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Abstract. We consider a compact set K ⊂ R in the form of the union of a sequence
of segments. By means of nearly Chebyshev polynomials for K, the modulus of continuity
of the Green functions gC\K is estimated. Markov’s constants of the corresponding set are
evaluated.

1. Introduction. If a compact set K is regular with respect to the
Dirichlet problem then the Green function gC\K of C\K with pole at infinity
is continuous throughout C. We are interested in finding its modulus of
continuity. The problem of smoothness of gC\K near the boundary of K was
considered by many authors (see e.g. the references in the survey [A2] and
more recent [CG], [RR], [AG]). A new impulse to investigate smoothness
properties of the Green functions came in 2006, after appearance of the
monograph [T] by V. Totik.

Here we consider a special compact set K ⊂ R in the form of the union
of a sequence of segments. For the corresponding Green function we use the
well-known representation

(1.1) gC\K(z) = sup

{
log |P (z)|

degP
: P ∈ P, degP ≥ 1, |P |K ≤ 1

}
.

Here and below, P =
⋃∞
n=0 Pn where Pn denotes the set of all complex

polynomials of degree at most n, |P |K is the supremum norm of P on K,
and log denotes the natural logarithm.

There are many sequences of polynomials that realize the supremum
above, for example the normalized Fekete polynomials (see e.g. [P, Th. 11.1]),
the normalized Chebyshev polynomials with zeros on K (see e.g. [Gol,
Th. VII.4.4]), or any normalized sequence of polynomials orthogonal with
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respect to a regular (in the sense of [ST]) measure. Following [G2], we con-
struct a sequence of “nearly Chebyshev” polynomials for K and find the
exact (up to a constant) value of the modulus of continuity of gC\K . It
should be noted that the general bound by V. Totik [T, Th. 2.2] of the
Green functions, which is highly convenient to characterize optimal (that is,
Lip 1/2) smoothness of gC\K for K ⊂ [0, 1], cannot be applied to our case.
See Section 6 for more details.

There are several applications of smoothness properties of the Green
functions to solving different problems in analysis (see e.g. [T]). We are
interested in applications to polynomial inequalities. In Section 7 we evaluate
the Markov factors for our set K.

2. Notation and the main result. Let K = {0} ∪
⋃∞
k=1 Ik ⊂ [0, 1],

where Ik = [ak, bk] = [ck − δk, ck + δk] with ak ↓ 0 and hk := ak − bk+1 > 0
for all k.

We use the Chebyshev polynomials Tn(x) = cos(n · arccosx) for |x| ≤ 1
and n ∈ N0 := {0, 1, 2, . . . }. For a fixed interval Ik, let Tnk denote the scaled
Chebyshev polynomial, that is, Tnk(x) = Tn

(
x−ck
δk

)
.

For fixed m ∈ N and nk = nk(m) with k = 1, . . . ,m− 1, we consider the
polynomial

PNm(x) = (x/bm)
m−1∏
k=1

[Tnkk(x)/Tnkk(0)]

of degree Nm = 1 +
∑m−1

k=1 nk. This construction appears in [G2] (see also
[G1]).

Here and in what follows, we adopt the convention that
∏i
j(· · · ) = 1 and∑i

j(· · · ) = 0 for j > i.

We restrict our attention to the compact set K with bk = exp(−2k), ak =
bk − bk+1. By Wiener’s criterion ([W]), the point 0 is regular, thus gC\K is
continuous throughout C.

We find the degrees (nk)
m−1
k=1 such that the maximal values of |PNm(x)|

for x ∈ Ik are smaller than 1 for 1 ≤ k ≤ m − 1. Clearly, |PNm(x)| < 1 for
x ≤ bm. We call PNm a nearly Chebyshev polynomial for the set K.

Substituting the polynomial PNm into (1.1) at z = −δ yields a lower
bound on gC\K(−δ).

In order to get an upper bound on gC\K(z) for z ∈ C with dist(z,K) = δ,
we fix any polynomial P with |P |K ≤ 1 and, as in [AG], interpolate P at
zeros of a suitable nearly Chebyshev polynomial. The fundamental Lagrange
polynomials are uniformly bounded by the desired value, which gives the
main result.
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Let

ϕ(δ) = 1/log(1/δ) for 0 < δ < 1, γ = − log(2−
√

2)/log 2.

Theorem 2.1. Let dist(z,K) = δ ≤ b1. Then gC\K(z) ≤ Cϕγ(δ), where
C does not depend on δ. On the other hand, gC\K(−δ) ≥ ϕγ(δ).

We remark that the modulus of continuity of gC\K is given in terms of
the function ϕ, which is used in the definition of the logarithmic measure
(see e.g. [N, Ch. V.6]). The parameter γ here is such that ϕγ(bs) = (2−

√
2)s.

Given Green’s function gC\K , a standard application of the Cauchy for-
mula for P ′ and the Bernstein–Walsh inequality allow us to estimate the
Markov factors Mn(K) = supP∈Pn

|P ′|K/|P |K .

Corollary 2.2. There exists a constant C such that for n ∈ N we have

expnγ1 ≤Mn(K) ≤ exp(Cnγ1) with γ1 =
log 2

log(2 +
√

2)
.

3. Auxiliary results on Chebyshev polynomials. Let I = [a, b] =
[c− δ, c+ δ]. We are interested in estimating the values of TnI(x) = Tn

(
x−c
δ

)
for x /∈ I.

Let λn(t) = (1 +
√

1− t2)n + (1−
√

1− t2)n for 0 ≤ t ≤ 1. Then, in view
of the well-known representation Tn(x) = 1

2 [(x+
√
x2 − 1)n+(x−

√
x2 − 1)n]

for |x| ≥ 1 (see e.g. [R]), we get for ∆1, ∆2 > δ,

(3.1)
|TnI(c±∆1)|
|TnI(c±∆2)|

=

(
∆1

∆2

)n λn(δ/∆1)

λn(δ/∆2)
,

where the last fraction can be estimated in the following way.

Lemma 3.1. Let t1 < t2 < 1/2. Then λn(t1)/λn(t2) ≤ 2 exp[n(t22−t21)/3].

Proof. We have

λn(t1)/λn(t2) < [(1 +
√

1− t21)n + t2n1 ]/(1 +
√

1− t22)n

= (1 + (t22 − t21)/a)n + bn,

where a = (
√

1− t21 +
√

1− t22)(1 +
√

1− t22) > 3, b = t21/(1 +
√

1− t22)
< 1/7, and the lemma follows.

Next, we will use the corresponding monic polynomial QnI = δn21−nTnI ,
that is, QnI(x) =

∏n
k=1(x− xk) with xk = c+ δξk. Here, ξk = cos 2k−1

2n π for

1 ≤ k ≤ n are the zeros of Tn. Since T ′n(ξk) = (−1)k−1n/
√

1− ξ2k (see e.g.

[R, 1.24]), and n ≤ |T ′n(ξk)| ≤ n/sin(π/2n) < n2, we have

(3.2) n(δ/2)n−1 ≤ |Q′nI(xk)| < n2(δ/2)n−1.
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4. Nearly Chebyshev polynomials for K. The desired degrees
(nk(m))m−1k=1 will be defined by means of the sequence (rk)

∞
k=0, where

r0 = r1 = 1 and rk+1 = r0 + r1 + · · · + rk−1 + 3rk for k ≥ 1. This gives
the second-order recurrence relation rk+2 = 4rk+1 − 2rk, k ≥ 1, with the
solution rk = (2

√
2)−1(2 +

√
2)k − (2

√
2)−1(2−

√
2)k for k ≥ 1. We remark

that all rk with k ≥ 2 are even.
Given fixed m ∈ N, we define nk = rm−k for k = 1, . . . ,m. Thus,

nk =
1

2
√

2
[(2 +

√
2)m−k − (2−

√
2)m−k]

for 1 ≤ k ≤ m − 1 and nm = 1. If m ≥ 7 then nm, nm−1, . . . , nm−6, . . . are
given as 1, 1, 4, 14, 48, 164, 560, . . . . If 3 ≤ q ≤ m−1 then nq−2 = 4nq−1−2nq.
We collect together the properties of (nk) that will be used in what follows.
Recall that bk = exp(−2k). The statements below follow from the definition
of (nk) and straightforward calculations.

Lemma 4.1. Let m ≥ 3. Then the numbers nk satisfy:

(1)
∑m

k=q+1 nk = nq−1 − 3nq for 2 ≤ q ≤ m− 1,

(2) (2
√

2)−1(2 +
√

2)m−k − 1 < nk < (2
√

2)−1(2 +
√

2)m−k for 1 ≤ k ≤
m− 1,

(3) 4 = nm−2/nm−1 > nm−3/nm−2 > · · · > n1/n2 > 2 +
√

2,

(4) bm · bm−1 · b4m−2 · · · b
nq+1

q+1 = b
1+1+4+···+nq
q for 1 ≤ q ≤ m− 1,

(5) Nm =
∑m

k=1 nk = 1
2 [(2 +

√
2)m−1 + (2−

√
2)m−1] < (2 +

√
2)Nm−1,

(6) nk/Nm < (1 +
√

2)2−k(2−
√

2)k = (1 +
√

2)(2 +
√

2)−k for 1 ≤ k ≤
m− 1,

(7)
∑q

k=p nk <
√

2np for 1 ≤ p ≤ q ≤ m− 1,

(8)
∑q

k=p nkbk < 2npbp and
∑q

k=p nk/bk < 2nq/bq for 1 ≤ p ≤ q ≤ m.

Suppose the polynomial PNm is defined by means of (nk)
m−1
k=1 and the

compact set K is given as in Section 2.

Lemma 4.2. Givenm∈N, let (nk)
m−1
k=1 be defined as above. Then |PNm(x)|

≤ 1 for x ∈ K.
Proof. The result is evident for P1(x) = x/b1 and P2(x) = (x/b2) ·

(c1 − x)/c1. Hence we can suppose that m ≥ 3 and use Lemma 4.1.
Fix x ∈ K. If x ≤ bm then 0 < Tnkk(x)/Tnkk(0) ≤ 1 for all k ≤ m− 1, so

|PN (x)| ≤ 1.
Suppose x ∈ Iq with 1 ≤ q ≤ m − 2. Then 0 < Tnkk(x)/Tnkk(0) ≤ 1 for

1 ≤ k ≤ q − 1 and |Tnqq(x)| ≤ 1. Therefore, we need to check

(4.1) (bq/bm)
m−1∏
k=q+1

|Tnkk(bq)/Tnkk(0)| ≤ |Tnqq(0)|.
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From (3.1) we have

|Tnkk(bq)/Tnkk(0)| =
(
bq − ck
ck

)nk λnk
(t1)

λnk
(t2)

with

t1 =
bk+1

2(bq − ck)
< t2 =

bk+1

2ck
.

Here, ck = bk − 1
2bk+1, so (bq − ck)/ck < bq/bk and, by Lemma 3.1,

λnk
(t1)/λnk

(t2) < 2 exp(nkt
2
2/3) < 2 exp(nkbk). Therefore the left side in

(4.1) does not exceed

b
nm+nm−1+···+nq+1
q

bmbm−1b
nm−2

m−2 · · · b
nq+1

q+1

2m−q−1 exp
( m−1∑
k=q+1

nkbk

)
.

Lemma 4.1(4)&(8) now shows that the first fraction above is b
−nq
q and∑m−1

k=q+1 nkbk < 2nq+1bq+1, so the product is less than b
−nq
q 2m−q−1e2nq+1bq+1 .

On the other hand, the right side of (4.1) is 1
2

( cq
bq+1/2

)nqλnq

( bq+1

2cq

)
. Clearly,

λn(t)≥2 and 2cq/bq+1=(2− bq)/bq. It follows that |Tnqq(0)|≥b−nq
q (2− bq)nq

and we only need to show that

(m− q − 1) log 2 + 2nq+1bq+1 < nq log(2− bq).
By Lemma 4.1(3), this can be reduced to 2(m− q − 1) log 2 < nq, which is
easy to check.

In the last case, when x ∈ Im−1, the condition (4.1) assumes the form

bm−1/bm ≤ |T1,m−1(0)| = 2cm−1/bm,

which evidently is fulfilled.

5. Proof of the main result. Let us first prove the simpler sharp-
ness result. Fix δ ≤ b1 and s ≥ 1 with bs+1 < δ ≤ bs. We consider the
polynomial P = PNs+2 , that is, P (x) = (x/bs+2)

∏s+1
k=1[Tnkk(x)/Tnkk(0)].

By (1.1) and Lemma 4.2, we have gC\K(−δ) ≥ N−1 log |P (−δ)|. Here,

N = 1
2(2 +

√
2)s+1[1 + (

√
2− 1)2s+2], by Lemma 4.1(5). Since |Tnkk(−δ)| >

|Tnkk(0)|, we see that |P (−δ)| > δ/bs+2 > b−1s+1 and

gC\K(−δ) > 2s+1

N
=

4

(2 +
√

2)[1 + (
√

2− 1)2s+2]

(
2

2 +
√

2

)s
.

The first fraction exceeds 1 and
(

2
2+
√
2

)s
= (2 −

√
2)s = ϕγ(bs), thus

gC\K(−δ) > ϕγ(bs) ≥ ϕγ(δ), which is the desired conclusion.

We proceed to estimate gC\K from above. Let us first prove that

(5.1) gC\K(−bs) ≤ C(2−
√

2)s
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for s ≥ 2, where C does not depend on s. In order to show this, we will
define a certain increasing sequence (Dm) with

(5.2) Dm < Nm < 12Dm,

where Nm is given in Lemma 4.1(5). For each large m we will consider a
system (xk)

Dm
k=1 of interpolating points on K. Then any polynomial PN with

Dm−1 ≤ N < Dm can be represented in the form PN =
∑Dm

k=1 PN (xk)Lk,

where (Lk)
Dm
k=1 are the corresponding Lagrange fundamental polynomials.

We will show that for s ≥ 2,

(5.3) (log |Lk(−bs)|)/Nm ≤ C1(2−
√

2)s,

where C1 does not depend on s or k.

Suppose |PN |K ≤ 1. Then |PN (−bs)| ≤ Nm max1≤k≤Dm |Lk(−bs)|. By
(5.2) and Lemma 4.1(5), we get Nm < 12(2 +

√
2)N = C2N. Therefore,

(log |PN (−bs)|)/N ≤ log(C2N)/N + C1C2(2−
√

2)s.

Since in the representation (1.1) we can consider only polynomials of arbi-
trarily large degrees, the second term in the sum above dominates, which
establishes the desired result (5.1).

We proceed to define the numbers (Dm) and the corresponding interpo-
lating points. Given s ≥ 2, fix m ≥ s+2. Let (nq)

m
q=1 and PNm be defined as

above. The bound (5.3) is not valid if we use the zeros of PNm as interpolat-
ing points. For this reason we introduce new degrees dq = nq − νq by means
of the correction terms νq = [nq2

−q log 8], where [x] denotes the greatest
integer less than or equal to x. We remark that dq = nq for large q, namely
q = m,m− 1, . . . ,m1, with m1 ≈ m · log(2 +

√
2)/ log(4 +

√
2), whereas for

small values of q the correction is essential. Since ν1 > n1, we take d1 = 0.
An easy computation shows that

(5.4) 8−nq ≤ bνqq < 8−nqb−1q for all q.

Let us estimate the sum
∑m

k=q νk from above, where q ≥ 2 and the actual
summation is only till m1, in view of the previous remark. By Lemma 4.1(2),

m∑
k=q

νk ≤
log 8

2
√

2

m∑
k=q

(2 +
√

2)m−k

2k
<

log 8

2
√

2

(2 +
√

2)m−q

2q

∞∑
k=0

(4 + 2
√

2)−k.

We will denote the last sum by ρ, so ρ = (4 + 2
√

2)/(3 + 2
√

2). On the
other hand, the lower bound of nk in Lemma 4.1(2) implies

νq >
log 8

2q

[
1

2
√

2
(2 +

√
2)m−q − 1

]
− 1.
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Thus,

(5.5)

m∑
k=q

νk < ρνq + ρ(2−q log 8 + 1) < ρνq + 2,

since ρ < 6/5 and q ≥ 2.

Let us take x1 = 0, x2 = bm and then dq Chebyshev points on each
interval Iq with q = m− 1,m− 2, . . . , 2. That is, x3 = cm−1, since dm−1 =
nm−1 = 1 and T1,m−1(x) = 2(x−cm−1)/bm. Then x4, . . . , x7 are the zeros of
Tdm−2,m−2, etc. Thus, Dm := 1+

∑m
q=2 dq is the total number of interpolating

points for given m.

We proceed to show that (5.5) implies (5.2). Clearly, Dm = 1 +∑m
q=2(nq − νq) does not exceed Nm =

∑m
q=1 nq. The second inequality in

(5.2) is equivalent to Nm < 12(1 + Nm − n1 −
∑m

k=2 νk), which can be
reduced, by (5.5), to 12ρν2 + 12 + 12n1 < 11Nm. Here, ν2 ≤ (n2/4) log 8
and, by Lemma 4.1(6), Nm >

√
2n1. Hence, it is enough to show that

3ρn2 log 8 + 12 < (11
√

2− 12)n1. Since, by Lemma 4.1(3), n1 > n2(2 +
√

2),
we need to check that 12 < (10

√
2 − 2 − 3ρ log 8)n2. Recall that s ≥ 2 and

m ≥ s+ 2, so n2 ≥ nm−2 = 4. Finally, the inequality 5 + 3ρ log 8 < 10
√

2 is
valid for ρ < 6/5.

Our next goal is to prove (5.3). To shorten notation we write Qj for
the monic Chebyshev polynomial Qdj ,j of degree dj on Ij , and tj :=
|Qj(−bs)/Qj(xk)|.

Suppose first xk ∈ Iq with s ≤ q ≤ m − 1. Then |Lk(−bs)| = π1π2π3π4,
where

π1 =
bs(bs + bm)

xk(xk − bm)

m−1∏
j=q+1

tj , π2 =
|Qq(−bs)|

(bs + xk)|Q′q(xk)|
, π3 =

q−1∏
j=s

tj , π4 =

s−1∏
j=2

tj .

For the terms in the product π1 we have |Qj(−bs)| < b
dj
s (1+bj/bs)

dj and

|Qj(xk)| > b
dj
q (1− bq − bj/bq)dj . Therefore, π1 < (bs/bq)

1+dm+···+dq+1A1/B1,
where A1 =

∏m
j=q+1(1 + bj/bs)

dj ≤
∏m
j=q+1(1 + bj/bs)

nj < e2nq+1bq , by

Lemma 4.1(8). Similarly, B1 = (1 − bq)
∏m
j=q+1(1 − bq − bj/bq)

dj . Since
bj/bq ≤ bq and dj ≤ ni, we have, by Lemma 4.1(1),

B1 > (1− 2bq)
1+nm+···+nq+1 = (1− 2bq)

1+nq−1−3nq > (1− 2bq)
nq−1 .

Hence, B1 > (1 + 3bq)
−nq−1 and B1 > e−3nq−1bq . We can replace dj by nj

also in the exponent of bs/bq. Lemma 4.1(1) now yields

log π1 < (nq−1 − 3nq + 1)(2q − 2s) + bq(2nq+1 + 3nq−1).

In addition, nq−1 ≤ 4nq and q ≥ s ≥ 2. Therefore, (nq−1 − 3nq + 1)2q ≤
nq2

q+1 and bq(2nq+1 + 3nq−1) < 4nq ≤ 2snq. Thus, log π1 < nq2
q+1 and, by
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Lemma 4.1(6),

(log π1)/Nm < 2(1 +
√

2)(2−
√

2)q ≤ (2 + 2
√

2)(2−
√

2)s.

Let us estimate π2 from above. The value |Qq(−bs)| consists of dq terms.
One of them coincides with bs+xk. Hence, |Qq(−bs)|/(bs+xk) < (bs+bq)

dq−1

≤(2bs)
dq−1, as s≤q. On the other hand, by (3.2), |Q′q(xk)|>dq(bq+1/4)dq−1.

Therefore,

π2 < (8bs/bq+1)
dq−1 < b

−dq+1
q+1 < b

−nq

q+1 = exp(nq2
q+1).

Hence (log π2)/Nm has the desired bound.
Arguing as above, we see that

π3 <
b
nq−1+···+ns
s 2ns

b
nq−1

q−1 · · · b
ns
s

A3

B3
≤ b

ns+1
s 2nsA3

b
nq−1

q−1 · · · b
ns+1

s+1 B3

with A3 =
∏q−1
j=s+1(1 + bj/bs)

nj and B3 =
∏q−1
j=s(1− 2bj)

nj . An easy compu-
tation shows that log(A3/B3) ≤ 2bs(ns+1 + 3ns) and

(5.6) bns+1
s 2nsA3 < B3

for s ≥ 2. Thus, π3 < (b
nq−1

q−1 · · · b
ns+1

s+1 )−1 and log π3 <
∑q−1

j=s+1 nj2
j , so, by

Lemma 4.1(6),

(5.7) (log π3)/Nm < (1 +
√

2)

q−1∑
j=s+1

(2−
√

2)j < (2 +
√

2)(2−
√

2)s.

To deal with π4, we use (3.1):

π4 =
s−1∏
j=2

(
cj + bs
cj − xk

)dj λdj (t1)
λdj (t2)

with t1 =
bj+1

2(cj+bs)
and t2 =

bj+1

2(cj−xk) . Here, t22−t21 < 2bsbj . Hence, by Lemmas

3.1 and 4.1(8),
s−1∏
j=2

λdj (t1)

λdj (t2)
< 2s−2 exp(2bsn2b2).

On the other hand,
cj+bs
cj−xk < 1 + 3bs

bj
. From this,

s−1∏
j=2

(
cj + bs
cj − xk

)dj
< exp

(
3bs

s−1∑
j=2

nj/bj

)
< exp(6ns−1bs−1).

This and Lemma 4.1(6) imply that

(log π4)/Nm

< (s−2) log 2/Nm+2bsb2(1+
√

2)2−2(2−
√

2)2+6bs−1(1+
√

2)(2+
√

2)1−s.
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Since Nm > (2+
√

2)m−1/2, the first term in the sum above does not exceed
(2 −

√
2)s. The same bound is valid for the second term, as 1 +

√
2 <

2(2 −
√

2)s−2e4e2
s
. For the last term we have 6bs−1(1 +

√
2)(2 +

√
2)1−s <

2(2−
√

2)s, since 3(4 + 3
√

2) < 2se2
s−1

for s ≥ 2. Therefore,

(log π4)/Nm < 4(2−
√

2)s,

which is the desired conclusion.
Combining these we get (5.3) for xk ∈ Iq with indicated values of q. We

note that above we did not use the difference between dj and nj .
The cases k = 1 and k = 2 are simpler and very similar. For x1 = 0 we

have

|L1(−bs)| =
(
bs + bm
bm

m−1∏
j=s

tj

)(s−1∏
j=2

tj

)
= π3π4

with tj := |Qj(−bs)/Qj(0)|. We denote the corresponding parts of the prod-
uct above by π3 and π4 because they are handled in the same way as π3 and
π4 in the general case. Now,

π3 <
b
nm+···+ns+1
s

bnm
m · · · bns+1

s+1

2ns
A3

B3

with A3 =
∏m
j=s+1(1 + bj/bs)

nj and B3 =
∏m
j=s(1− bj)nj , so we can use the

previous bound for A3/B3 and (5.5). Therefore, π3 < (bnm
m · · · b

ns+1

s+1 )−1 and
the bound (5.7) is valid in this case as well.

Likewise, the value π4 is the same as above if we take xk = 0.
The same reasoning, with a minor modification of A3 and B3, applies to

the case k = 2.
It remains to consider the most difficult case xk ∈ Iq with 2 ≤ q ≤ s− 1.

Recall that d1 = 0, so the interval I1 does not contain interpolating points.
Now we use the decomposition |Lk(−bs)| = π1π2π3π4 with

π1 =
bs(bs+bm)

xk(xk−bm)

m−1∏
j=s

tj , π2 =

s−1∏
j=q+1

tj , π3 =
|Qq(−bs)|

(bs+xk)|Q′q(xk)|
, π4 =

q−1∏
j=2

tj ,

where, as above, tj means |Qj(−bs)/Qj(xk)|. We note that π4 = 1 for q = 2.
As before, π1<(bs/bq)

1+dm+···+ds2dsA1/B1 with A1=
∏m
j=s+1(1+bj/bs)

dj

< exp(2bsns+1), B1 = (1− bq)
∏m
j=s(1− bq − bj/bq)dj > exp(−3bqns). Since,

by Lemma 4.1(3), ns log 2 + 2bsns+1 + 3bqns < ns, we get

π1 < (bs/bq)
1+dm+···+dsens .

If q + 1 ≤ j ≤ s− 1, then bj dominates bs. Therefore,

π2 <
b
ds−1

s−1 · · · b
dq+1

q+1

b
ds−1+···+dq+1
q

A2

B2
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with A2 =
∏s−1
j=q+1(1 + bs/bj)

nj < exp(2bs−1ns−1), B2 =
∏s−1
j=q+1(1− 2bq)

nj .

Here, (1 − 2bq)
−1 < 1 + 3bq. It follows that B2 > exp(−3bq

∑s−1
j=q+1 nj) >

exp(−3
√

2 bqnq+1), by Lemma 4.1(7). Combining these we get

π2 <
b
ds−1

s−1 · · · b
dq+1

q+1

b
ds−1+···+dq+1
q

e2bs−1ns−1+3
√
2bqnq+1 .

From (3.2) we obtain

π3 <
(bq + bs)

dq−1

dq(bq+1/4)dq−1
=

1

dq

(
4

bq

)dq−1(
1 +

bs
bq

)dq−1
<

1

dq

(
4

bq

)dq−1
ensbq .

Similarly to the case s ≤ q, for π4 we use (3.1):

π4 =

q−1∏
j=2

(
cj + bs
cj − xk

)dj λdj (t1)
λdj (t2)

with t1 =
bj+1

2(cj + bs)
, t2 =

bj+1

2(cj − xk)
.

As above,

t22 − t21 =
b2j+1

4

(bs + xk)(2cj + bs − xk)
(cj + bs)2(cj − xk)2

.

Here, bs+xk < 2bq, 2cj + bs−xk < 2(cj + bs), and (cj + bs)(cj−xk)2 > b3j/2.

Hence, t22 − t21 < 2bqbj . By Lemmas 3.1 and 4.1(8),

q−1∏
j=2

λdj (t1)

λdj (t2)
< 2q exp

(
4

3
bqn2b2

)
.

Also,

cj + bs
cj − xk

< 1 +
2bq
bj

and

q−1∏
j=2

(
cj + bs
cj − xk

)dj
< exp(4nq−1bq−1).

Therefore,

π4 < exp

(
4nq−1bq−1 + q +

4

3
bqn2b2

)
for q ≥ 3.

Combining all inequalities yields

|Lk(−bs)|

<
b1+nm+···+ns
s b

ns−1

s−1 · · · b
nq+1

q+1

b
1+nm+···+nq+1
q b

nq−1
q

b
νq+νq+1+···
q

b
νs+νs+1+···
s b

νs−1

s−1 · · · b
νq+1

q+1

4nq−νq−1

dq
eµ1+µ2 ,

where µ1 = ns+2bs−1ns−1+nsbq+q < 2ns+q, µ2 = 3
√

2 bqnq+1+4nq−1bq−1+
4
3bqn2b2 and νi + νi+1 + · · · denotes the sum of all nonzero correction terms
starting from νi.

Let us consider the first fraction in the product above. By Lemma 4.1(4),

b
∑m

k=s ns
s =

∏m
k=s+1 b

nk
k . Therefore the numerator of this fraction equals
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b1−ns
s

∏m
k=q+1 b

nk
k . On the other hand, its denominator is just

∏m
k=q+1 b

nk
k ,

for the same reason. Hence the first fraction above is b1−ns
s .

Further, b
νq+νq+1+···
q ≤ b

νq+νq+1
q = b

νq
q b

νq+1/2
q+1 < 8−nq−nq+1/2b−2q , by (5.4).

In turn, by (5.5), the denominator of the second fraction is larger than

bρ·νs+2
s 8−ns−1−···−nq+1 . Thus the second fraction does not exceed b−2q b−2s 8−κ,

where κ = nq + 1
2nq+1 − (nq+1 + · · ·+ ns−1 + ρ · ns). Here, ρns < ns + ns+1.

Hence, by Lemma 4.1(7),

κ > nq −
(√

2− 1

2

)
nq+1 >

5

2(2 +
√

2)
nq >

2

3
nq.

Therefore,

|Lk(−bs)| < b−1−ns
s b−2q e2ns+q 4nq

8κ
eµ2

4νq
.

From a computational point of view, we introduce the correction terms
(νq) in order to neutralize 4nq in the numerator above, which is unacceptably
large if we use the degrees (nq) without correction.

According to the estimation of κ, we have 4nq < 8κ. Let us show that

eµ2 ≤ 4νq+1.

If q = 2 then π4 = 1 and µ2 contains only its first term, that is,

µ2 = 3
√

2 b2n3. By Lemma 4.1(3), µ2 <
3
√
2

2+
√
2
e−4n2. On the other hand,

(ν2 + 1) log 4 > n2
4 6 log2 2, which exceeds µ2.

Thus we can suppose that q ≥ 3. Since q ≤ s−1 and m ≥ s+ 2, we have
nq−1

nq
≤ nm−4

nm−3
< 7

2 , by Lemma 4.1(3). Also, n2 < 2(2 +
√

2)q−2nq, by Lemma

4.1(2). Therefore,

µ2 < nq

[
3
√

2

2 +
√

2
bq + 14bq−1 +

8

3
(2 +

√
2)q−2bqb2

]
.

On the other hand, (νq + 1) log 4 >
nq

2q 6 log2 2. It is enough to show that

2q
[

3
√

2

2 +
√

2
e−2

q
+ 14e−2

q−1
+

8

3
(2 +

√
2)q−2e−2

q
e−4
]
< 6 log2 2.

The expression on the left attains its maximal value at the minimal q,
so we reduced the proof to the case q = 3, which can be checked by a
straightforward calculation.

From this,

log |Lk(−bs)| < (ns + 1)2s + 2q+1 + 2ns + q + 2 ≤ ns(2s + 2) + 2s+1 + s+ 1,

since q + 1 ≤ s. Recall that m ≥ s + 2, so ns ≥ nm−2 = 4. Therefore,
log |Lk(−bs)| < ns2

s+2, which gives (5.3) in view of Lemma 4.1(6). This
completes the proof of (5.1).
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We now turn to the general case. Suppose dist(z,K) = δ ≤ b1. We
want to show that gC\K(z) ≤ Cϕγ(δ), where C does not depend on δ. We
can assume, by increasing C if necessary, that δ ≤ bs0 for any s0 given
beforehand. Take s0 = 4. Fix z with dist(z,K) = δ ≤ b4 and s ≥ 4 such
that bs+1 < δ ≤ bs. Since 1

2ϕ(bs) = ϕ(bs+1) < ϕ(δ) ≤ ϕ(bs), it is enough to
show that

(5.8) gC\K(z) ≤ C(2−
√

2)s

for z with dist(z,K) = bs, where C does not depend on s.

Suppose first that dist(z,K) = |z − z0| with z0 ∈ Iq for some q with
q ≤ s−2. The monotonicity of the Green function with respect to the set K
implies that gC\K(z) ≤ gC\Iq(z). It is well-known that, given I = [−l, l], the

Green function gC\I(z) = log |z/l +
√

(z/l)2 − 1| attains its maximal value,
among all z with dist(z, I) = δ, at real points. Therefore,

max{gC\I(z) : dist(z, I) = δ} = gC\I(l + δ) ≤ 2
√
δ/l

if δ ≤ l/4. In our case, gC\Iq(z) ≤ 2
√

2bs/bq+1 = 2
√

2 exp(2q − 2s−1). Since

q ≤ s − 2, we have gC\K(z) ≤ 2
√

2 exp(−2s−2), which does not exceed

(2−
√

2)s for s ≥ 4. This gives (5.8) for the first case.

It remains to consider z0 ∈ K ∩ [0, bs−1]. Recall that in the main bound
(5.3) we estimated Lagrange fundamental polynomials with interpolating
points (xk)

Dm
k=1. Let us compare distances from these points to z and to the

point −bs−2. If xj ≤ bs−1 then |z − xj | ≤ |z − z0|+ |z0 − xj | ≤ bs + bs−1 <
bs−2 < bs−2+xj . Otherwise, xj ≥ as−2 and |z−xj | ≤ |z−z0|+xj = bs+xj <
bs−2 + xj .

It follows that |Lk(z)| =
∏Dm
j=1, j 6=k |z−xj |/|xk−xj | < |Lk(−bs−2)|. Here,

s− 2 ≥ 2, so we can apply (5.3). Arguing as above, we can generalize (5.1)
to (5.8).

6. On Totik’s bound. In 2006 V. Totik [T, Th. 2.2] obtained the
following remarkable estimate of the Green function (we formulate it for a
compact set K ⊂ [0, 1]):

(6.1) gC\K(−δ) ≤ C
√
δ exp

(
D

1�

δ

Θ2
K(t)

t3
dt

)
log

2

cap(K)
.

Here, C,D are absolute constants, it is supposed that K is not polar, and the
function ΘK is defined in our case as ΘK(t) = m([0, t]\K), where m stands

for the linear Lebesgue measure. In the case IΘK
:=

	1
0Θ

2
K(t)t−3 dt <∞, the

Green function gC\K has Lip 1
2 smoothness, which is optimal for compact

sets on R. V. Totik proved that the condition of convergence of the integral
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is sharp: given function Θ with IΘ =∞, there exists a set K with ΘK ≤ Θ
whose Green function is not in Lip 1

2 at the origin.
Thus, the estimation above is very appropriate to analyze boundary be-

havior of the Green functions with optimal smoothness. However, for com-
pact sets with divergent IΘK

the general estimate may be rough, because of

uncontrollable constant D. For example in our case,
	b1
bs
Θ2
K(t)t−3 dt > 2s−2,

so the right side of (6.1) exceeds Cb
−D+1/2
s for δ = bs.

Neither can the previous general bound of the Green functions by
M. Tsuji [Ts, Th. III.67] be applied for the compact set considered in the
paper. In fact, (6.1) is a refinement of the estimate by M. Tsuji.

It is also interesting to apply the lower bound by V. Andrievskii ([A1]

or Th. 2.3 in [A2]) to our case. We get gC\K(−bs) > 1
16b

1/2−ε
s with rather

small ε.

7. Markov’s factors. Let us show that for γ1 = log 2/ log(2 +
√

2) and
some constant C we have

expnγ1 ≤Mn(K) ≤ exp(Cnγ1) for n ∈ N.
Suppose that for some increasing continuous function F we have the

bound gC\K(z) ≤ F (δ) for dist(z,K) ≤ δ. The application of the Cauchy
formula for P ′ and the Bernstein–Walsh inequality gives (see e.g. [AG]) the
estimate

Mn(K) ≤ inf
δ
δ−1 exp[nF (δ)].

In our case F (δ) = Cϕγ(δ) and the value δ with
(
log 1

δ

)1+γ
= Cn gives the

desired upper bound of Mn(K).
On the other hand, fix n ∈ N and m with Nm ≤ n < Nm+1, where Nm

is given in Lemma 4.1(5). For the polynomial P = PNm from Section 2 we
have |P ′(0)| = b−1m = exp 2m and |P |K ≤ 1, by Lemma 4.2.

Since the sequence (Mn(K)) is nondecreasing, we getMn(K) ≥MNm(K)
≥ |P ′(0)|/|P |K ≥ exp 2m. The last value exceeds expNγ1

m+1, since Nm+1 <

(2 +
√

2)m. This completes the proof of Corollary 2.2 as Nm+1 > n.
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