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Boundaries of Levi-flat hypersurfaces:
special hyperbolic points

by Pierre Dolbeault (Paris)

Abstract. Let S ⊂ Cn, n ≥ 3, be a compact connected 2-codimensional submanifold
having the following property: there exists a Levi-flat hypersurface whose boundary is S,
possibly as a current. Our goal is to get examples of such S containing at least one special
1-hyperbolic point: a sphere with two horns, elementary models and their gluings. Some
particular cases of S being a graph are also described.

1. Introduction. Let S ⊂ Cn be a compact connected 2-codimensional
submanifold having the following property: there exists a Levi-flat hypersur-
face M ⊂ Cn \ S such that dM = S (i.e. whose boundary is S, possibly as
a current). The case n = 2 has been intensively studied since the beginning
of the eighties, in particular by Bedford, Gaveau, Klingenberg, Shcherbina,
Chirka, Tomassini, Słodkowski, Gromov, Eliashberg; it requires global con-
ditions: S has to be contained in the boundary of a strictly pseudoconvex
domain.

We consider the case n ≥ 3; results on this case have been obtained
since 2005 by Dolbeault, Tomassini and Zaitsev; local necessary conditions
recalled in Section 2 have to be satisfied by S, singular CR points on S
are supposed to be elliptic and the solution M is obtained in the sense
of currents [DTZ05, DTZ10]. More recently a regular solution M has been
obtained when S satisfies a supplementary global condition as in the case
n = 2 [DTZ11], with singular CR points on S still supposed to be elliptic.

The problem we are interested in is to get examples of such S containing
at least one special 1-hyperbolic point (Section 2.4). CR orbits near a spe-
cial 1-hyperbolic point are large and, assuming they are compact, a careful
examination has to be done (Sections 2.6, 2.7). As a topological preliminary,
we need a generalization of a theorem of Bishop on the difference of the
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numbers of special elliptic and 1-hyperbolic points (Section 2.8); this result
is a particular case of a theorem of Hon-Fei Lai [Lai72].

The first example considered is the sphere with two horns which has one
special 1-hyperbolic point and three special elliptic points (Section 3.4). Then
we consider elementary models and their gluings to obtain more complicated
examples (Section 3.5). The results have been announced in [Dol08], and in
a more precise way in [Dol11]; the first aim of this paper is to give complete
proofs. Finally, we recall in detail and extend the results of [DTZ11] on
regularity of the solution when S is a graph satisfying a supplementary global
condition, as in the case n = 2, to the case of existence of special 1-hyperbolic
points, and to gluing of elementary smooth models (Section 4).

2. Preliminaries: local and global properties of the boundary

2.1. Definitions. A smooth, connected, CR submanifold M ⊂ Cn is
called minimal at a point p if there does not exist a submanifold N of M
of lower dimension through p such that HN = HM |N , where HN is the
complex tangent bundle to N . By a theorem of Sussmann, all possible sub-
manifolds N such that HN = HM |N contain, as germs at p, one of the
minimal possible dimension, defining a so called CR orbit of p in M whose
germ at p is uniquely determined.

A smooth compact connected oriented submanifold S ⊂ Cn of dimension
2n − 2 is said to be a locally flat boundary at a point p if it locally bounds
a Levi-flat hypersurface near p. Assume that S is CR in a small enough
neighborhood U of p ∈ S. If all CR orbits of S are 1-codimensional (which
will appear as a necessary condition for our problem), the following two
conditions are equivalent [DTZ05]:

(i) S is a locally flat boundary on U ;
(ii) S is nowhere minimal on U .

2.2. Complex points of S (i.e. singular CR points on S) [DTZ05].
At such a point p ∈ S, TpS is a complex hyperplane in TpCn. In suitable

local holomorphic coordinates (z, w) ∈ Cn−1×C vanishing at p, with w = zn
and z = (z1, . . . , zn−1), S is locally given by the equation

(1)
w = ϕ(z) = Q(z) +O(|z|3),

Q(z) =
∑

1≤i,j≤n−1
(aijzizj + bijzizj + cijzizj).

S is called flat at a complex point p ∈ S if
∑
bijzizj ∈ λR, λ ∈ C. We also

say that p is flat.
Let S ⊂ Cn be a locally flat boundary with a complex point p. Then p is

flat.
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By making the change of coordinates (z, w) 7→(z, λ−1w), we get
∑
bijzizj

∈ R for all z. By a change of coordinates (z, w) 7→ (z, w+
∑
a′ijzizj) we can

choose the holomorphic term in (1) to be the conjugate of the antiholomor-
phic one and so make the whole form Q real-valued.

We say that S is in a flat normal form at p if the coordinates (z, w) as
in (1) are chosen such that Q(z) ∈ R for all z ∈ Cn−1.

Properties of Q. Assume that S is in a flat normal form; then the
quadratic form Q is real-valued. If Q is positive definite or negative defi-
nite, the point p ∈ S is said to be elliptic; if p ∈ S is not elliptic, and if Q is
nondegenerate, p is said to be hyperbolic. From Section 2.4 on, we will only
consider particular cases of the quadratic form Q.

2.3. Elliptic points

Proposition 2.1 ([DTZ05, DTZ10]). Assume that S ⊂ Cn (n ≥ 3)
is nowhere minimal at all its CR points and has an elliptic flat complex
point p. Then there exists a neighborhood V of p such that V \{p} is foliated
by compact real (2n− 3)-dimensional CR orbits diffeomorphic to the sphere
S2n−3 and there exists a smooth function ν having the CR orbits as level
surfaces.

Sketch of proof (see [DTZ10]). In the case of a quadric S0 (w = Q(z)),
the CR orbits are defined by w0 = Q(z), where w0 is constant. Using (1), we
approximate the tangent space to S by the tangent space to S0 at a point
with the same coordinate z; the same is done for the tangent spaces to the
CR orbits on S and S0; then we construct the global CR orbit on S.

2.4. Special flat complex points. From [Bis65], for n = 2, in suitable
local holomorphic coordinates centered at 0, we have Q(z) = zz + λRe z2,
λ ≥ 0, under the notation of [BK91]; for 0 ≤ λ < 1, p is said to be elliptic,
and for λ>1, it is said to be hyperbolic. The parabolic case λ = 1, not
generic, will be omitted [BK91]. When n ≥ 3, Bishop’s reduction cannot be
generalized.

We say that the flat complex point p ∈ S is special if in certain holomor-
phic coordinates centered at 0,

(2) Q(z) =
n−1∑
j=1

(zjzj + λj Re z
2
j ), λj ≥ 0.

Let zj = xj + iyj , xj , yj real, j = 1, . . . , n− 1. Then

(3) Q(z) =
n−1∑
l=1

((1 + λl)x
2
l + (1− λl)y2l ).

A flat point p ∈ S is said to be special elliptic if 0 ≤ λj < 1 for any j.
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A flat point p ∈ S is said to be special k-hyperbolic if λj > 1 for j ∈ J ⊂
{1, . . . , n − 1}, and 0 ≤ λj < 1 for j ∈ {1, . . . , n − 1} \ J 6= ∅, where k
denotes the number of elements of J .

Special elliptic (resp. special k-hyperbolic) points are elliptic (resp. hyper-
bolic).

2.5. Special hyperbolic points. For S given by (1), let S0 be the
quadric of equation w = Q(z).

Lemma 2.2. Suppose that S0 is flat at 0 and that 0 is a special k-
hyperbolic point. Then, in a neighborhood of 0, and with the above local
coordinates, S0 is CR and nowhere minimal outside 0, and the CR orbits of
S0 are (2n− 3)-dimensional submanifolds given by w = const 6= 0.

Proof. The submanifolds w = const 6= 0 have the same complex tangent
space as S0 and are of minimal dimension among submanifolds having this
property, so they are CR orbits of codimension 1, and from the end of Section
2.1, S0 is nowhere minimal outside 0.

The section w = 0 of S0 is a real quadratic cone Σ′0 in R2n whose vertex
is 0 and, outside 0, it is a CR orbit Σ0 in a neighborhood of 0. We will call
Σ′0 a singular CR orbit.

2.6. Foliation by CR orbits in a neighborhood of a special 1-
hyperbolic point. We first imitate and transpose the beginning of the
proof of Proposition 2.1, i.e. of 2.4.2 in [DTZ05, DTZ10].

2.6.1. Local 2-codimensional submanifolds. In order to use simple nota-
tion we will assume n = 3.

In C3, consider the 4-dimensional submanifold S locally defined by the
equation

(1) w = ϕ(z) = Q(z) +O(|z|3),
and the 4-dimensional submanifold S0 of equation

(4) w = Q(z)

with

Q(z) = (λ1 + 1)x21 − (λ1 − 1)y21 + (1 + λ2)x
2
2 + (1− λ2)y22

having a special 1-hyperbolic point at 0 (λ1 > 1, 0 ≤ λ2 < 1), and the
cone Σ′0 whose equation is Q = 0. On S0, a CR orbit is a 3-dimensional
submanifold Kw0 whose equation is w0 = Q(z). If w0 > 0, then Kw0 does
not meet the line L = {x1 = x2 = y2 = 0}; if w0 < 0, then Kw0 cuts L at
two points.

Lemma 2.3. Σ0 = Σ′0\0 has two connected components in a neighborhood
of 0.
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Proof. The equation of Σ′0 ∩ {y1 = 0} is (λ1 + 1)x21 + (1 + λ2)x
2
2 +

(1 − λ2)y
2
2 = 0 whose only zero, in a neighborhood of 0, is 0. The two

connected components are obtained for y1 > 0 and y1 < 0 respectively.

2.6.2. CR orbits. By differentiating (1), we get for the tangent spaces
the asymptotics

(5) T(z,ϕ(z))S = T(z,Q(z))S0 +O(|z|2), z ∈ C2.

Here both T(z,ϕ(z))S and T(z,Q(z))S0 depend continuously on z near the origin.
Consider

(i) the hyperboloid H− = {Q = −1}, (then Q(z/(−Q(z))1/2) = −1),
and the projection

π− : C3 \ {z = 0} → H−, (z, w) 7→ z/(−Q(z))1/2,

(ii) for every z ∈H−, a real orthonormal basis e1(z), . . . , e6(z) of C3 ∼= R6

such that
e1(z), e2(z) ∈ HzH−, e3(z) ∈ TzH−,

where HH− is the complex tangent bundle to H−.

Locally such a basis can be chosen continuously depending on z. For every
(z, w) ∈ C3 \ {z = 0}, consider the basis e1(π−(z, w)), . . . , e6(π−(z, w)). The
unit vectors e1(π−(z, w0)), e2(π−(z, w0)), e3(π−(z, w0)) are tangent to the
CR orbit Kw0 at (z, w0) for w0 < 0. Then, from (5), we have

(6) H(z,ϕ(z))S = H(z,Q(z))S0 +O(|z|2), z 6= 0, z → 0.

As in [DTZ10], in a neighborhood of 0, denote by E(q), q ∈ S \ {0},
w < 0, the tangent space to the local CR orbit K on S through q, and by
E0(q0), q0 ∈ S0 \ {0}, w < 0, the analogous object for S0. We have

(7) E(z, ϕ(z)) = E0(z,Q(z)) +O(|z|2), z 6= 0, z → 0.

Given q ∈ S, by integration of E(q), q ∈ S, we get, locally, the CR orbit
(leaf) on S through q; given q

0
∈ S0, by integration of E0(q0), q0 ∈ S0, we

get, locally, the CR orbit (leaf) on S0 through q0 (theorem of Sussmann). On
S0, a leaf is the 3-dimensional submanifold Kq

0
= Kw0 = K0 whose equation

is w0 = Q(z), with q = (z0, w0 = Q(z0)). Moreover, dπ− projects each E0(q),
q ∈ S0, w < 0, bijectively onto Tπ(q)H−, so π−|K0 is a diffeomorphism onto
H−; this implies, from (7), that, in a suitable neighborhood of the origin,
the restriction of π− to each local CR orbit of S is a local diffeomorphism.

We have ϕ(z) = Q(z) + Φ(z) with Φ(z) = O(|z|3).

2.6.3. Behavior of local CR orbits. We follow the construction of
E(z, ϕ(z)); compare with E0(z,Q(z)). We know the integral manifold, the
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orbit of E0(z,Q(z)); and we deduce an evaluation of the integral manifold
K of E(z, ϕ(z)).

Lemma 2.4. Under the above hypotheses, the local orbit Σ corresponding
to Σ0 has two connected components in a neighborhood of 0.

Proof. Using the real coordinates, as for Lemma 2.3, consider Σ′ ∩
{y1 = 0}. Locally, the connected components are obtained for y1 > 0 and
y1 < 0 respectively, from formula (1).

We will callΣ′ = Σ a singular CR orbit and a singular leaf of the foliation.
We intend to prove that:

1) K does not cross the singular leaf through 0;
2) the only separatrix is the singular leaf through 0.

From the orbit K0, we will construct the differential equation defining it,
and using (7), we will construct the differential equation defining K.

In C3, we use the notation x = x1, y = y1, u = x2, v = y2; it suffices to
consider the particular case Q = 3x2 − y2 + u2 + v2. On S0, the orbit K0

issuing from the point (c, 0, 0, 0) is defined by 3x2−y2+u2+v2 = 3c2, i.e., for
x ≥ 0, x = 1√

3
(y2−u2−v2+3c2)1/2 = A(y, u, v); the local coordinates on the

orbit are (y, u, v). The orbit K0 satisfies the differential equation dx = dA.
From (7), the orbit K issuing from (c, 0, 0, 0) satisfies dx = dA + Ψ with
Ψ(y, u, v; c) = O(|z|2); hence Ψ = dΦ, so x = A+ Φ with Φ = O(|z|3). More
explicitly, K is defined by

x = xK,c =
1√
3
(y2−u2−v2+3c2)1/2+Φ(y, u, v; c), Φ(y, u, v; c) = O(|z|3).

The cone Σ′0 whose equation is Q = 0 is a separatrix for the orbits K0.
The corresponding object Σ′ = {ϕ(z) = 0} for S has the singular point 0
and for x > 0, y > 0, u > 0, v > 0 it is defined by the differential equation
dx = d(A+ Φ) with c = 0, i.e. the local equation of Σ′ is

x = xK,0 =
1√
3
(y2 − u2 − v2)1/2 + Φ(y, u, v; 0), Φ(y, u, v; 0) = O(|z|3).

For given (y, u, v), xK,c−xK,0 = xK0,c−xK0,0+Φ(y, u, v; c)−Φ(y, u, v; 0).
But xK0,c − xK0,0 = O(1) and Φ(y, u, v; c)− Φ(y, u, v; 0) = O(|z|3).

As a consequence, for x > 0, y > 0, u > 0, v > 0, locally, Σ′ is the unique
separatrix for the orbits K. The same holds for x < 0.

What has been done for the hyperboloid H− = {Q = −1} can be re-
peated for the hyperboloid H+ = {Q = 1}. As at the beginning of Section
2.6.2, we consider

(i) the hyperboloid H+ = {Q = 1} and the projection

π+ : C3 \ {z = 0} → H+, (z, w) 7→ z/(Q(z))1/2,
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(ii) for every z ∈H+, a real orthonormal basis e1(z), . . . , e6(z) of C3 ∼= R6

such that
e1(z), e2(z) ∈ HzH+, e3(z) ∈ TzH+,

where HH+ is the complex tangent bundle to H+.

Lemma 2.5. Given ϕ, there exists R > 0 such that, in B(0, R) ∩
{x > 0, y > 0, u > 0, v > 0} ⊂ C2, the CR orbits K have Σ′ as a unique
separatrix.

Proof. When c tends to zero, xK,c−xK,0 = xK0,c−xK0,0 +Φ(y, u, v; c)−
Φ(y, u, v; 0) = O(|z|) and Φ(y, u, v; c) − Φ(y, u, v; 0) = O(|z|3). For ϕ(z) =
Q(z) + Φ(z) with Φ(z) = O(|z|3) given, in (7), E(z, ϕ(z)) − E0(z,Q(z)) =
O(|z|2) and Φ(y, u, v; c) − Φ(y, u, v; 0) = O(|z|3) are also given. Then there
exists R such that, for |z| < R, xK,c − xK,0 > 0.

2.7. CR orbits near a subvariety containing a special 1-hyper-
bolic point. In this section we will impose conditions on S and give a local
property in a neighborhood of a compact (2n− 3)-subvariety of S.

Assume that S ⊂ Cn (n ≥ 3) is a locally closed (2n − 2)-submanifold,
nowhere minimal at all its CR points, which has a unique 1-hyperbolic flat
complex point p, and such that:

(i) if Σ is the orbit whose closure Σ′ contains p, then Σ′ is compact.

Let q ∈ S, q 6= p; then, in a neighborhood U of q not containing p, S
is CR, CR-dimS = n − 2, S is nonminimal and Σ is 1-codimensional. We
show that the CR orbits constitute a foliation on S whose separatrix is Σ′.
This is true in U since Σ ∩ U is a leaf. Moreover, let U0 be the ball B(0, R)
centered at p = 0 as in Lemma 2.5; if U ∩ U0 6= ∅, the leaves in U glue with
the leaves in U0 on U ∩U0. Since Σ′ is compact, there exist a finite number
of points qj ∈ Σ′, j = 0, 1, . . . , J , and open neighborhoods Uj , as above,
such that (Uj)Jj=0 is an open covering of Σ′. Moreover the leaves in Uj glue
respectively with the leaves in Uk if Uj ∩ Uk 6= ∅.

Proposition 2.6. Assume that S ⊂ Cn (n ≥ 3) is a locally closed
(2n − 2)-submanifold, nowhere minimal at all its CR points, which has a
unique special 1-hyperbolic flat complex point p, and such that:

(i) if Σ is the orbit whose closure Σ′ contains p, then Σ′ is compact;
(ii) Σ has two connected components σ1, σ2 whose closures are homeo-

morphic to spheres of dimension 2n− 3.

Then there exists a neighborhood V of Σ′ such that V \Σ′ is foliated by com-
pact real (2n − 3)-dimensional CR orbits whose equation in a neighborhood
of p is (3), and, the w(= xn)-axis being assumed to be vertical, each orbit is
diffeomorphic to either
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• the sphere S2n−3 above Σ′, or
• the union of two spheres S2n−3 under Σ′,

and there exists a smooth function ν having the CR orbits as level surfaces.

Proof. This follows from the above and the following remark:
When xn tends to 0, the orbits tend to Σ′, and because of the geometry

of the orbits near p, they are diffeomorphic to a sphere above Σ′, and to the
union of two spheres under Σ′. The existence of ν is proved as in Proposition
2.1, namely, consider a smooth curve γ : [0, ε) → S such that γ(0) = q,
where q is a point of Σ close to p, and γ is a diffeomorphism onto its image
Γ = γ([0, ε)). Let ν = γ−1 on the image of γ. Then, close enough to q, every
CR orbit cuts Γ at a unique point q(t), t ∈ [0, ε). Hence there is a unique
extension of ν from γ([0, ε)) to V \p where V is a neighborhood of Σ′ having
CR orbits as its level surfaces. As ν is smooth away from p, it is smooth on
the orbit Σ and, if we set ν(p) = ν(q) = 0, ν is smooth on a neighborhood
of Σ ∪ {p} = Σ′.

2.8. Geometry of the complex points of S. The results of Sec-
tion 2.8 are particular cases of theorems of Lai [Lai72], which I learnt from
F. Forstnerič in July 2011.

In [BK91] E. Bedford and W. Klingenberg cite the following theorem
of E. Bishop [Bis65, Section 4, p. 15]: On a 2-sphere embedded in C2, the
difference between the numbers of elliptic points and of hyperbolic points is the
Euler–Poincaré characteristic, i.e. 2. For the proof, Bishop uses a theorem
of [CS51, Section 4].

We extend this result to n ≥ 3 and give proofs which are essentially
similar to the proofs of the general case [Lai72, Lai74] but simpler.

Let S be a smooth compact connected oriented submanifold of dimension
2n−2. Let G be the manifold of oriented real linear (2n−2)-subspaces of Cn.
The submanifold S of Cn has a given orientation which defines an orientation
o(p) of the tangent space to S at any point p ∈ S. By mapping each point
of S to its oriented tangent space, we get a smooth Gauss map

t : S → G.

Denote by −t(p) the tangent space to S at p with the opposite orientation
−o(p).

Properties of G

(a) dimG = 2(2n− 2).

Proof. G is a two-fold covering of the Grassmannian Mm,k of linear k-
subspaces of Rm [Ste99, Part I, Section 7.9], for m = 2n and k = 2n − 2;
they have the same dimension. We have

Mm,k
∼= Om/Ok ×Om−k.
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But dimOk =
1
2k(k − 1), hence

dimMm,k =
1
2(m(m− 1)− k(k − 1)− (m− k)(m− k − 1)) = k(m− k).

(b) G has the complex structure of a smooth quadric of complex dimen-
sion 2n− 2 in CP 2n−1 [Lai74], [Pol08].

(c) There exists a canonical isomorphism h : G→ CPn−1 × CPn−1.
(d) Homology of G (cf. [Pol08]): Let S1, S2 be generators of H2n−2(G,Z);

we assume that S1 and S2 are fundamental cycles of complex projec-
tive subspaces of complex dimension n−1 of the complex quadric G.
We also denote S1, S2 the ordered two factors CPn−1, so that h :
G→ S1 × S2.

Proposition 2.7. For n ≥ 2, in general, S has isolated complex points.

Proof. Let π ∈ G be a complex hyperplane of Cn whose orientation
is induced by its complex structure; the set of such π is H = GC

n−1,n =

CPn−1∗ ⊂ G, as a real submanifold. If p is a complex point of S, then
t(p) ∈ H or −t(p) ∈ H. The set of complex points of S is the inverse
image under t of the intersections t(S) ∩ H and −t(S) ∩ H in G. Since
dim t(S) = 2n− 2, dimH = 2(n− 1), dimG = 2(2n− 2), it follows that the
intersection is 0-dimensional in general.

Denoting also by S the fundamental cycle of the submanifold S and by
t∗ the homomorphism defined by t, we have

t∗(S) ∼ u1S1 + u2S2

where ∼ means “homologous to”.

Lemma 2.8 (proved for n = 2 in [CS51]). With the above notation, we
have u1 = u2 and u1 + u2 = χ(S), the Euler–Poincaré characteristic of S.

The proof for n = 2 works for any n ≥ 3, namely:
Let G′ be the manifold of oriented real linear 2-subspaces of Cn. Let α :

G→ G′ map each oriented 2(n− 1)-subspace R to its normal 2-subspace R′
oriented so that R,R′ determine the orientation of Cn. Then α is a canonical
isomorphism. Let n : S → G′ be the map defined by taking oriented normal
planes. Then n = αt and t = α−1n, hence we have the mapping hαh−1 :
S1 × S2 → S1 × S2. Let (x, y) ∈ S1 × S2. Then
(†) hαh−1(x, y) = (x,−y).

Over G, there is a bundle V of spheres with fiber over a real oriented
linear (2n− 2)-subspace of Cn through 0 being the unit sphere S2n−3 of this
subspace. Let Ω be the characteristic class of V , and let Ωt, Ωn denote the
characteristic classes of the tangent and normal bundles of S. Then t∗Ω = Ωt,
n∗Ω = Ωn.
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The bundle V is the Stiefel manifold of ordered pairs of orthogonal unit
vectors through 0 in R2n ∼= Cn. Let f : V → G be the projection.

From the Gysin sequence, we see that the kernel of f∗ : H2n−2(G) →
H2n−2(V ) is generated by Ω. To find the kernel of f∗, we determine the
morphism f∗ : H2n−2(V ) → H2n−2(G). A generating (2n − 2)-cycle of V is
S2 × e where S2 ∼= CPn−1 and e is a point. Let z be any point of S2. Then
from (†), we have

hf(z, e) = (z,−z).
Therefore, f∗(S2 × e) = S1 − S2. Thus, the kernel of f∗ is Z-generated by
S∗1 + S∗2 .

With a convenient orientation for the fiber of the bundle V , we get
Ω = S∗1 + S∗2 . For a suitable orientation of S, we get Ωt.S = χS = Eu-
ler characteristic of S. We have

Ωt = t∗(S∗1 + S∗2) = t∗S∗1 + t∗S∗2 ,

Ωn = n∗(S∗1 + S∗2) = t∗α∗(S∗1 + S∗2) = t∗(S∗1 − S∗2) = t∗S∗1 − t∗S∗2 .
Since Ωn = 0, we get

(t∗S∗1).S = (t∗S∗2).S = 1
2χS .

Local intersection numbers of H and t(S) when all complex points are
flat and special. If H is a complex linear (n − 1)-subspace of G, then it
is homologous to one of the Sj , j = 1, 2, say S2 when G has its structure
of complex quadric. The intersection number of H and S1 is 1 and the
intersection number of H and S2 is 0. So, the intersection number of H and
u1S1 + u2S2 is u1.

In a neighborhood of a complex point 0, the manifold S is defined by
equation (1) with w = zn and

(1′) Q(z) =
n−1∑
j=1

µj(zjzj + λj Re z
2
j ), µj > 0, λj ≥ 0.

Let zj = x2j−1 + ix2j , j = 1, . . . , n, with real xl. Let el be the unit vector of
the xl-axis, l = 1, . . . , 2n.

For simplicity assume n = 3: Q(z) = µ1(z1z1 + λ1Re z
2
1) + µ2(z2z2 +

λ2Re z
2
2), with µ1 = µ2 = 1. Then, up to higher order terms, S is defined by

z1 = x1 + ix2, z2 = x3 + ix4,

z3 = (1 + λ1)x
2
1 + (1− λ1)x22 + (1 + λ2)x

2
3 + (1− λ2)x24.

In a neighborhood of 0, the tangent space to S is defined by the four linearly
independent vectors

ν1 = e1 + 2(1 + λ1)x1e5, ν2 = e2 + 2(1− λ1)x2e5,
ν3 = e3 + 2(1 + λ2)x3e5, ν4 = e4 + 2(1− λ2)x4e5.
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Thus, if 0 is special elliptic or special k-hyperbolic with k even, the tangent
plane at 0 has the same orientation; if 0 is special elliptic or special k-
hyperbolic with k odd, the tangent space has opposite orientation.

Proposition 2.9 (known for n = 2 [Bis65], here for n ≥ 3). Let S
be a smooth, oriented, compact, 2-codimensional, real submanifold of Cn all
of whose complex points are flat and special elliptic or special 1-hyperbolic.
Then, on S, ](special elliptic points) − ](special 1-hyperbolic points) = χ(S).
If S is a sphere, this number is 2.

Proof. Let p ∈ S be a complex point and π be the tangent hyperplane
to S at p. Assume that

(∗∗) the orientation of S induces, on π, the orientation given by its com-
plex structure.

Then π ∈ H.
If p is elliptic, the intersection number of H and t(S) is 1; if p is 1-

hyperbolic, the intersection number of H and t(S) is −1 at p.
By the argument preceding (1′), the sum of the intersection numbers of

H and t(S) at complex points p satisfying (∗∗) is u1. Reversing the condition
(∗∗), and using Lemma 2.8, we get the proposition.

3. Particular cases: horned sphere, elementary models and their
gluings

3.1. We recall the following Harvey–Lawson theorem with a real param-
eter, to be used later.

Let E ∼= R×Cn, and k : R×Cn → R be the projection. Let N ⊂ E be a
compact (oriented) CR subvariety of Cn+1 of real dimension 2n− 2 and CR
dimension n− 2 (n ≥ 3), of class C∞, with negligible singularities (i.e. there
exists a closed subset τ ⊂ N of (2n − 2)-dimensional Hausdorff measure 0
such that N \ τ is a CR submanifold). Let τ ′ be the set of all points z ∈ N
such that either z ∈ τ or z ∈ N \ τ and N is not transversal to the complex
hyperplane k−1(k(z)) at z. Assume that N , as a current of integration, is
d-closed and satisfies:

(H) there exists a closed subset L ⊂ Rx1 with H1(L) = 0 such that for
every x ∈ k(N) \ L, the fiber k−1(x) ∩N is connected and does not
intersect τ ′.

Theorem 3.1 ([DTZ10]; see also [DTZ05]). Let N satisfy (H) with L
chosen accordingly. Then there exists, in E′ = E\k−1(L), a unique C∞ Levi-
flat (2n− 1)-subvariety M with negligible singularities in E′ \N , foliated by
complex (n− 1)-subvarieties, with the properties that M simply (or trivially)
extends to E′ as a (2n − 1)-current (still denoted M) such that dM = N
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in E′. The leaves are the sections by the hyperplanes Ex01, x
0
1 ∈ k(N)\L, and

are the solutions of the “Harvey–Lawson problem” of finding a holomorphic
subvariety in Ex01

∼= Cn with prescribed boundary N ∩ Ex01.

Remark 3.2. Theorem 3.1 is valid in the space E ∩ {α1 < x1 < α2},
with the corresponding condition (H). Moreover, since N is compact, for a
suitable parameter x1, we can assume x1 ∈ [0, 1].

To solve the boundary problem by Levi-flat hypersurfaces, S has to satisfy
necessary and sufficient local conditions. A way to prove that these conditions
can occur is to construct an example for which the solution is obvious.

3.2. Sphere with one special 1-hyperbolic point (sphere with two
horns): Example. In C3, let zj , j = 1, 2, 3, be the complex coordinates
and zj = xj + iyj . In R6 ∼= C3, consider the 4-dimensional subvariety (with
negligible singularities) S defined by

y3 = 0,

0 ≤ x3 ≤ 1,

x3(x
2
1 + y21 + x22 + y22 + x23 − 1)

+ (1− x3)(x41 + y41 + x42 + y42 + 4x21 − 2y21 + x22 + y22) = 0,

−1 ≤ x3 ≤ 0,

x3 = x41 + y41 + x42 + y42 + 4x21 − 2y21 + x22 + y22.

The singular set of S is the 3-dimensional section x3 = 0 along which the
tangent space is not everywhere (uniquely) defined. S being in the real hy-
perplane {y3 = 0}, the complex tangent spaces to S are {x3 = x0} for
suitable x0.

Since the tangent space to the hypersurface f(x1, y1, x2, y2, x3) = 0 in R5

is
X1f

′
x1 + Y1f

′
y1 +X2f

′
x2 + Y2f

′
y2 +X3f

′
x3 = 0,

the tangent space to S in the hyperplane {y3 = 0} is, for x3 ≥ 0,

2x1[x3 + 2(1− x3)(x21 + 2)]X1 + 2y1[x3 + 2(1− x3)(y21 − 1)]Y1

+ 2x2[x3 + (1− x3)(2x22 + 1)]X2 + 2y2[x3 + (1− x3)(2y22 + 1)]Y2

+ [(x21 + y21 + x22 + y22 + 3x23 − 1)

− (x41 + y41 + x42 + y42 + 4x21 − 2y21 + x22 + y22)]X3 = 0;

and for x3 ≤ 0,

4(x21 +2)x1X1 +4(y21 − 1)y1Y1 +2(2x22 +1)x2X2 +2(2y22 +1)y2Y2−X3 = 0.

The complex points of S are defined by the vanishing of the coefficients
of Xj , j = 1, 2, 3, 4, in the equations of the tangent spaces. For 0 ≤ x3 ≤ 1,
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this yields

x1[x3 + 2(1− x3)(x21 + 2)] = 0,

y1[x3 + 2(1− x3)(y21 − 1)] = 0,

x2[x3 + (1− x3)(2x22 + 1)] = 0,

y2[x3 + (1− x3)(2y22 + 1)] = 0.

We have the solutions

h : xj = 0, yj = 0 (j = 1, 2), x3 = 0;

e3 : xj = 0, yj = 0 (j = 1, 2), x3 = 1.

For x3 ≤ 0, the vanishing of the coefficients yields

(x21 + 2)x1 = 0,

(y21 − 1)y1 = 0,

(2x22 + 1)x2 = 0,

(2y22 + 1)y2 = 0.

We have the solutions

h : xj = 0, yj = 0 (j = 1, 2), x3 = 0;

e1, e2 : x1 = 0, y1 = ±1, x2 = 0, y2 = 0, x3 = −1.
Note that the tangent space to S at h is well defined. Moreover, the set S
will be smoothed along its section by the hyperplane {x3 = 0} by a small
deformation leaving h unchanged. In the following, S will denote this smooth
submanifold.

Lemma 3.3. The points e1, e2, e3 are special elliptic; the point h is special
1-hyperbolic.

Proof. Point e3: Let x′3 = 1− x3, then the equation of S in a neighbor-
hood of e3 is

(1− x′3)(x21 + y21 + x22 + y22 + x′23 − 2x′3)

− x′3(x41 + y41 + x42 + y42 + 4x21 − 2y21 + x22 + y22) = 0, i.e.

2x′3 = x21 + y21 + x22 + y22 +O(|z|3), or w = zz +O(|z|3),
so e3 is special elliptic.

Points e1, e2: Let y′1 = y1 ± 1, x′3 = x3 + 1. Then the equation of S in a
neighborhood of e1, e2 is

x′3 − 1 = x41 + (y′1 ∓ 1)4 + x42 + y42 + 4x21 − 2(y′1 ∓ 1)2 + x22 + y22

= x41 + y′41 ∓ 4y′31 + 6y′21 ∓ 4y′1 + 1 + x42 + y42

+ 4x21 − 2(y′1 ∓ 1)2 + x22 + y22,
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so

x′3 = x41 + y′41 ∓ 4y′31 + 4y′21 + x42 + y42 + 4x21 + x22 + y22, i.e.

x′3 = 4x21 + 4y′21 + x22 + y22 +O(|z|3), or w = 4z1z1 + z2z2.

Hence e1, e2 are special elliptic.
Point h: The equation of S in a neighborhood of h is for x3 ≥ 0,

x3(x
2
1 + y21 + x22 + y22 + x23 − 1)

+ (1− x3)(x41 + y41 + x42 + y42 + 4x21 − 2y21 + x22 + y22) = 0,

and for x3 ≤ 0,

x3 = x41 + y41 + x42 + y42 + 4x21 − 2y21 + x22 + y22,

i.e. x3 = 4x21−2y21 +x
2
2+y

2
2 +O(|z|3) in both cases, up to third order terms.

Hence w = z1z1 + z2z2 + 3Re z21 , so h is special 1-hyperbolic.

The section Σ′ = S ∩ {x3 = 0}. Up to a small smooth deformation, its
equation is

x41 + y41 + x42 + y42 + 4x21 − 2y21 + x22 + y22 = 0 in {x3 = 0}.
The tangent cone to Σ′ at 0 is 4x21 − 2y21 + x22 + y22 = 0. Locally, the section
of S by the coordinate 3-space x1, y1, x3 is

x3 = 4x21 − 2y21 +O(|z|3),
and the section by the x2, y2, x3-space is x3 = x22 + y22 +O(|z|3).

Lemma 3.4. Under the above hypotheses and notation:

(i) Σ = Σ′ \ 0 has two connected components σ1, σ2.
(ii) The closures of the three connected components of S \ Σ′ are sub-

manifolds with boundaries and corners.

Proof. (i) The only singular point of Σ′ is 0. We work in the ball B(0, A)
of C2

x1,y1,x2,y2 for small A and in the 3-space πλ = {y2 = λx2}, λ ∈ R. For λ
fixed, πλ ∼= R3

x1,y1,x2 , and Σ
′ ∩ πλ is the cone of equation 4x21 − 2y21 + (1 +

λ2)x22 +O(|z|3) = 0 with vertex 0 and basis the hyperboloid Hλ of equation
4x21 − 2y21 + (1 + λ2)x022 + O(|z|3) = 0 in the plane x2 = x02; the curves Hλ

have no common point outside 0. So, when λ varies, the surfaces Σ′ ∩πλ are
disjoint outside 0. The set Σ′ is clearly connected; Σ′ ∩ {y1 = 0} = {0}, the
origin of C3; by the above, σ1 = Σ ∩ {y1 > 0}, and σ2 = Σ ∩ {y1 < 0}.

(ii) The three connected components of S \ Σ′ contain, respectively, e1,
e2, e3 and their boundaries are σ1, σ2, σ1∪σ2; these boundaries have corners
as shown in the first part of the proof.

The connected component of C2 ×R \ S containing (0, 0, 0, 0, 1/2) is the
Levi-flat solution, the complex leaves being the sections by the hyperplanes
x3 = x03, −1 < x03 < 1.
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The section by the hyperplanes x3 = x03 is diffeomorphic to a 3-sphere
for 0 < x03 < 1 and to the union of two disjoint 3-spheres for −1 < x03 < 0,
as can be shown intersecting S by lines through the origin in the hyperplane
x3 = x03; Σ′ is homeomorphic to the union of two 3-spheres with a common
point.

3.3. Sphere with one special 1-hyperbolic point (sphere with two
horns), general case. The example of Section 3.2 shows that the necessary
conditions of Section 2 can be realised. Moreover, from Proposition 2.9, the
hypothesis on the number of complex points is meaningful.

Proposition 3.5 (cf. [Dol08, Proposition 2.6.1]). Let S ⊂ Cn be a com-
pact connected real 2-codimensional manifold such that the following holds:

(i) S is a topological sphere, nonminimal at every CR point;
(ii) every complex point of S is flat; there exist three special elliptic points

ej, j = 1, 2, 3, and one special 1-hyperbolic point h;
(iii) S does not contain complex manifolds of dimension n− 2;
(iv) the singular CR orbit Σ′ through h on S is compact and Σ′ \ {h}

has two connected components σ1 and σ2 whose closures are homeo-
morphic to spheres of dimension 2n− 3;

(v) the closures S1, S2, S3 of the three connected components S′1, S
′
2, S
′
3

of S \Σ′ are submanifolds with (singular) boundary.

Then each Sj \ (ej ∪Σ′), j = 1, 2, 3, carries a foliation Fj of class C∞ with
1-codimensional CR orbits as compact leaves.

Proof. From conditions (i) and (ii), S satisfies the hypotheses of Proposi-
tion 2.1 near any elliptic flat point ej , and of Proposition 2.6 near Σ′, all CR
orbits being diffeomorphic to the sphere S2n−3. Assumption (iii) guarantees
that all CR orbits in S must be of real dimension 2n−3. Hence, by removing
small connected open saturated neighborhoods of all special elliptic points,
and of Σ′, we obtain, from S \ Σ′, three compact manifolds S′′j , j = 1, 2, 3,
with boundary and with the foliation Fj of codimension 1 given by its CR
orbits, near ej ; the first cohomology group with values in R of these orbits
is 0. It is easy to show that this foliation is transversely oriented.

Recall Thurston’s Stability Theorem ([CaC, Theorem 6.2.1].

Proposition 3.6. Let (M,F) be a compact, connected, transversely
orientable, foliated manifold with boundary or corners, of codimension 1,
of class C1. If there is a compact leaf L with H1(L,R) = 0, then every leaf
is homeomorphic to L, and M is homeomorphic to L × [0, 1], foliated as a
product.

From the above theorem, S′′j is homeomorphic to S2n−3 × [0, 1] with CR
orbits being of the form S2n−3 × {x} for x ∈ [0, 1]. Then the full manifold
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Sj is homeomorphic to a half-sphere supported by S2n−2 and Fj extends to
Sj , with S3 having its boundary pinched at the point h.

Theorem 3.7. Let S ⊂ Cn, n ≥ 3, be a compact connected smooth real 2-
codimensional submanifold satisfying conditions (i) to (v) of Proposition 3.5.
Then there exists a Levi-flat (2n− 1)-subvariety M̃ ⊂ C×Cn with boundary
S̃ (in the sense of currents) such that the natural projection π : C×Cn → Cn
restricts to a bijection which is a CR diffeomorphism between S̃ and S outside
the complex points of S.

Proof. By Proposition 2.1, for every ej , a continuous function ν ′j , C
∞

outside ej , can be constructed in a neighborhood Uj of ej , j = 1, 2, 3, and
by Proposition 2.6, we have an analogous result in a neighborhood of Σ′.
Furthermore, from Proposition 3.6, a smooth function ν ′′j whose level sets
are leaves of Fj can be obtained globally on S′j \(ej∪Σ′). With the functions
ν ′j and ν ′′j , and analogous functions near Σ′, using a partition of unity, we
obtain a global smooth function νj : Sj → R without critical points away
from the complex points ej and from Σ′.

Let σ1, resp. σ2 be the two connected, relatively compact components
of Σ \ {h}, according to condition (iv); σ1, resp. σ2 is the boundary of S1,
resp. S2, and σ1 ∪ σ2 is the boundary of S3. We can assume that the three
functions νj are finite-valued and get the same values on σ1 and σ2. Then
the functions νj are induced by a unique function ν : S → R.

The submanifold S, being locally the boundary of a Levi-flat hypersur-
face, is orientable. We now set S̃ = N = graph(ν) = {(ν(z), z) : z ∈ S}. Let
Ss = {e1, e2, e3, σ1 ∪ σ2}.

The map λ : S → S̃ (z 7→ (ν(z), z)) is bicontinuous; λ|S\Ss is a diffeomor-
phism; moreover λ is a CR map. Choose an orientation on S. Then N is an
(oriented) CR subvariety with the negligible set of singularities τ = λ(Ss).

At every point of S \ Ss, dx1ν 6= 0, so condition (H) (Section 3.1) is
satisfied at every point of N \ τ .

All the assumptions of Theorem 3.1 being satisfied by N = S̃, in a
particular case, we conclude that N is the boundary of a Levi-flat (2n− 2)-
variety (with negligible singularities) M̃ in R× Cn.

Taking π : C × Cn → Cn to be the standard projection, we obtain the
conclusion.

3.4. Generalizations: elementary models and their gluings. The
examples and the proofs of the theorems when S is homeomorphic to a sphere
(Section 3.3) suggest the following definitions.

Let T ′ be a smooth, locally closed (i.e. closed in an open set), connected
submanifold of Cn, n ≥ 3. We assume that T ′ has the following properties:
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(i) T ′ is relatively compact, not necessarily compact, and of codimen-
sion 2.

(ii) T ′ is nonminimal at every CR point.
(iii) T ′ does not contain complex manifolds of dimension n− 2.
(iv) T ′ has exactly two complex points which are flat and either special

elliptic or special 1-hyperbolic.
(v) If p ∈ T ′ is special 1-hyperbolic, then the singular orbit Σ′ through

p is compact, and Σ′\p has two connected components σ1, σ2 whose
closures are homeomorphic to spheres of dimension 2n− 3.

(vi) If p ∈ T ′ is special 1-hyperbolic, then in a neighborhood of p with
convenient coordinates, the equation of T ′ up to third order terms
is

zn =
n−1∑
j=1

(zjzj + λj Re z
2
j ), λ1 > 1, 0 ≤ λj < 1 for j 6= 1,

or in real coordinates xj , yj with zj = xj + iyj ,

xn =
(
(λ1+1)x21−(λ1−1)y21

)
+
n−1∑
j=2

(
(1+λj)x

2
j+(1−λj)y2j

)
+O(|z|3).

(vii) The closures (in T ′) T1, T2, T3 of the three connected components
T ′1, T

′
2, T

′
3 of T ′ \Σ′ are submanifolds with (singular) boundary. Let

T ′′j , j = 1, 2, 3, be a neighborhood of T ′j in T
′.

Up- and down-1-hyperbolic points. Let τ be the (2n− 2)-submanifold with
(singular) boundary contained into T ′ such that either σ1 (resp. σ2) or Σ′ is
the boundary of τ near p. In the first case, we say that p is 1-up (resp. 2-up),
in the second it is down. If T ′ is contained in a small enough neighborhood of
Σ′ in Cn, such a T ′ will be called a local elementary model, more precisely it
defines a germ of elementary model around Σ.

The union T of T1, T2, T3 and of the germ of elementary model around
the singular orbit at every special 1-hyperbolic point is called an elementary
model. It behaves as a locally closed submanifold still denoted T .

Examples of elementary models. We will say that T is an elementary
model of type:

(a) if it has two elliptic points;
(b) if it has one special elliptic point and one down-1-hyperbolic point;
(c1) if it has one special elliptic point and one 1-up-1-hyperbolic point;
(c2) if it has one special elliptic point and one 2-up-1-hyperbolic point;
(d1) if it has two special 1-up-1-hyperbolic points;
(d2) if it has two special 2-up-1-hyperbolic points;
(e) if it has two special down-1-hyperbolic points;

Other configurations can be easily imagined.
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The prescribed boundary of a Levi-flat hypersurface of Cn in [DTZ05]
and [DTZ10], whose complex points are flat and elliptic, is an elementary
model of type (a).

Properties of elementary models. For instance, if T is 1-up and has one
special elliptic point, we solve the boundary problem as in S1 in the proof
of Theorem 3.7.

Proposition 3.8. Let T be a local elementary model. Then T carries a
foliation F of class C∞ with 1-codimensional CR orbits as compact leaves.

Proof. From the definition and Proposition 2.6.

Theorem 3.9. Let T be an elementary model. There exists an open
neighborhood T ′′ in T ′ carrying a smooth function ν : T ′′ → R whose level
sets are leaves of a smooth foliation.

Proof. By removing small connected open saturated neighborhoods of
every special elliptic point, and of Σ′, the singular orbit through every special
1-hyperbolic point p, we obtain, from T \Σ′, three manifolds T ′′j , j = 1, 2, 3,
with boundary:

• T1 and T2 containing one special elliptic point e or one special 1-
hyperbolic point with the foliations F1, F2, from Propositions 2.1 and
3.8,
• T ′′3 with the foliation F3 of codimension 1 given by its CR orbits whose

first cohomology group with values in R is 0, near e, or p. It is easy to
show that this later foliation is transversely oriented.

From Thurston’s Stability Theorem (Proposition 3.6), T ′′3 is homeomor-
phic to S2n−3 × [0, 1], foliated as a product, with CR orbits being of the
form S2n−3 × {x} for x ∈ [0, 1]; hence we obtain smooth functions ν1, ν2, ν3
whose level sets are leaves of the foliations F1, F2,F3 respectively, and using
a partition of unity we get the desired function ν on T .

Theorem 3.10. Let T be an elementary model. Then there exists a Levi-
flat (2n − 1)-subvariety M̃ ⊂ C × Cn with boundary T̃ (in the sense of
currents) such that the natural projection π : C × Cn → Cn restricts to a
bijection which is a CR diffeomorphism between T̃ and T outside the complex
points of T .

Proof. The submanifold T , being locally the boundary of a Levi-flat hy-
persurface, is orientable. We now set T̃ = N = graph(ν) = {(ν(z), z) :
z ∈ S} ⊂ E ∼= R× Cn−1. Let Ts be the set of all flat complex points of T .

The map λ : T → T̃ (z 7→ (ν(z), z)) is bicontinuous; λ|T\Ts is a diffeomor-
phism; moreover λ is a CR map. Choose an orientation on T . Then N is an
(oriented) CR subvariety with the negligible set of singularities τ = λ(Ts).
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Using Remark 3.2, at every point of T \ Ts, dx1ν 6= 0, so condition (H)
(Section 3.1) is satisfied at every point of N \ τ .

All the assumptions of Theorem 3.1 being satisfied by N = T̃ , in a
particular case, we conclude that N is the boundary of a Levi-flat (2n− 2)-
variety (with negligible singularities) M̃ in R× Cn.

Taking π : C × Cn → Cn to be the standard projection, we obtain the
conclusion.

3.5. Gluing of elementary models. The gluing happens between two
compatible elementary models along boundaries, for instance down and 1-up.
Note that the gluing can only be made at special 1-hyperbolic points. More
precisely, it can be defined as follows.

The properties of the submanifold S of Cn assumed in Section 2 have a
meaning in any complex analytic manifold X of complex dimension n ≥ 3,
and are kept under any holomorphic isomorphism.

We will define a submanifold S′ of X obtained by gluing of elementary
models by induction on the number m of models. An elementary model
T in X is the image of an elementary model T0 in Cn under an analytic
isomorphism of a neighborhood of T0 in Cn into X.

Let S′ be a closed smooth real submanifold of X of dimension 2n − 2
which is nonminimal at every CR point. Assume that S′ is obtained by gluing
m elementary models. Then S′ has the following properties:

• S′ has a finite number of flat complex points, some special elliptic and
the others special 1-hyperbolic;
• for every special 1-hyperbolic p′, there exists a CR-isomorphism h in-

duced by a holomorphic isomorphism of the ambient space Cn from a
neighborhood of p in T ′ onto a neighborhood of p′ in S′;
• for every CR orbit Σp′ whose closure contains a special 1-hyperbolic

point p′, there exists a CR-isomorphism h induced by a holomorphic
isomorphism of the ambient space Cn from a neighborhood of Σp =
Σ′p \ p in T ′ onto a neighborhood V of Σp′ in S′.

Every special 1-hyperbolic point of S′ which belongs to only one elementary
model in S′ will be called free.

We will define the gluing of one more elementary model to S′.

Gluing an elementary model T of type (d1) to a free down-1-hyperbolic
point of S′. Let h1 be a CR-isomorphism from a neighborhood V1 of σ′1
induced by a holomorphic isomorphism of the ambient space Cn onto a
neighborhood of σ1 in S′. Let k1 be a CR-isomorphism from a neighborhood
T ′′1 of T ′1 into X such that k1|V1 = h1.
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Theorem 3.11. The compact manifold or the manifold with singular
boundary S′, obtained by the gluing of a finite number of elementary models,
is the boundary of a Levi-flat hypersurface of X in the sense of currents.

Proof. From Theorem 3.10 and the definition of gluing.

3.6. Examples of gluing. Denoting the gluing of two models of type
(d1) and (d2) to a free down-1-hyperbolic point of S′ by: → (d1)− (d2), and
the converse by: (d1) − (d2) →, and, also, analogous configurations in the
same way, we get:

• torus: (b) → (d1) − (d2) → (b); the Euler–Poincaré characteristic of a
torus is χ(Tk) = 0; two special elliptic and two special 1-hyperbolic
points;
• bitorus: (b)→ (d1)− (d2)→ (e)→ (d1)− (d2)→ (b).

4. Case of graphs (see [DTZ11] for the case of elliptic points only, and
dropping the property of the function solution to be Lipschitz).

4.1. We want to add the following hypothesis: S is embedded into the
boundary of a strictly pseudoconvex domain of Cn, n ≥ 3, and more precisely,
let (z, w) be the coordinates in Cn−1 × C, with z = (z1, . . . , zn−1), w =
u+ iv = zn, let Ω be a strictly pseudoconvex domain in Cn−1 ×Ru (i.e. the
second fundamental form of the boundary bΩ of Ω is everywhere positive
definite); let S be the graph graph(g) of a smooth function g : bΩ → Rv.
Notice that bΩ × Rv contains S and is strictly pseudoconvex.

Assume that S is a horned sphere (Section 3.3), satisfying the hypotheses
of Theorem 3.7. Denote by pj , j = 1, . . . , 4, the complex points of S.

4.2. Our aim is to prove

Theorem 4.1. Let S be the graph of a smooth function g : bΩ → Rv.
Let Q = (q1, . . . , q4) ∈ bΩ be the projections of the complex points P =
(p1, . . . , p4) of S, respectively. Then there exists a continuous function f :
Ω → Rv which is smooth on Ω \ Q and such that f|bΩ = g, and M0 =
graph(f)\S is a smooth Levi-flat hypersurface of Cn. Moreover, each complex
leaf of M0 is the graph of a holomorphic function φ : Ω′ → C where Ω′ ⊂
Cn−1 is a domain with smooth boundary (that depends on the leaf ) and φ is
smooth on Ω′.

The natural candidate to be the graph M of f is π(M̃) where M̃ and π
are as in Theorem 3.7. We prove that this is the case, proceeding in several
steps.

4.3. Behavior near S. Assume that D is a strictly pseudoconvex do-
main such that S ⊂ bD.
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Recall ([HL75, Theorem 10.4]): Let D be a strictly pseudoconvex domain
in Cn, n ≥ 3, with boundary bD, and let Σ ⊂ bD be a compact connected
maximally complex smooth (2d − 1)-submanifold with d ≥ 2. Then Σ is the
boundary of a uniquely determined relatively compact subset V ⊂ D such that
V \ Σ is a complex analytic subset of D with finitely many singularities of
pure dimension ≤ d−1, and near Σ, V is a d-dimensional complex manifold
with boundary.

V is said to be the solution of the boundary problem for Σ.

Lemma 4.2 ([DTZ11]). Let Σ1, Σ2 be compact connected maximally com-
plex (2d−1)-submanifolds of bD. Let V1, V2 be the corresponding solutions of
the boundary problem. If d ≥ 2, 2d ≥ n+1 and Σ1∩Σ2 = ∅, then V1∩V2 = ∅.

Let Σ be a CR orbit of the foliation of S \ P . Then Σ is a compact
maximally complex (2n − 3)-dimensional real submanifold of Cn contained
in bD. Let V = VΣ be the solution of the boundary problem corresponding
to Σ. From Theorem 3.7, V = π(Ṽ ), where Ṽ = (M̃ \ S̃) ∩ (Cn × {x}) for
suitable x ∈ (0, 1) (the projection on the x-axis being finite, we can always
assume that x lies in (0, 1)). Moreover π|Ṽ is a biholomorphism Ṽ ∼= V and
M \ S ⊂ D.

Let Σ1, Σ2 be two distinct orbits of the foliation of S \ P , and V 1, V 2

the corresponding leaves. Then, from Lemma 4.2, V 1 ∩ V 2 = ∅.
Assume that S satisfies the full hypotheses of Theorem 4.1. Set m1 =

minS g, m2 = maxS g and pick r � 0 such that

D = Ω × [m1,m2] ⊂⊂ B(r) ∩ (Ω × iRv)

where B(r) is the ball {|(z, w)| < r}.

Lemma 4.3. Let p ∈ S be a CR point. Then, near p, M is the graph of a
function φ on a domain U ⊂ Cn−1z ×Ru which is smooth up to the boundary
of U .

Proof. Near p, each CR orbit Σ is smooth and can be represented as
the graph of a CR function over a strictly pseudoconvex hypersurface and
VΣ as the graph of the local holomorphic extension of this function. From
the Hopf lemma, V is transversal to the strictly pseudoconvex hypersurface
dΩ × iRv near p. Hence the family of the VΣ , near p, forms a smooth real
hypersurface with boundary on S that is the graph of a smooth function φ
from a relatively open neighborhood U of p on Ω into Rv. Finally, Lemma
4.2 guarantees that this family does not intersect any other leaf V fromM .

Corollary 4.4. If p ∈ S is a CR point, then each complex leaf V of
M , near p, is the graph of a holomorphic function on a domain ΩV ⊂ Cn−1z ,
which is smooth up to the boundary of ΩV .
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4.4. Solution as the graph of a continuous function. We recall
some results of Shcherbina [Sh93].

His Main Theorem is the following:

Let G be a bounded strictly convex domain in Cz × Ru (z ∈ C) and
ϕ : bG → Rv be a continuous function. Then the following properties hold,
where Γ = graph, and Γ̂ (ϕ) means the polynomial hull of Γ (ϕ):

(ai) Γ̂ (ϕ)\Γ (ϕ) is the union of a disjoint family {Dα} of complex discs;
(aii) for each α, there is a simply connected domain Ωα ⊂ Cz and a

holomorphic function w = fα, defined on Ωα, such that Dα is the
graph of fα;

(aiii) for each fα, there exists an extension f∗α ∈ C(Ωα) and bDα =
{(z, w) ∈ bΩα × Cw : w = f∗α(z)}.

Lemma 4.5 ([Sh93]). Let {Gn}∞n=0 be a sequence of bounded strictly con-
vex domains Gn ⊂ Cz × Ru such that Gn → G0. Let {ϕn}∞n=0 be a sequence
of continuous functions ϕn : bGn → Rv such that Γ (ϕn) → Γ (ϕ0) in the
Hausdorff metric. Then, if Φn is the continuous function Gn → Rv such that
Γ̂ (ϕn) = Γ (Φn), we have Γ (Φn)→ Γ (Φ0) in the Hausdorff metric.

Lemma 4.6 ([Sh93]). Let U be a smooth connected surface which is prop-
erly embedded into some convex domain G ⊂ Cz×Ru. Suppose that near each
of its points, u can be defined locally by the equation u = u(z). Then the sur-
face U can be represented globally as the graph of some function u = U(z),
defined on some domain Ω ⊂ Cz.

Proposition 4.7. M is the graph of a continuous function f : Ω → Rv.

Proof. We will intersect the graph S with a convenient affine subspace
of real dimension 4 to go back to the situation studied by Shcherbina.

Fix a ∈ Cn−1z \ 0 and, for a given point (ζ, ξ) ∈ Ω with ζ ∈ Cn−1z and
ξ ∈ Ru, let H(ζ,ξ) ⊂ Cn−1z × {ξ} be the complex line through (ζ, ξ) in the
direction (a, 0). Set

L(ζ,ξ) = H(ζ,ξ) + Ru(0, 1), Ω(ζ,ξ) = L(ζ,ξ) ∩Ω,
S(ζ,ξ) = (H(ζ,ξ) + Cw(0, 1)) ∩ S.

Then S(ζ,ξ) is contained in the strictly convex cylinder

(H(ζ,ξ) + Cw(0, 1)) ∩ (bΩ × iRv)

and is the graph of g|bΩ(ζ,ξ)
.

From (aii), the polynomial hull of S(ζ,ξ) is a continuous graph over Ω(ζ,ξ).
Consider M = π(M̃) and set

Mζ,ξ) = (H(ζ,ξ) + Cw(0, 1)) ∩M.
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It follows that Mζ,ξ) is contained in the polynomial hull Ŝ(ζ,ξ). From (aiii),
Ŝ(ζ,ξ) is a graph over Ω(ζ,ξ) foliated by analytic discs, so Mζ,ξ) is a graph
over a subset U of Ω(ζ,ξ).

Every analytic disc ∆ of Ŝ(ζ,ξ) has its boundary on S(ζ,ξ). Since all the
complex points of S are isolated, b∆ contains a CR point p of S; from
Lemma 4.3, near p, Mζ,ξ) is a graph over Ω(ζ,ξ). Near p, ∆ is contained in
Mζ,ξ), hence in a closed complex analytic leaf VΣ ofM ; so ∆ ⊂ VΣ ⊂M ; but
∆ ⊂ H(ζ,ξ) + Cw(0, 1), so ∆ ⊂Mζ,ξ). Consequently, Mζ,ξ) = Ŝ(ζ,ξ) near p.

It follows that M is the graph of a function f : Ω → Rv.
One proves, using Lemma 4.5, that f is continuous on Ω, whence on

Ω \Q, by Lemma 4.3. Then continuity at every qj is proved using the Kon-
tinuitätssatz on the domain of holomorphy Ω × iRv.

4.5. Regularity. The property that M \ P = (p1, . . . , p4) is a smooth
manifold with boundary results from:

Lemma 4.8. Let U be a domain in Cn−iz × Ru, n ≥ 2, and f : U → Rv
a continuous function. Let A ⊂ graph(f) be a germ of complex analytic set
of codimension 1. Then A is a germ of complex manifold which is a graph
over Cn−iz .

Proof. Assume that A is a germ at 0. Let h ∈ On+1, h 6= 0, be such that
A = {h = 0}. For ε � 1, let Dε be the disc {z = 0} ∩ {|w| < ε}. Then
A ∩Dε = {0}, i.e. A is w-regular.

Let π : Cnz,w → Cn−1z be the projection. The local structure theorem for
analytic sets gives:

• for some neighborhood U of 0 in Cn−1z , there exists an analytic hyper-
surface ∆ ⊂ U such that A∆ = A ∩ ((U \∆)×Dε) is a manifold;
• π : A∆ → U \∆ is a d-sheeted covering (d ∈ N).

It is easy to show that the covering π : A∆ → U \∆ is trivial.
Then we may define holomorphic functions τ1, . . . , τd : U \∆ → C such

that A∆ is the union of the graphs of the τj . By the Riemann extension the-
orem, the functions τj extend as holomorphic functions τj ∈ O(U). Suppose
that τj 6= τk for j 6= k. Then for some disc D ⊂ U centered at 0, we have
τj |D 6= τk|D, so (τj − τk)|D vanishes only at 0. But, from the hypothesis, on
restriction to D, {Re(τj − τk) = 0} ⊂ {τj − τk = 0}|D = {0}, impossible.

4.6. Proof of Theorem 4.1. Consider the foliation of S \ P given by
the level sets of the smooth function ν : S → [0, 1] (Sections 2.3 and 2.7)
and set Lt = {ν = t} for t ∈ (0.1). Let Vt ⊂ Ω × iRv ⊂ Cn be the complex
leaf of M bounded by Lt.
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By Proposition 4.7,M is the graph of a continuous function over Ω, and,
by Lemma 4.8, each leaf Vt is a complex smooth hypersurface and π|Vt is a
submersion.

Since Ω is strictly convex, as in the situation studied by Shcherbina (see
Lemma 4.6), π|Vt is 1-1, so, by Corollary 4.4, π sends Vt onto a domain
Ωt ⊂ Cn−1z with smooth boundary. Let

πu : (Cn−1z × Ru)× iRv → Ru, πv : (Cn−1z × Ru)× iRv → Rv.
Then πu|Lt = at.π|Lt and πv|Lt = bt.π|Lt where at, bt are smooth functions
on bΩt. Moreover bΩt, at, bt depend smoothly on t.

If (zt, wt) ∈M , then wt varies on Vt, so wt is a holomorphic extension of
at+ ibt to Ωt. In particular ut and vt are smooth in (z, t), from the Bochner–
Martinelli formula. The function ∂ut/∂t is harmonic on Ωt for each t and
has a smooth extension on bΩt.

From Lemma 4.3 and Corollary 4.4, ∂ut/∂t does not vanish on bΩt. Since
the CR orbits Lt are connected from Proposition 3.5, bΩt is also connected,
hence ∂ut/∂t has constant sign on bΩt, so, by the maximum principle, also
on Ωt and, in particular, it does not vanish. This implies that M \ S is the
graph of a smooth function over Ω which smoothly extends to Ω \Q.

By Proposition 4.7, M is the graph of a continuous function over Ω.

4.7. Elementary smooth models. An elementary smooth model in Cn
is an elementary model in the sense of Section 3.4 and satisfying the further
condition which makes sense by Theorem 4.1:

(G) Let (z, w) be the coordinates in Cn−1 × C, with z = (z1, . . . , zn−1),
w = u + iv = zn, and let Ω be a strictly pseudoconvex domain
in Cn−1 × Ru; assume that T ′ is the graph of a smooth function
g : bΩ → Rv.

Theorem 4.9. Let T be an elementary smooth model. Then there exists
a continuous function f : Ω → Rv which is smooth on Ω \Q and such that
f|bΩ = g, and M0 = graph(f) \ S is a smooth Levi-flat hypersurface of Cn;
in particular, S is the boundary of the hypersurface M = graph(f).

Proof. Similar to the proof of Theorem 4.1.

Gluing of elementary smooth models. In an open set of Cn, a coordinate
system (z, w) of Cn−1z × Ru defines an (n− 1, 1)-frame.

To define the gluing of elementary models (Section 3.5) we considered a
CR-isomorphism from an open set of Cn induced by a holomorphic isomor-
phism of the ambient space Cn onto an open set in Cn. To define the gluing of
elementary smooth models, we have to consider a holomorphic isomorphism
of the ambient space Cn onto an open set in Cn sending an (n− 1, 1)-frame
of Cn−1z × Ru onto an (n− 1, 1)-frame of Cn−1z′ × Ru′ .
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As in Section 3.5, we will define a submanifold S′ of X obtained by
gluing elementary smooth models by induction on the number m of models.
An elementary smooth model T in X is the image of an elementary smooth
model T0 of Cn under an analytic isomorphism of a neighborhood of T0 in
Cn into X.

Gluing an elementary smooth model T of type (d1) to a free down-1-hyper-
bolic point of S′. Every elementary smooth model is contained in a cylinder
bΩ×Rv determined by Ω and an (n−1, 1)-frame. Two sets Ω are compatible
if either they coincide or one is part of the other.

The announced gluing is defined in the following way: there exists a
CR-isomorphism h1 from a neighborhood V1 of σ′1 induced by a holomorphic
isomorphism of the ambient space Cn onto a neighborhood of σ1 in S′. Let k1
be a CR-isomorphism from a neighborhood T ′′1 of T ′1 intoX such that k1|V1 =
h1, and there exists a common (n− 1, 1)-frame on which the corresponding
sets Ω are compatible. Such a situation is possible as the example of the
horned (almost everywhere) smooth sphere shows (Theorem 4.1).

Note that the gluing implies that the submanifold S′ is C0 and smooth
except at the complex points.

Other gluings are obtained in a similar way. Hence:
Theorem 4.10. The manifold S′ obtained by gluing elementary smooth

models is of class C0, and smooth except at the complex points.
Corollary 4.11. The manifold S′ is the boundary of a manifold M of

class C0 whose interior is a Levi-flat smooth hypersurface.
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