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Tangential Markov inequalities on semialgebraic curves and
some semialgebraic surfaces

by Agnieszka Kowalska (Kraków)

Abstract. We give another proof of the fact that any semialgebraic curve admits a
tangential Markov inequality. We establish this inequality on semialgebraic surfaces with
finitely many singular points.

1. Introduction. The classical Markov inequality, which estimates the
derivatives of polynomials on the line segment, has been generalized in many
ways. The theory of the multivariate Markov inequality was developed in the
seventies and eighties of the twentieth century. In particular, a Markov type
inequality on convex compact subsets of RN with a non-void interior and on
uniformly polynomially cuspidal subsets of RN was proved. For a detailed
survey on this subject we refer the reader to [P]. Further important applica-
tions of Markov type inequalities to analysis were found. For semialgebraic
sets we consider the following generalization of Markov’s inequality.

A compact set K ⊂ RN is said to admit a tangential Markov inequality
with exponent l if there exists a positive constant M depending only on K
such that for all polynomials p,

‖DT p‖K ≤M(deg p)l‖p‖K ,

where DT p denotes any (unit) tangential derivative of p along K, ‖p‖K =
sup |p|(K) and | · | denotes the Euclidean norm in RN .

The tangential Markov inequalities serve to characterize some subsets.
According to [BLMT], a C∞ submanifold K of RN admits a tangential
Markov inequality with exponent 1 if and only if K is algebraic.

Baran and Pleśniak characterized semialgebraic curves in RN in terms of
Bernstein and van der Corput–Schaake type inequalities (see [BP1]). More-
over in [BP2] they extended these results to the case of semialgebraic sets of
higher dimensions in RN .
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In 2005 L. Gendre proved that every singular algebraic curve in RN
admits a local tangential Markov at each of its points. Moreover he showed
that the Markov exponent at a point of a real algebraic curve A is less than
or equal to twice the multiplicity of the smallest complex algebraic curve
containing A.

Using the theorems proved by Baran and Pleśniak in [BP1] and [BP2],
we show that semialgebraic curves and semialgebraic surfaces with finitely
many singular points admit a tangential Markov inequality.

2. Preliminaries. Let K be a compact curve in RN and let I = [−1, 1].
Following [BP1], K is said to admit an analytic parametrization if there
exist r ∈ N, γ > 1 and R-analytic maps φj = (φj1, . . . , φjN ) : γI → K,
j = 1, . . . , r, such that each φj |I is a bijection onto φj(I) and

r⋃
j=1

φj(I) = K.

We recall that a subset of RN is semialgebraic if it is the union of finitely
many subsets of the form

{x ∈ RN : P (x) = 0 ∧Q1(x) > 0 ∧ · · · ∧Ql(x) > 0},
where l ∈ N and P,Q1, . . . , Ql ∈ R[x1, . . . , xN ].

It is known that any semialgebraic curve in RN admits an analytic
parametrization. This is a consequence of the Puiseux theorem.

For a compact curve K in RN with an analytic parametrization {φj}
(with parameters r and γ) Baran and Pleśniak gave conditions equiva-
lent to K being semialgebraic. In Section 3, for a semialgebraic arc with
parametrization Φ, we use the following two:

(2.1) ∃M1,M2 > 0 ∀P ∈ C[x1, . . . , xN ]

|(P ◦ Φ)(ξ)| ≤M2‖P‖K if dist(ξ, I) ≤ M1

degP
,

and

(2.2) ∃M3 > 0 ∀P ∈ C[x1, . . . , xN ]
|(P ◦ Φ)′(t)| ≤M3 degP · ‖P‖K , t ∈ I.

Let now Bm(R) := {x ∈ Rm : ‖x‖ ≤ R}, Bm := Bm(1), Sm−1(R) :=
∂Bm(R) and Sm−1 := Sm−1(1).

Definition 2.1 ([BP2, Definition 4.2]). Let K be a compact subset
of Rn. Then K is said to have an analytic parametrization of dimension m,
1 ≤ m ≤ n, if there exist ρ > 1, r ∈ N and R-analytic maps φj =
(φj1, . . . , φjn) : Bm(ρ)→ K, j = 1, . . . , r, such that for each j = 1, . . . , r we
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have rank φj = m and

K =
r⋃
j=1

φj(Bm).

LetM be anm-dimensional real-analytic manifold of Rn. By the Hironaka
Rectilinearization Theorem one can prove that every compact semialgebraic
subset of M of pure dimension m admits an analytic parametrization in the
sense of the above definition. Moreover in Definition 2.1, instead of consid-
ering an analytic parametrization defined in a neighbourhood of the unit
ball Bm, we may work with an analytic parametrization defined in an open
neighbourhood of the cube Im (see [BP2]).

3. Tangential Markov inequality on curves. In this section we prove
a tangential Markov inequality on semialgebraic arcs. First we give a tech-
nical lemma.

Lemma 3.1. Let K be a semialgebraic arc which has an analytic param-
etrization

Φ(t) = (ϕ1(t), . . . , ϕN (t))

in a neighbourhood of I = [−1, 1] such that in a neighbourhood of 0 (which is
the only singular point) ϕi(t) = αi0 +

∑∞
n=k αint

n and α1k = 1. Then there
exists a positive constant C such that for every polynomial P ∈ C[x1, . . . , xN ]
with degP ≤ n and for all t ∈ I,∣∣∣∣ 1

tk−1
(P ◦ Φ)′(t)

∣∣∣∣ ≤ Cnk‖P‖K .
Proof. The proof is divided into two steps.

1. If t ∈ I and |t| > M1/4n, then from (2.2),∣∣∣∣ 1

tk−1
(P ◦ Φ)′(t)

∣∣∣∣ ≤ ( 4n

M1

)k−1
|(P ◦ Φ)′(t)| ≤

(
4

M1

)k−1
M3n

k ‖P‖K .

2. If t ∈ I and |t| ≤M1/4n, then∣∣∣∣ 1

tk−1
(P ◦ Φ)′(t)

∣∣∣∣ = ∣∣∣∣ 1

2πi

�

|ξ−t|=r

1

ξk−1
(P ◦ Φ)′(ξ)

ξ − t
dξ

∣∣∣∣
=

1

2π

∣∣∣∣ �

|ξ−t|=r

1

ξk−1
1

ξ − t
1

2πi

�

|η−ξ|=ρ

(P ◦ Φ)(η)
(η − ξ)2

dη dξ

∣∣∣∣.
By choosing r = ρ = M1/2n we have dist(η, I) ≤ M1/n. From (2.1) we
conclude that∣∣∣∣ 1

tk−1
(P ◦ Φ)′(t)

∣∣∣∣ ≤ 1

2π

2n

M1
M2‖P‖K

�

|ξ−t|=M1/2n

1

|ξ|k−1
1

|ξ − t|
dξ.
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Since |t| ≤M1/4n, we see that |ξ| ≥M1/4n. Hence∣∣∣∣ 1

tk−1
(P ◦ Φ)′(t)

∣∣∣∣ ≤ M2

2

(
4

M1

)k
nk‖P‖K .

Taking C = max{(4/M1)
k−1M3, (M2/2)(4/M1)

k} we obtain our claim.

The main result of this section is the following

Theorem 3.2. Let K be a semialgebraic arc which has an analytic pa-
rametrization

Φ(t) = (ϕ1(t), . . . , ϕN (t))

in a neighbourhood of I = [−1, 1] such that in a neighbourhood of 0 (which is
the only singular point) ϕi(t) = αi0+

∑∞
n=k αint

n and α1k = 1. Then there ex-
ists a positive constant M such that for every polynomial P ∈ C[x1, . . . , xN ]
with degP ≤ n,

‖DT P‖K ≤Mnk‖P‖K ,

where ‖P‖K = supt∈I |P (Φ(t))| and DT P (Φ(t)) denotes the derivative of P
in the direction of a unit vector of the tangent cone to K at Φ(t).

Proof. We first prove that there exist positive constants M1,M2 such
that for each t ∈ I,

M1 ≤
|t|k−1

‖(ϕ′1(t), . . . , ϕ′N (t))‖
≤M2.

By assumption

ϕ′i(t) =
∞∑
n=k

αinnt
n−1.

Hence

lim
t→0

|t|k−1√
N∑
i=1
|ϕ′i(t)|2

= lim
t→0

|t|k−1

|t|k−1
√

N∑
i=1

∣∣∣ ∞∑
n=k

αinntn−k
∣∣∣2 =

1

|k|

√
1 +

N∑
i=2
|αik|2

.

Define
Φ1(t) := (ϕ1(t

1/k), . . . , ϕN (t
1/k)), t ∈ [0, 1].

Then Φ1(t) is a C1 parametrization of the curve K|[0,1] and

Φ′1(t) :=

(
1

k
t1/k−1ϕ′1(t

1/k), . . . ,
1

k
t1/k−1ϕ′N (t

1/k)

)
, t ∈ [0, 1].

Moreover,

lim
t→0

1

k
t1/k−1ϕ′1(t

1/k) = 1 and lim
t→0

1

k
t1/k−1ϕ′i(t

1/k) = αik for i = 2, . . . , N.
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It follows that the vector r = (1, α2k, . . . , αNk) is an element of the tangent
cone to K at (ϕ1(0), . . . , ϕN (0)). We claim that for each t ∈ I,

(3.1) DT P (ϕ1(t), . . . , ϕN (t)) =
(P (ϕ1(t), . . . , ϕN (t)))

′

‖(ϕ′1(t), . . . , ϕ′N (t))‖
.

It is sufficient to show (3.1) for homogeneous polynomials. Consider P (x) =∏N
j=1 x

βj
j , where βj ∈ N for j = 1, . . . , N . Then for t 6= 0 we have

DT P (ϕ1(t), . . . , ϕN (t)) = lim
h→0

N∏
j=1

(
ϕj(t) +

ϕ′
j(t)√

N∑
i=1
|ϕ′

i(t)|2
h

)βj
−

N∏
j=1

(ϕj(t))
βj

h

=
(P (ϕ1(t), . . . , ϕN (t)))

′√
N∑
i=1
|ϕ′i(t)|2

.

Moreover,

DT P (ϕ1(0), . . . , ϕN (0)) =

N∑
j=1

βjα
βj−1
j0

αjk√
N∑
m=1
|αmk|2

N∏
i 6=j,i=1

αβii0

and

lim
t→0

(P (ϕ1(t), . . . , ϕN (t)))
′√

N∑
m=1
|ϕ′m(t)|2

=

N∑
i=1

kβi(αi0)
βi−1αik

N∏
j 6=i, j=1

(αj0)
βj

k

√
N∑
m=1
|αmk|2

.

From (3.1) and Lemma 3.1 we obtain

|DT P (ϕ1(t), . . . , ϕN (t))| ≤M2

∣∣∣∣ 1

tk−1
(P (ϕ1(t), . . . , ϕN (t)))

′
∣∣∣∣

≤M2Cn
k‖P‖K .

Immediately from the above theorem and the structure of tangent cones
for Cartesian products we have

Corollary 3.3. Let S = K1×K2, where K1 and K2 are semialgebraic
curves. Then there exists a positive constant M such that for each polynomial
P ∈ C[x1, . . . , xN ] with degP ≤ n,

‖DT P‖S ≤Mnk‖P‖S .
Corollary 3.4. Let S = K×S1, where K is a semialgebraic curve and

S1 is a C1 non-singular semialgebraic surface. Then there exists a positive
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constant M such that for each polynomial P ∈ C[x1, . . . , xN ] with degP ≤ n,
‖DT P‖S ≤Mnk‖P‖S .

4. Tangential Markov inequality on surfaces. Another generaliza-
tion of Theorem 3.2 is a tangential Markov inequality on semialgebraic sur-
faces with finitely many singular points. It is sufficient to prove this inequality
for surfaces with one singular point. To simplify we describe it for a subset
of R3.

Theorem 4.1. Let V be a C1 semialgebraic surface with analytic param-
etrization

Φ(u) = (ϕ1(u), ϕ2(u), ϕ3(u)), u ∈ B2(ρ),

such that rankΦ = 2 on B2(ρ) \ {0} (0 is the only singular point). Moreover,
assume that Φ(0) = 0 and there exists ε > 0 such that Φ(u) 6= 0 for u ∈
B2(ε) \ {0}. Then there exist constants D > 0 and k ∈ N such that for each
polynomial P ∈ C[x1, x2, x3] with degP ≤ n,

‖DT P‖V ≤ Dnk‖P‖V.

Proof. By assumptions

ϕi(u1, u2) =
∞∑
j=1

1

j!

j∑
l=0

αijlu
j−l
1 u2

l.

Let v ∈ S1 and t ∈ I. We have Φ(tv) = (ϕ1(tv), ϕ2(tv), ϕ3(tv)), where

ϕi(tv) =
∞∑
j=1

Pij(v)t
j with Pij(v) =

1

j!

j∑
l=0

αijlv1
j−lv2

l.

By assumption, Φ is not equal to zero on B2(ρ), so for each v ∈ S1 there
exist l, k(v) ∈ N such that Plk(v)(v) 6= 0 and Pij = 0 for i ∈ {1, 2, 3},
j ∈ {1, . . . , k(v)− 1}. Hence Φ(tv) = (ϕ1(tv), ϕ2(tv), ϕ3(tv)), where

ϕi(tv) =
∞∑

j=k(v)

Pij(v)t
j for i ∈ {1, 2, 3}.

We see at once that there exists a constant κ such that k(v) ≤ κ for all
v ∈ S1. Fix v ∈ S1. For t ∈ [−δ3/4n, δ3/4n] we obtain∣∣∣∣(P (Φ(tv))′tk(v)−1

∣∣∣∣ = ∣∣∣∣ 1

2πi

�

|ξ−t|=r

1

ξk(v)−1
(P (Φ(ξv)))′

ξ − t
dξ

∣∣∣∣
=

1

2π

∣∣∣∣ �

|ξ−t|=r

1

ξk(v)−1
1

ξ − t
1

2πi

�

|η−ξ|=ρ

(P ◦ Φ)(ηv)
(η − ξ)2

dη dξ

∣∣∣∣.
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If we take r = ρ = δ3/2n, then dist(ηv,B2) ≤ δ3/n. Hence (see [BP2,
Theorem 4.5(iii)]) we get∣∣∣∣(P (Φ(tv)))′tk(v)−1

∣∣∣∣ ≤ 1

2π

2n

δ3
C3‖P‖V

�

|ξ−t|=δ3/2n

1

|ξ|k(v)−1
1

|ξ − t|
dξ.

Since |t| ≤ δ3/4n we have |ξ| = |ξ − t + t| ≥ |ξ − t| − |t| ≥ δ3/2n − δ3/4n
= δ3/4n. Therefore∣∣∣∣(P (Φ(tv)))′tk(v)−1

∣∣∣∣ ≤ (4n

δ3

)k(v)−1 2n
δ3
C3‖P‖V =

C3

2

(
4

δ3

)k(v)
nk(v)‖P‖V.

For |t| > δ3/4n we get (see [BP2, Theorem 4.5(iv)]∣∣∣∣(P (Φ(tv)))′tk(v)−1

∣∣∣∣ ≤ (4n

δ3

)k(v)−1
2DC4n‖P‖V =

(
4

δ3

)k(v)−1
2DC4n

k(v)‖P‖V,

where D is a constant depending only on V.
Taking C = max{2DC4(4/δ3)

κ−1, (C3/2)(4/δ3)
κ} we obtain for t ∈ I

and v ∈ S1, ∣∣∣∣(P (Φ(tv)))′tk(v)−1

∣∣∣∣ ≤ Cnκ‖P‖K .
Proceeding similarly to the proof of Theorem 3.2 we can show that Wv =
(P1k(v)(v), P2k(v)(v), P3k(v)(v)) for each v ∈ S1 is an element of the tangent
cone to V at Φ(0). As before

|DT P (ϕ1(tv), ϕ2(tv), ϕ3(tv))| =
∣∣∣∣ (P (ϕ1(tv), ϕ2(tv), ϕ3(tv)))

′

‖((ϕ1(tv))′, (ϕ2(tv))′, (ϕ3(tv))′)‖

∣∣∣∣.
Finally, there exist constants D and k such that for each polynomial P ∈
C[x1, x2, x3] we have

‖DT P‖V ≤ Dnk‖P‖V.
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