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To Professor Józef Siciak on his 80th birthday

Abstract. A nonlinear generalization of convergence sets of formal power series, in
the sense of Abhyankar–Moh [J. Reine Angew. Math. 241 (1970)], is introduced. Given
a family y = ϕs(t, x) = sb1(x)t + b2(x)t2 + · · · of analytic curves in C× Cn passing
through the origin, Convϕ(f) of a formal power series f(y, t, x) ∈ C[[y, t, x]] is defined
to be the set of all s ∈ C for which the power series f(ϕs(t, x), t, x) converges as a se-
ries in (t, x). We prove that for a subset E ⊂ C there exists a divergent formal power
series f(y, t, x) ∈ C[[y, t, x]] such that E = Convϕ(f) if and only if E is an Fσ set of
zero capacity. This generalizes the results of P. Lelong and A. Sathaye for the linear case
ϕs(t, x) = st.

We say that a formal power series f(z) =
∑∞
|α|=0 aαz

α is convergent

if there exists a constant C such that |aα| ≤ C |α| for all α ∈ Zn+. (Here
we have used multiindex notation: Zn+ denotes the set of all n-tuples α :=
(α1, . . . , αn) of integers αi ≥ 0 if z = (z1, . . . , zn) and α ∈ Zn+, then zα =
zα1
1 · · · zαnn and |α| := α1 + · · ·+ αn denotes the length of α ∈ Zn+.) A series
f is called divergent if it is not convergent.

A divergent power series may still converge when restricted to a cer-
tain set of lines or planes through the origin. For example, Abhyankar and
Moh [AM] considered the convergence set Conv(f) of a series f defined to
be the set of all s ∈ C for which f(sz2, . . . , zn) converges as a series in
(z2, . . . , zn). The convergence set of divergent series can be empty or an ar-
bitrary countable set. Abhyankar and Moh proved that the one-dimensional
Hausdorff measure of the convergence set of a divergent series is zero. In the
case when n = 2, Pierre Lelong [Le] had earlier proved that if Conv(f) is
not contained in an Fσ set of zero capacity then the series f is necessarily
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convergent, and conversely, given any set E contained in an Fσ set of zero
capacity a divergent power series f can be constructed so that E ⊂ Conv(f).
This result has been rediscovered, independently, by several authors (see e.g.
[LM], [Ne], [Sa], and see also [FM], [FM1], [Ne1], [Ri] for other related re-
sults). The optimal result was obtained by Sathaye [Sa] who strengthened
the results of Abhyankar–Moh and Lelong by proving that a necessary and
sufficient condition for a set S ⊂ C to be equal to the convergence set of
a divergent power series f(z) is that S is an Fσ set of transfinite diameter
zero, i.e. S =

⋃∞
j=1Ej where each Ej is a closed set of transfinite diameter

zero. These results can be viewed as optimal and formal analogs of Hartogs’
Theorem on separate analyticity in several complex variables.

Motivated by formal fibered diffemorphisms associated with dynami-
cal systems, Ribón [Ri] studied holomorphic extensions of formal objects,
including formal power series, formal meromorphic functions, and formal
infinitesimal diffeomorphisms.

Instigated by the above mentioned results, we are interested in the fol-
lowing general problem: find “tight” conditions on a family F of formal
submanifolds in Cn so that if the restriction of a formal series to each for-
mal submanifold in F converges, then the formal power series converges.
By “tight” we mean, vaguely speaking, that one does not assume too much.
In case n = 2, Lelong, Abhyankar–Moh, and Sathaye’s results can be inter-
preted as: for the family of lines {`s : s ∈ E}, where `s = {(sx, x) : x ∈ C},
the tight condition is that E have positive capacity. The result of Fridman
and Ma [FM] is that the tight condition on the family {γs : s ∈ E}, where
γs = {(sσx, sτh(x))} (h(x) is a fixed convergent series), is again E having
positive capacity. It is natural to ask, for the family {γs : s ∈ E}, where
γs = {(ϕ(s, x), ψ(s, x))}, whether the tight condition is that E have positive
capacity. This paper deals with one of the first questions one has to address
in order to understand the general problem.

In this article, we consider “nonlinear” convergence sets of formal power
series f(y, t, x) ∈ C[[y, t, x]] by restricting f(y, t, x) along a one-parameter
family of “tangential” perturbations of a fixed analytic curve y = ϕ(t, x)
through the origin. For simplicity of notation we only consider a single vari-
able x. If x is replaced by a tuple (x1, . . . , xn), the theorem is still valid, and
the proof goes through without difficulty.

Throughout this paper, ϕ(t, x) :=
∑∞

j=1 bj(x)tj denotes a fixed conver-

gent power series where bj(x) :=
∑∞

i=0 bjix
i, j = 1, 2, . . . , are convergent

power series in x with complex coefficients. We assume that b10 = 1.

For s ∈ C, we put ϕs(t, x) = ϕ(s, t, x) = sb1(x)t +
∑∞

j=2 bj(x)tj . Define
the ϕ-convergence set of a series f(y, t, x) ∈ C[[y, t, x]] as follows:

Convϕ(f) := {s ∈ C : f(ϕ(s, t, x), t, x) converges as a series in (t, x)}.
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Let K be a compact subset of C. For a probability measure µ on the
compact set K, the logarithmic potential of µ is

pµ(z) = lim
N→∞

�
min

(
N, log

1

|z − ζ|

)
dµ(ζ),

and the (logarithmic) capacity (see [Ah, Chapter 2]) of K is defined by

c(K) = exp(− min
µ(K)=1

sup
z∈C

pµ(z)).

If E =
⋃∞
n=1Kn, where Kn are compact sets of zero capacity, then

c(E) = 0. A subset E of C is of zero capacity if and only if it is polar ,
i.e. E ⊂ {z : u(z) = −∞} for some nonconstant subharmonic function
u : C→ [−∞,∞). An Fσ set E in C is said to have zero capacity if E is the
union of a countable collection of compact sets of zero capacity.

Theorem 1. Let ϕ(t, x) be as above, and let E be a subset of C. There
exists a divergent formal power series f(y, t, x) ∈ C[[y, t, x]] such that E =
Convϕ(f) if and only if E is an Fσ set of zero capacity.

Proof. Suppose that E is an Fσ set with c(E) > 0. By replacing E
with a compact subset K ⊂ E of positive capacity we can assume that
E is compact. Let f(y, t, x) :=

∑
i,j,k aijky

itjxk ∈ C[[y, t, x]] be such that
g(s; t, x) := f(ϕ(s, t, x), t, x) converges for each s ∈ E. We need to show that
f is convergent. Rewrite f as f(y, t, x) =

∑
i,j aij(x)yitj , where aij(x) :=∑∞

k=0 aijkx
k ∈ C[[x]], and

g(s; t, x) :=
∑

q≥0, k≥0
λqk(s)t

qxk :=
∑

p≥0, q≥0
dpq(x)sptq.

It is clear that λqk(s) is a polynomial of degree at most q, and thus

dpq(x) = 0 for p > q.

Let dpq(x) :=
∑

k≥0 dpqkx
k, and write λqk(s) :=

∑q
p=0 dpqks

p.
We have

dpq(x) =
∑′

aij(x)
i!

p!m2!m3! · · ·
b1(x)pb2(x)m2b3(x)m3 · · · ,

where the summation
∑′ is taken over all nonnegative integers i, j,

m2,m3, . . . satisfying

j + p+ 2m2 + 3m3 + · · · = q and p+m2 +m3 + · · · = i.

Since
dqq(x) = aq,0(x)b1(x)q,

dq−1,q(x) = aq−1,1(x)b1(x)q−1,

dq−2,q(x) = aq−2,2(x)b1(x)q−2 + aq−1,0(x)(q − 1)b1(x)q−2b2(x),

dq−k,q(x) = aq−k,k(x)b1(x)q−k + terms involving aij(x) with i+ j < q,

(1)
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it follows that aij(x) can be solved uniquely in terms of dpq(x). In particular,
if dpq(x) = 0 for p, q then aij(x) = 0 for all i, j.

For each s ∈ E, there is a constant Cs such that |λqk(s)| ≤ Cq+ks for all
q+k ≥ 1, since the power series

∑
q,k λqk(s)t

qxk converges. For each positive
integer n, set

En = {s ∈ E : |λqk(s)| ≤ nq+k ∀q + k ≥ 1}.
The sets En are closed and E =

⋃∞
n=1En. There is a positive integer N such

that E′ :=
⋃N
n=1En has positive capacity. It follows that |λqk(s)| ≤ N q+k

for q + k ≥ 1 and for s ∈ E′. By the Bernstein–Walsh inequality (see [FM,
Lemma 1.4]), there is a constant CE′ ≥ 1 such that |dpqk| ≤ CqE′N q+k ≤
(CE′N)q+k.

For some τ > 0, g(s; t, x) represents a holomorphic function in ∆τ ×∆τ

× ∆τ , where ∆τ = {z ∈ C : |z| < τ}. Shrinking τ if necessary, we may
assume that

min{|b1(x)| : x ∈ C, |x| ≤ τ} ≥ 1/2

and

(2)
∑
q,k

|bqk|τ q+k <∞,
∑
p,q,k

|dpqk|τp+k2q
(
τ +

∑
|bij |τ i+j−1

)q
<∞.

The map ψ : Cn+2 → Cn+2 defined by ψ(s, t, x) := (ϕ(s, t, x), t, x) is holo-
morphic near the origin and is injective on Q = {(s, t, x) ∈ ∆τ ×∆τ ×∆τ :
t 6= 0}. It follows that there is a holomorphic function G(u, v, w) defined on
ψ(Q) such that g = G ◦ ψ on Q.

We now prove that G extends holomorphically to a neighborhood of the
origin. Choose a δ, 0 < δ < τ/2, sufficiently small so that the set

Γ := {(u, v, w) ∈ C3 : |u| ≤ δ2, |v| = δ, |w| ≤ δ}
is contained in ψ(Q). The function G extends holomorphically to a neigh-
borhood of the origin if for |u0| < δ2, |w0| < δ,

Ik(u0, w0) :=
1

2π
√
−1

�

|v|=δ

vkG(u0, v, w0) dv = 0, ∀k = 0, 1, 2, . . . .

For fixed w0 and u0, write(
u0 − (ϕ(t, w0)− tb1(w0))

tb1(w0)

)p
:=

∞∑
j=−p

cpj(u0, w0)t
j .

By making use of (2), and substituting the above series expansion into the
integrand in Ik(u0, w0), we obtain

Ik(u0, w0) =
1

2π
√
−1

�

|t|=δ

tkg

(
u0 − (ϕ(t, w0)− tb1(w0))

tb1(w0)
; t, w0

)
dt

=
∑

dpq(w0)cpj(u0, w0),
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where the sum is over all p, q, j with q + j = −k − 1 and j ≥ −p. Since
q + j = −k − 1 and j ≥ −p imply q = −j − k − 1 < −j ≤ p, and since
dpq = 0 for q < p, we see that Ik(u0, w0) = 0 for k = 0, 1, 2, . . . and for all
(u0, w0) with |u0| < δ2, |w0| < δ. Therefore, G extends holomorphically to
a neighborhood of the origin.

Now g = G ◦ ψ on ∆τ ×∆τ ×∆τ . Hence g = G ◦ ψ as a formal power
series. Since g = f ◦ ψ, we see that f̂ ◦ ψ :=

∑
d̂pq(x)sptq = 0, where

f̂ :=
∑

i,j âij(x)yitj = f −G. It follows that all d̂pq(x), and hence âij(x) are

all 0. This proves f is convergent as f̂ = 0 and f ≡ G.
Conversely, suppose E is an Fσ set with c(E) = 0. We construct a diver-

gent power series f(y, t, x) such that Convϕ(f) = E.
By Theorem 6.1 of [Ri], there exists an increasing sequence {qj} of pos-

itive integers and a sequence of polynomials {Pj(s)} with deg(Pj) ≤ qj , for
all j = 1, 2, . . . , such that the series ψs(t) =

∑
j Pj(s)t

qj converges for each
s ∈ E, and diverges for each s 6∈ E. Set g(s; t, x) := ψs(t) :=

∑
p,q dpq(x)sptq.

We solve (1) for aij(x) in terms of dpq(x), and set f(y, t, x) =
∑
aij(x)yitj .

Then, f(ϕ(s, t, x), t, x)=g(s; t, x). Therefore f(y, t, x) diverges and Convϕ(f)
= E.

Corollary 2. For any f(y, t, x) ∈ C[[y, t, x]], either c(Convϕ(f)) = 0
or Convϕ(f) = C.

We point out that basic properties of convergence sets follow directly
from the corresponding properties of polar sets. In particular, a finite or a
countable set is a convergence set.

Remark 3. The closure of a ϕ-convergence set is not necessarily a ϕ-
convergence set. For example, the countable set Q is a ϕ-convergence set of
divergent series but its closure R, being nonpolar, cannot be a ϕ-convergence
set of a divergent series.

Remark 4. The situation is quite different, as one would expect, when
restrictions of functions are considered. For example, for any positive inte-
ger k, it is elementary to construct a function f : Rn → R that is exactly k-
times differentiable but whose restriction to every line in Rn is real-analytic.
The function

f(x, y) :=

 (x2 + y2) exp

(
− y2

x2 + y4

)
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0)

is in C∞(R2) and for all m 6= 0 the single-variable function f(mt, t) is
real-analytic. However, f is not a real-analytic function as it fails to be
real-analytic along the y-axis. Is there a C∞ function f : Rn → R which
is not real-analytic but whose restriction to every line is real-analytic? The
answer is negative, as it was shown by J. Bochnak [Bo] and J. Siciak [Si] that
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if a C∞ function f : Rn → R is real-analytic on every line segment through
a point x0, then f is real-analytic in a neighborhood of x0. Bierstone, Mil-
man and Parusiński [BMP] provided an example of a discontinuous function
whose restriction to every analytic arc is analytic. (See [Ne] and [Ne1] for
C∞-analogs of the Bochnak–Siciak theorem.)

Acknowledgments. The authors are grateful to the referee for his
helpful suggestions.

References

[AM] S. S. Abhyankar and T. T. Moh, A reduction theorem for divergent power series,
J. Reine Angew. Math. 241 (1970), 27–33.

[Ah] L. V. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory,
McGraw-Hill, New York, 1973.

[BMP] E. Bierstone, P. D. Milman and A. Parusiński, A function which is arc-analytic
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