we need to check that 12 < (10v/2 — 2 — 3plog 8)nz. Recall that s > 2 and
m > s+ 2,80 ng > Ny,—2 = 4. Finally, the inequality 5 + 3plog8 < 10v2 is
valid for p < 6/5.

Our next goal is to prove (5.3). To shorten notation we write Q; for
the monic Chebyshev polynomial Qg ; of degree d; on I, and t; :=
|Q;(=bs)/Qj ()]

Suppose first zj, € I; with s < g < m — 1. Then |Ly(—bs)| = mmamsmy,
where

bs(bs"‘bm) i, |Q( S
" =) AL T +qu>|cz/ (0) H”’“‘Ht

Tz — b
bk = bm J=q+1

For the terms in the product m; we have |Q;(—bs)| < be (1+b;/bs)% and
|Qj(x)| > bfllj(l — by —bj/bg)%. Therefore, 1 < (bs/by) tdm*Fdar1 Ay /By,
where A1 = J[7% ., (1 + bj/bs)4 < [12, (1 + b/b5)" < e2na+1bs |y
Lemma 4.1(8). Similarly, By = (1 = bg) [Tj2, (1 — by — bj/bg)%. Since
bj/by < by and d;j < n;, we have, by Lemma 4.1(1),

By > (1 — 2bg) Fmm et — (1 — 25 ) Fa-17300 5 (1 — 2bg)"e- 1,

Hence, By > (1 + 3by) "t and By > e ?"a-1%. We can replace d; by n;
also in the exponent of bs/b,. Lemma 4.1(1) now yields

logm < (ng—1 — 3ng + 1)(27 — 2%) + by(2ng4+1 + 3ng—1).

In addition, ns—1 < 4n, and ¢ > s > 2. Therefore, (ng_1 — 3n, + 1)27 <
ng2971 and by(2ng41 + 3ng-1) < 4ny < 2°n,. Thus, logm < 1,277t and, by
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Lemma 4.1(6),
(logm1)/Npm < 2(1+V2)(2 = V2)7 < (2 +2V2)(2 — V2)*.

Let us estimate 7 from above. The value |Q4(—bs)| consists of d,; terms.
One of them coincides with bs+xy,. Hence, |Qq(—bs)|/(bs+zy) < (bs+by)%a1
<(2bs)% !, as s<g¢. On the other hand, by (3.2), |Q} (k)| > dq(bg41/4)% "
Therefore,

Ty < (8bs/bgr1) %™ < bt < b = exp(ng20).

Hence (log m2)/N,, has the desired bound.
Arguing as above, we see that

< b?q_1+---+n52ns Asg b?s“2”SA3
3 Mg—1 ns Q. — 7Mg—1 Tst1
bq—l .- bg® DBs bq—l -0, Bs

with Az = []IZ 5+1(1 +b;/bs)™ and Bz = H?;;(l —2bj)™. An easy compu-
tation shows that log(As/Bs) < 2bs(ns+1 + 3ns) and
(5.6) b2 Ay < By
for s > 2. Thus, 3 < (bgfll - bpi) T and log s < Z?;;H n;27, so, by
Lemma 4.1(6),

q—1
(57) (logms)/Nm < (143 3 (2= V3 < 2+ V32— V2.

Jj=s+1

To deal with 74, we use (3.1):

Ty = ﬁ(cj +b8>dj Adj(tl)
4 Cj — Tg )\dj(tg)

Jj=2

and t, = - 2t! oy - Here, t3—12 < 2b4b;. Hence, by Lemmas

b.
with ¢t = 7( by 30—

3.1 and 4.1(8),

< 2572 exp(2bsnabs).

On the other hand, c”+b <1l+3 3bs . From this,

— j s—1
H <ccj—+f;2) I < eXP(BbS an/bj> < exp(6ns_1bs_1).
j

j=2 j=2
This and Lemma 4.1(6) imply that
(log 74) /N,
< (5—2)10g 2/ Ny, +2bsba(14+/2)272(2—V2)2 +6bs_1 (1 +V2)(2+V2)1*
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Since Ny, > (2++/2)™1/2, the first term in the sum above does not exceed
(2 — v/2)*. The same bound is valid for the second term, as 1 + v2 <
2(2 — v/2)*2e*e?". For the last term we have 6bs_1(1 +v/2)(2 +v2)! 7% <
2(2 — v/2)*, since 3(4 + 3v/2) < 2%¢2”" for 5 > 2. Therefore,

(log 74) /Ny < 4(2 — V/2)°,

which is the desired conclusion.

Combining these we get (5.3) for xj, € I, with indicated values of ¢q. We
note that above we did not use the difference between d; and n;.

The cases k = 1 and k = 2 are simpler and very similar. For x; = 0 we

have . .
bs bm m— s—

|L1(=bs)| = ( 2_ H tj) (H tj) = T3y
o j=s =2

with t; :=|Q;(—bs)/Q;(0)|. We denote the corresponding parts of the prod-
uct above by w3 and 74 because they are handled in the same way as 73 and
74 in the general case. Now,

N+ +Ns 41
Sm S A3

- s ___—
7 Tst1
b m...bs+1 33

with Az = J[7% (1 4b;/bs)" and By = [[;" (1 —b;)™, so we can use the
previous bound for A3/Bs and (5.5). Therefore my < (b ---bih ) and
the bound (5.7) is valid in this case as well.

Likewise, the value 74 is the same as above if we take x; = 0.

The same reasoning, with a minor modification of A3z and Bs, applies to
the case k = 2.

It remains to consider the most difficult case x3, € I; with 2 < ¢ < s—1.
Recall that d; = 0, so the interval I; does not contain interpolating points.
Now we use the decomposition |Lk(—b )| = mymemsmy with

s(bs +b |Qq(—Ds) _
e z(x)—b H b 2 = H b3 = (bs +xk)’Q' Ht]’

Jj=q+1

3 <

where, as above, tj means |Q;(—bs)/Q;(xr)|. We note that 74y =1 for q=2.

As before, my < (bs/by) FdmTFds2ds A) / By with A= H;":sﬂ(l—i—bj/bs)dj
< exp(2bsnsi1), Br = (1 —by) [[[L,(1 —bg — bj/by)% > exp(—3byns). Since,
by Lemma 4.1(3), nslog2 + 2bsngy1 + 3bgns < ng, we get

< (bs/bq)l+dm+"'+dsens.

If g+1<j<s—1, then b; dominates bs. Therefore,

dsfl dq+1
by"y by Ag

b3871+ +dq+1 B2

Ty <
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with Ay = [[52, 41 (1+ bs/bj)™ < exp(2bs1ns-1), By = [[5g,1 (1 — 2bg)™.
Here, (1 —2b,)~" < 1+ 3by. Tt follows that By > exp(—3by > ;- an])
exp(—3v/2byng11), by Lemma 4.1(7). Combining these we get

pls=1 . plat
s—1 q+1 62b571n571+3\/§bqnq+1
bd571+---+dq+1 )
q

From (3.2) we obtain

o (g tb)ht 1 (4)dq-1(1+bs>dfl< 1 <4>dq‘1 naby
Ty < —— = — [ — —= — = el'sva.
dg(bg1/4)% 1 dg \ by by dq \ bq

Similarly to the case s < g, for m4 we use (3.1):

o <

q—1 d;
i+ b \ Y A (2 b. b
ro= [I(SE2) 200 with = Dt = B
o3 NG~ Tk Ad; (t2) 2(cj +bs) 2(cj — xx)
As above,

071 (bs + k) (20 + bs — 1)

4 (e +bs)?(ej —ap)?
Here, bs 4z, < 2by, 2¢; +bs — xp < 2(cj +bs), and (¢; +bs)(cj —xx)? > b;)?/2.
Hence, t3 — t? < 2b,b;. By Lemmas 3.1 and 4.1(8),

4
1) < 2 exp <3bqn2b2> .

th—t =

Also,
cj + bs 2b, ¢ +bs
— <14+ — d < 4ng_1bg_1).
PEETE ]HQ Cj — Tk P(Hta-1b-)
Therefore,

4
Ty < exp <4nq_1bq_1 +q+ 3bqn2b2> for ¢ > 3.

Combining all inequalities yields

| L (—bs)]
I4+nmt-dnspls—1  platl VgtvVg1+ ng—vg—1
< bs bs_ bq+1 bq 4na €M1+M2
b1+nm+"'+nq+1 bnq—l V5+Vs+1+"'szfl . bl/q+1 d ’
q q s s—1 g+1 q

where (1 = ng+2bs_1ns_1+nsbg+q < 2ng+q, po = 3v2 bgng+1+4ng—1bg—1+
%bq’ngbg and v; + v;41 + - - - denotes the sum of all nonzero correction terms
starting from v;.

Let us consider the first fraction in the product above. By Lemma 4.1(4),

bgz’“zs "= T 41 bpF. Therefore the numerator of this fraction equals
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bl=ms 172,105 On the other hand, its denominator is just [[;L ., bp*,
for the same reason. Hence the first fraction above is bl ~"s.

Further, byt /17 < pratvort — bgqb;ff/ 2 < gt /2572 by (5.4).
In turn, by (5.5), the denominator of the second fraction is larger than
b Ve t2g=ns—1—=nat1_ Thus the second fraction does not exceed by 2b; 287",
where K = ng + %nqﬂ — (ng41+ -+ ns_1+p-ng). Here, png < ng+nsi1.
Hence, by Lemma 4.1(7),

> <f 1> > > > 2
K Ng — — =N T ———— —MNg.
q 9 J"tatl 2(2+ﬂ) - 3"

Therefore,
2
La(ba)] < b7ty et ST 7
From a computational point of view, we introduce the correction terms
(v4) in order to neutralize 4™ in the numerator above, which is unacceptably
large if we use the degrees (n,) without correction.
According to the estimation of x, we have 4™ < 8%. Let us show that

et < gvatl

If ¢ = 2 then my = 1 and po contains only its first term, that is,

po = 3v/2bynz. By Lemma 4.1(3), po < 2‘1{% 4n5. On the other hand,

(v +1)log4 > %GIOg2 2, which exceeds ps.
Thus we can suppose that ¢ > 3. Since ¢ < s—1 and m > s+ 2, we have
% << T, by Lemma 4.1(3). Also, ns < 2(2+v/2)7 2ng, by Lemma

4.1(2). Therefore

3v2 8 _
175 < nq |:2—|_\/§bq + 14bq_1 + 3(2 + \/i)q 2bqb2:| .

On the other hand, (v, +1)log4 > 610g 2. It is enough to show that

3\/§ _99q _9q—1 8 9 _99 _
20| e 4 147 + -2+ V2)T 2 e 4] < 6log? 2
B Y2 +v2) g
The expression on the left attains its maximal value at the minimal ¢,
so we reduced the proof to the case ¢ = 3, which can be checked by a
straightforward calculation.
From this,

log | L(—bs)| < (ns 4+ 1)25 + 2971 4 20, +q+2 < ng(25+2) + 25T + 541,

since ¢ + 1 < s. Recall that m > s+ 2, so ng > n,,_o = 4. Therefore,
log | Ly(—bs)| < ns252, which gives (5.3) in view of Lemma 4.1(6). This
completes the proof of (5.1).
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We now turn to the general case. Suppose dist(z, K) = § < b;. We
want to show that go\x(2) < C?(6), where C' does not depend on §. We
can assume, by increasing C' if necessary, that § < by, for any sg given
beforehand. Take sy = 4. Fix z with dist(z,K) = § < by and s > 4 such
that bs11 < § < bs. Since (b)) = @(bs1) < @(8) < @(bs), it is enough to
show that

(5.8) govk(2) < 2 - V2)°

for z with dist(z, K') = bs, where C does not depend on s.

Suppose first that dist(z, K) = |z — 20| with 29 € I, for some ¢ with
q < s—2. The monotonicity of the Green function with respect to the set K
implies that go\x(2) < ge\r,(2)- It is well-known that, given I = [, ], the

Green function goy\7(2) = log|z/l + /(2/1)? — 1| attains its maximal value,
among all z with dist(z,I) = J, at real points. Therefore,

max{gey(2) : dist(z, 1) = 6} = gevs (1 +6) < 20/5/1

if 6 <1/4. In our case, ge\1,(2) < 24/2b5/bg1 = 2v/2 exp(29 — 2°71). Since
q < s—2, we have gc\g(2) < 2v/2 exp(—2°72), which does not exceed
(2 — v/2)* for s > 4. This gives (5.8) for the first case.

It remains to consider zgp € K N[0, bs—1]. Recall that in the main bound
(5.3) we estimated Lagrange fundamental polynomials with interpolating
points (:Uk)kD;"I. Let us compare distances from these points to z and to the
point —bs_o. If x; < be—q then |z — x| < |z — 20| + |20 — x| < bs 4+ bs—1 <
bs—o < bs—o+x;. Otherwise, x; > as—9 and |z—x;| < [z —20|+2; = bs+x; <
bs_g + Zj-

It follows that |Ly(2)| = H?:’"L#k |z —zj|/|xy — x| <|Lk(—bs—2)|. Here,
s —2 > 2, so we can apply (5.3). Arguing as above, we can generalize (5.1)
to (5.8).

6. On Totik’s bound. In 2006 V. Totik [T}, Th. 2.2] obtained the
following remarkable estimate of the Green function (we formulate it for a
compact set K C [0, 1]):

1

2
(6.1) go\k (—9) < CV5 exp (DS 8?3@) dt> log
0

2
cap(K)’

Here, C, D are absolute constants, it is supposed that K is not polar, and the
function O is defined in our case as Ok (t) = m([0,¢]\ K), where m stands
for the linear Lebesgue measure. In the case Zg,, := S(l) O%-(t)t =3 dt < oo, the
Green function g\ g has Lip% smoothness, which is optimal for compact
sets on R. V. Totik proved that the condition of convergence of the integral
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is sharp: given function © with Zg = oo, there exists a set K with O < O
whose Green function is not in Lip% at the origin.

Thus, the estimation above is very appropriate to analyze boundary be-
havior of the Green functions with optimal smoothness. However, for com-
pact sets with divergent Zg, the general estimate may be rough, because of

uncontrollable constant D. For example in our case, SZi O%(t)t 3 dt > 252,

so the right side of (6.1) exceeds Cby P2 for § = b,

Neither can the previous general bound of the Green functions by
M. Tsuji [Ts, Th. II1.67] be applied for the compact set considered in the
paper. In fact, (6.1) is a refinement of the estimate by M. Tsuji.

It is also interesting to apply the lower bound by V. Andrievskii ([A1]
or Th. 2.3 in [A2]) to our case. We get go\ g (—bs) > %b;m_a with rather
small €.

7. Markov’s factors. Let us show that for ; = log2/log(2 +1/2) and
some constant C' we have

expn™ < M, (K) <exp(Cn™) forneN.

Suppose that for some increasing continuous function F we have the
bound ge\g(2) < F(0) for dist(z, K) < d. The application of the Cauchy
formula for P" and the Bernstein-Walsh inequality gives (see e.g. [AG]) the
estimate

M, (K) < ing 5 Lexp[nF(6)].

In our case F'(6) = C7(8) and the value § with (log %)H’Y = Cn gives the
desired upper bound of M, (K).

On the other hand, fix n € N and m with N, < n < Np,4+1, where N,
is given in Lemma 4.1(5). For the polynomial P = Py, from Section 2 we
have |P'(0)| = b,,} = exp2™ and |P|k < 1, by Lemma 4.2.

Since the sequence (M,,(K)) is nondecreasing, we get M, (K) > My, (K)
> |P'(0)|/|P|x > exp2™. The last value exceeds exp N,'\ ;, since Np41 <
(2 4 v/2)™. This completes the proof of Corollary 2.2 as Ny, 1 > n.
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