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Abstract. We prove precise decomposition results and logarithmically convex esti-
mates in certain weighted spaces of holomorphic germs near R. These imply that the
spaces have a basis and are tamely isomorphic to the dual of a power series space of finite
type which can be calculated in many situations. Our results apply to the Gelfand–Shilov
spaces S1

α and Sα1 for α > 0 and to the spaces of Fourier hyperfunctions and of modified
Fourier hyperfunctions.

1. Introduction. The structure theory of Fréchet spaces and especially
the theory of power series spaces has proved to have many applications
to linear problems in analysis such as existence of continuous linear right
inverses or solvability of vector-valued or parameter dependent equations.
The relevant modern tools to treat this type of problems are splitting theory
for power series and homological techniques like the Proj or Ext functors. To
apply these tools we often need to know that the spaces under consideration
are isomorphic to power series spaces or at least share some of the properties
of (DN) or (Ω) type which are typical for power series spaces.

For spaces of holomorphic functions defined on a fixed domain these
properties have been intensively studied in the literature (see e.g. [14–16,
18, 23] and the references cited there), while for germs of holomorphic func-
tions much less is known: the space of holomorphic germs near a compact
set K ⊂ Cd is well studied, and we have shown in [10] that the Hermite
functions are a basis in the space P∗(R) of test functions for the Fourier
hyperfunctions defining an isomorphism of P∗(R) to Λ0(n

1/2)′b, i.e. to the
dual of a certain power series space of finite type. This result has recently
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been extended to expansions with respect to the eigenfunctions of certain
elliptic differential operators (see [3] and also [1]). The method of proof used
in [10] was limited to spaces invariant under Fourier transformation. So it
cannot be applied to the Gelfand–Shilov spaces of holomorphic functions S1

α

for α > 0 (see [2] and notice that P∗(R) = S1
1 in the notation of Gelfand and

Shilov) and it also did not work for the test function space for the modified
Fourier hyperfunctions (see [20]).

In the present paper we study this question for (DFS)-spaces Hv(R) of
germs of holomorphic functions defined on strips near R as follows:

Hv(R) := lim ind
n→∞

H1/n,1/n(V1/n)

with

H1/n,1/n(V1/n) :=
{
f ∈ H(V1/n)

∣∣∣ ‖f‖n := sup
z∈V1/n

|f(z)|ev(z)/n <∞
}

for V1/n := {z ∈ C | |Im(z)| < 1/n} where v is a weight function satisfying
some mild natural conditions (see 2.1).

We are working in the tame category since the splitting theory for power
series spaces of finite type needs this restricted class of continuous linear
mappings (see [19]). The basic tool of our considerations is the tame vari-
ant, developed in [9], of the Mityagin–Henkin result on existence of bases
in power series spaces of finite type (see [22]). This means that we have to
prove that the “norms” in the spaces in question (and in their duals) sat-
isfy certain submultiplicative estimates. The latter means that we have to
solve a decomposition problem with bounds for holomorphic functions near
the real line. This is achieved in Section 2 (see Theorem 2.2) using suitable
(holomorphic) cut-off functions (see Lemma 2.3) and the decomposition of
holomorphic functions into summands defined on different strips including
precise estimates for the summands (see Lemma 2.5). A useful logarithmi-
cally convex estimate is obtained in Section 3. We thus obtain the following
main result in Section 4 (see Theorem 4.4)

Theorem. For any weight function v the space Hv(R) is tamely iso-
morphic to some Λ0(α)′b, i.e. to the dual of a power series space of finite
type.

Notice that our method of proof only gives the existence of a Schauder
basis but not a concrete basis as in [1, 3, 10]. However, the coefficient space
Λ0(α)′b (i.e. the sequence α = (αn)n∈N) may be calculated using estimates
for the diametral dimension ofHv(R) given in [12]. This implies in particular
that the Gelfand–Shilov spaces S1

α are tamely isomorphic to Λ0(n
1/(α+1))′b.

More examples are provided in Section 5.
The method may be transferred to spaces defined on conic neighborhoods

of R, showing that the space of modified Fourier hyperfunctions is tamely
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isomorphic to Λ0(n/ln(n)). In particular, it has a basis. Moreover, the spaces
of Fourier hyperfunctions and of modified Fourier hyperfunctions are not
isomorphic.

2. Decomposition of holomorphic functions. Roughly speaking,
proving a linear topological invariant of (Ω)-type (or the dual formulation
of invariants of (DN) type) for a locally convex space E just means prov-
ing a decomposition in E with a certain control of the seminorms of the
summands. In this section we will prove a rather general corresponding de-
composition result for holomorphic functions defined on strips

Vt := {z ∈ C | |Im(z)| < t}

near R by weight functions in the following sense:

Definition 2.1. A continuous function v : C→ [0,∞[ is called a weight
function if v(x + iy) := v(|x|) on C where v : [0,∞[ → [0,∞[ is strictly
increasing and satisfies

(2.1) ln(1 + |x|) = o(v(x))

and there are Γ > 1 and C > 0 such that

(2.2) v(x+ 1) ≤ Γv(x) + C if x ≥ 0.

In the rest of the present paper v will always denote a weight function.
We will also assume without loss of generality that v(0) = 0, i.e. that v is
bijective on [0,∞[.

In this section we consider the weighted Banach spaces of holomorphic
functions given by

Hτ (Vt) :=
{
f ∈ H(Vt)

∣∣∣ ‖f‖τ,t := sup
z∈Vt
|f(z)|eτv(z) <∞

}
for t > 0 and τ ∈ R. The following decomposition theorem is the main result
of this section:

Theorem 2.2. There are t̃, K1 > 0 such that for any τ0 < τ < τ2 there
are C0 = C0(sign(τ0)) > 0 and K0 = K0(sign(τ)) > 0 such that for any
0 < 2t0 < t < t2 < t̃ with

t0 ≤ min

[
K1,K2

√
τ − C0τ0
τ2 − C0τ0

]
there is C1 ≥ 1 such that for any r ≥ 0 and any f ∈ Hτ (Vt) with ‖f‖τ,t ≤ 1
the following holds: there are f2 ∈ H(Vt2) and f0 ∈ H(Vt0) such that f =
f0 + f2 on Vt0 and

(2.3) ‖f0‖K0τ0,t0 ≤ C1e
−Gr and ‖f2‖τ2,t2 ≤ er
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where

G := K1 min

[
1,
t− t0

2t̃
,
τ − C0τ0
τ2 − C0τ0

]
.

The proof of Theorem 2.2 will be obtained in several steps starting with
the construction of appropriate holomorphic cut-off functions as follows: for
r > 0 let

Hr(z) :=
1

Dr

�

γz

cosh(ξ)e−r cosh(ξ) dξ, z ∈ V1,

where Dr :=
	∞
−∞ cosh(x)e−r cosh(x) dx and γz is a path in V1 from −∞ to z.

Set

(2.4) Er,A(z) := Hr(A+ z)Hr(A− z)
for A > 0.

Lemma 2.3. Hr and Er,A are entire functions such that there are Bj > 0
and C1 > 0 such that for any t ∈ ]0, 1] and any r,A > 0,

|Er,A(z)| ≤ C1e
B1rt2 if z ∈ Vt,(2.5)

|Er,A(z)| ≤ C1e
− r

8
e|Re(z)|−A

if z ∈ V1 and |Re(z)| ≥ A+B2,(2.6)

|1− Er,A(z)| ≤ C1e
− r

8
eA−|Re(z)|

if z ∈ V1 and |Re(z)| ≤ A−B2.(2.7)

Proof. (a) Since

(2.8) cosh(x+ iy) = cosh(x) cos(y) + i sinh(x) sin(y) for x, y ∈ R
and therefore

(2.9) |cosh(x+ iy)|2 = cosh2(x)− sin2(y) for x, y ∈ R,
we have, for t ∈ ]0, 1],

exp(1 + e|x|/2) ≥ ecosh(x) ≥ |ecosh(z)|(2.10)

≥ ecosh(x) cos(t) ≥ exp(e|x|/4) if z = x+ iy ∈ Vt.
The integral defining Hr is thus convergent on V1, and Dr is finite; Hr is
well defined (by Cauchy’s integral theorem) and holomorphic on V1. Fur-
thermore, Hr can be extended to an entire function since it is the primitive
of (1/Dr) cosh(ξ)e−r cosh(ξ) on V1 vanishing at −∞.

(b) By (2.9) and (2.10) we get, for z = x+ iy ∈ Vt and t ∈ ]0, 1],

|Hr(z)| =
1

Dr

∣∣∣ x�

−∞
cosh(ξ + iy)e−r cosh(ξ+iy) dξ

∣∣∣(2.11)

≤ 1

Dr

x�

−∞
cosh(ξ)e−r cosh(ξ) cos(t) dξ.
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Notice that

∞�

−∞
cosh(ξ)e−r cosh(ξ) cos(t) dξ

≤ 2

1�

0

cosh(ξ)e−r cosh(ξ) dξ sup
ξ∈[0,1]

er(1−cos(t)) cosh(ξ)

+ 4

∞�

1

sinh(ξ)e−r cosh(ξ) cos(t) dξ

≤ 4
(1�
0

cosh(ξ)e−r cosh(ξ) dξ er(1−cos(t)) cosh(1) +
1

r cos(t)
e−r cosh(1) cos(t)

)
≤ 4

cos(1)
er(1−cos(t)) cosh(1)Dr

since

Dr ≥
1�

0

cosh(ξ)e−r cosh(ξ) dξ + 2

∞�

1

sinh(ξ)e−r cosh(ξ) dξ

=

1�

0

cosh(ξ)e−r cosh(ξ) dξ +
2

r
e−r cosh(1).

This shows that

|Hr(z)| ≤ C1e
B1rt2 if z ∈ Vt

and therefore Er,A satisfies (2.5).

(c) Let z = x+ iy ∈ V1 and x ≤ −1. Since cosh is even, we get as above

|Hr(z)| =
1

Dr

∣∣∣ x�

−∞
cosh(−ξ − iy)e−r cosh(−ξ−iy) dξ

∣∣∣
=

1

Dr

∣∣∣∞�
|x|

cosh(ξ − iy)e−r cosh(ξ−iy) dξ
∣∣∣

≤ 1

Dr

∞�

|x|

cosh(ξ)e−r cosh(ξ) cos(1) dξ ≤ rer
∞�

|x|

sinh(ξ)e−r cosh(ξ)/2 dξ

≤ 2er−r cosh(|x|)/2 ≤ 2er−r exp(|x|)/4,

because

Dr ≥ 2

∞�

0

sinh(x)e−r cosh(x) dx = 2e−r/r.

Using also (2.5) (for Hr instead of Er,A) this implies (2.6) for suitable B2.
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(d) Since cosh is even, we get by Cauchy’s integral theorem

1−Hr(z)

=
1

Dr

( ∞�
−∞

cosh(ξ + iy)e−r cosh(ξ+iy) dξ −
x�

−∞
cosh(ξ + iy)e−r cosh(ξ+iy) dξ

)
=

1

Dr

∞�

x

cosh(−ξ − iy)e−r cosh(−ξ−iy) dξ

=
1

Dr

−x�

−∞
cosh(ξ − iy)e−r cosh(ξ−iy) dξ = Hr(−x− iy) = Hr(−z)

and hence

1− Er,A(z) = (1−Hr(z +A))Hr(A− z) + (1−Hr(A− z))
= Hr(−A− z)Hr(A− z) +Hr(z −A)

satisfies (2.7) by (2.5) and the estimates given in (b) and (c) (applied to
Hr(−A− z) and Hr(z −A)).

The bounds in the space Hv(R) := lim indn→∞H1/n,1/n(V1/n) of germs
of holomorphic functions are given by the functions exp(v(z)/n), n ∈ N.
We will now show that by (2.2) we can use the bounds |exp(w(z)/n)| =
exp(Re(w(z))/n) instead with a holomorphic function w leading to a tame
change of the seminorms.

Lemma 2.4. There are 0 < t̃ ≤ 1 and Bj ≥ 1 and a holomorphic function
w on Vt̃ such that

(2.12) v(z) ≤ Re(w(z)) ≤ B3v(z) +B4 if z ∈ Vt̃.
Proof. Considering ṽ := v+A instead of v for large A we can assume that

(2.13) v(x+ 1) ≤ Γv(x) if x ≥ 0

by (2.2) since Γ > 1. This implies that

(2.14) v(x+ y) ≤ Γv(x)Γ y if x ≥ 0 and y ≥ 0.

(a) Set C1 := 2 ln(Γ ) and let

w(x+ iy) :=

∞�

−∞
v(t)/cosh(C1(x+ iy − t)) dt.

By (2.9) we have

(2.15) |cosh(C1(x− t+ iy))|2 = cosh2(C1(x− t))− sin2(C1y)

≥ cosh2(C1(x− t))− (C1y)2 ≥ 1

2
cosh2(C1(x− t))

≥ 1

8
e2C1|x−t| if |y| ≤ t̃ := 1/(2C1).
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The inequalities (2.15) and (2.14) imply that

|w(x+ iy)| ≤ 4

∞�

−∞
v(|x|+ |t− x|)e−C1|t−x| dt

≤ 4Γv(x)

∞�

−∞
e− ln(Γ )|x−t| dt ≤ 8

Γ

ln(Γ )
v(x) if x+ iy ∈ Vt̃

by the definition of C1. Thus w is defined and holomorphic on Vt̃ and satisfies
the right inequality of (2.12).

(b) On the other hand we have, by (2.8) and (2.15),

Re(w(x+ iy)) =

∞�

−∞
v(t) cosh(C1(x− t)) cos(C1y)/|cosh(C1(x− t+ iy))|2 dt

≥
x+1/C1�

x

v(t)/cosh(C1(x− t)) dt ≥ v(|x|)/(2 cosh(1) ln(Γ ))

if x ≥ 0 and |y| ≤ t̃. For x ≤ 0 we argue with
	x
x−1 v(t) dt instead and get the

same estimate. We obtain (2.12) by multiplying w with 2 cosh(1) ln(Γ ).

The following elementary but useful result on decomposition of holomor-
phic functions on strips is proved via Hörmander’s solution of the weighted
∂-problem. It is therefore convenient to switch to L2-norms instead of sup-
norms.

Lemma 2.5. Let 0 < t0 < t1 < t2 <∞. Then for any 0 < θ < (t1−t0)/t2
there is C1 ≥ 1 such that for any plurisubharmonic function ψ on Vt2, any
f ∈ H(Vt1) satisfying

�

Vt1

|f(z)|2e−2ψ(z) dz ≤ 1,

and any r ≥ 0, there are f0 ∈ H(Vt0) and f2 ∈ H(Vt2) such that f = f0 + f2
on Vt0 and ( �

Vt2

|f2(z)|2e−2ψ(z)(1 + |z|2)−2 dz
)1/2

≤ er,

( �

Vt0

|f0(z)|2e−2ψ(z)(1 + |z|2)−2 dz
)1/2

≤ C1e
−rθ.

Proof. (a) Since 0 < θ < (t1 − t0)/t2 we may find τ1 ∈ (t0, t1) such that
θ < (τ1 − t0)/t2. Choose ϕ ∈ C∞0 ((−t1, t1)) such that ϕ(y) = 1 if |y| ≤ τ1
and extend ϕ to C by ϕ(x+ iy) := ϕ(y). Set

ψr(z) := r(|Im(z)| − τ1)/t2.



230 M. Langenbruch

Clearly, ψr is plurisubharmonic on C and we have, by the choice of τ1,

ψr(z) ≤ r(t0 − τ1)/t2 ≤ −rθ on Vt0 ,(2.16)

ψr(z) ≤ r on Vt2 and ψr(z) ≥ 0 if z /∈ Vτ1 .(2.17)

By [4, Theorem 4.4.2] there is a solution g ∈ L2
loc(Vt2) of ∂(g) = ∂(fϕ) such

that, by (2.17) and the assumption,

(2.18)
�

Vt2

|g(z)|2e−2ψr(z)−2ψ(z)(1 + |z|2)−2 dz

≤
�

Vt2

|∂(ϕf)|2e−2ψr(z)−2ψ(z) dz≤C1

�

Vt1\Vτ1

|f(z)|2e−2ψ(z) dz ≤ C1.

(b) Set f2 := ϕf − g and f0 := g. Then f2 ∈ H(Vt2) and f0 ∈ H(Vτ1) ⊂
H(Vt0) and f = f1 + f2 on Vt0 since ϕ = 1 on Vτ1 ⊃ Vt0 .

The claim for f0 = g holds since, by (2.16) and (2.18),( �

Vt0

|g(z)|2e−2ψ(z)(1 + |z|2)−2 dz
)1/2

≤
( �

Vt0

|g(z)|2e−2ψr(z)−2ψ(z)(1 + |z|2)−2 dz
)1/2

e−rθ ≤ C1e
−rθ for r ≥ 0.

Similarly we get, by (2.17), (2.18) and the assumption on f ,( �

Vt2

|f2(z)|2e−2ψ(z)(1 + |z|2)−2 dz
)1/2

≤
( �

Vt1

|(fϕ)(z)|2e−2ψ(z) dz
)1/2

+
( �

Vt2

|g(z)|2e−2ψr(z)−2ψ(z)(1 + |z|2)−2 dz
)1/2

er

≤ C2 + C1e
r ≤ (C1 + C2)e

r for r ≥ 0.

The lemma is proved.

Corollary 2.6. There are 0 < t̃, 0 < C0,+ < 1 and 1 < C0,− such that
for any τ ∈ R, any 0 < t0 < t < t2 < t̃ and any 0 < θ < (t − t0)/t̃ there is
C1 ≥ 1 such that for any r ≥ 0 and any f ∈ Hτ (Vt) the following holds for
C0 := C0,sign(τ): If ‖f‖τ,t ≤ 1 then there are f0 ∈ H(Vt0) and f2 ∈ H(Vt2)
such that f = f0 + f2 on Vt0 and

‖f0‖C0τ,t0 ≤ C1e
−rθ and ‖f2‖C0τ,t2 ≤ er.
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Proof. (a) Let τ ≥ 0. By (2.1), C1 :=
	
Vt
e−τv(z) dz <∞. By Lemma 2.4

we thus get �

Vt

|f(z)|2eτ Re(w(z))/B3 dz ≤ C1‖f‖2τ,t.

Since ψ(z) := −τ Re(w(z))/(2B3) is plurisubharmonic we may apply Lem-
ma 2.5 for t1 := t. Using the mean value property of holomorphic functions
with respect to discs, (2.2), (2.1) and Lemma 2.4 again, we may pass to the
sup-norms ‖f1‖C0τ,t̃2

for t̃ > t2 > t̃2, and ‖f2‖C0τ,t̃0
for t̃0 < t0 < t. Here

C0 := C0,+ := 1/(4ΓB3) < 1 for Γ from (2.2).

(b) For τ < 0 we argue similarly, using first the left inequality of (2.12),
then Lemma 2.5 and then the right inequality of (2.12) to switch to sup-
norms again. Here C0 := C0,− := 4ΓB3 > 1.

Lemma 2.3 provides a decomposition of f ∈ Hτ (Vt) according to the
weights {τv}, while Corollary 2.6 provides a decomposition according to the
domains {Vt}. But a joint decomposition for both systems is needed to prove
Theorem 2.2. A question of this kind appears in several analytical situations
and we can solve it in the present case, i.e. we can now give

Proof of Theorem 2.2. (a) Let f ∈ Hτ (Vt) satisfy ‖f‖τ,t ≤ 1. Choose
F0 ∈ H(Vt0) and F2 ∈ H(Vt2) for f by Corollary 2.6. We cut off the functions
Fj using the functions Er,A from Lemma 2.3 for A := Ar to be determined
later: with a := ln(Γ ) ≥ 1 for Γ from (2.2) let

f0(z) := (1− Er,A(az))f(z) + F0(z)Er,A(az) if z ∈ Vt0 ,
f2(z) := F2(z)Er,A(az) if z ∈ Vt2

where we assume that t̃ ≤ 1/a without loss of generality. Then we get

f0(z) + f2(z) = (F0(z) + F2(z))Er,A(az) + (1− Er,A(az))f(z)

= f(z) if z ∈ Vt0
since F0 + F2 = f on Vt0 by Corollary 2.6.

(b) For B̃2 ≥ 1 to be determined later, choose r0 > 0 such that

(2.19) A := av−1(r/(τ2 − C0τ))− B̃2 > 0 for r ≥ r0
for C0 from Corollary 2.6 (notice that τ2−C0τ ≥ τ2−τ > 0 by Corollary 2.6).
By Corollary 2.6 and (2.5) (for t := t2) we then get for r ≥ r0, using
also (2.19),

|f2(z)|eτ2v(x) ≤ C1|F2(z)|eB1r+τ2v(x) ≤ C1e
(B1+1)r+(τ2−C0τ)v(x)(2.20)

≤ C1e
(B1+2)r if z ∈ Vt2 and a|x| ≤ A+ B̃2.

Let a|x| ≥ A + B̃2 and set C := (A + B̃2)/a = v−1(r/(τ2 − C0τ)). Then
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γ := |x| − C ≥ 0 and we get, by (2.14) and (2.19),

(τ2 − C0τ)v(x) = (τ2 − C0τ)v(C + γ) ≤ Γ (τ2 − C0τ)v(C)Γ γ

= rΓeaγ = rΓea|x|−A−B̃2 ≤ rea|x|−A/8

if ln(8Γ ) ≤ B̃2. If B̃2 ≥ B2, from (2.6) we thus get, for z ∈ Vt2 and a|x| ≥
A+ B̃2, by, (2.6) and Corollary 2.6,

|f2(z)|eτ2v(x) ≤ C2e
r−r exp(a|x|−A)/8+(τ2−C0τ)v(x) ≤ C2e

r.

Summarizing we have shown that for r ≥ r0,

(2.21) |f2(z)|eτ2v(x) ≤ C3e
C4r if z ∈ Vt2 .

(c) To estimate f0 we first notice that by (2.5) and Corollary 2.6 (and
for θ defined there)

|F0(z)Er,A(az)|eC0τ0v(x)≤C5e
a2B1rt20−θr ≤C5e

−θr/2 if z ∈ Vt0 and t0≤ T0

where T0 := min(t/2, 1/(4a2B1t̃)) (and also θ ≥ (t− t0)/(2t̃) without loss of
generality) .

Since ‖f‖τ,t ≤ 1 by assumption, we have

|(1− Er,A(az))f(z)|eC0τ0v(x) ≤ e(C0τ0−τ)v(x)|1− Er,A(az)| if z ∈ Vt0 .

For D to be determined later, we estimate the right hand side as follows,
using (2.5) again:

|1− Er,A(az)|e(C0τ0−τ)v(x) ≤ C6e
a2B1t20r+(C0τ0−τ)v(x)

≤ C6e
Dr+(C0τ0−τ)v(x) ≤ C6e

−Dr

if z ∈ Vt0 , t0 ≤ T1 :=
√
D/(a2B1) and |x| ≥ v−1

(
2rD

τ−C0τ0

)
. Notice that again

τ − C0τ0 > 0 by Corollary 2.6.

On the other hand, by (2.19), |x| ≤ v−1
(

2rD
τ−C0τ0

)
implies a|x| ≤ A− B̃2

if

(2.22) v−1
(

2rD

τ − C0τ0

)
≤ v−1

(
r

τ2 − C0τ

)
− 2B̃2/a.

By (2.2) we may choose Γ̃ and then D such that

v(y + 2B̃2/a) ≤ Γ̃ v(y) for large y and D ≤ τ − C0τ0

(τ2 − C0τ)2Γ̃
.

By calculating the inverse functions we then find

(2.23) v−1(t/Γ̃ ) ≤ v−1(t)− 2B̃2/a for large t



Bases in spaces of analytic germs 233

and we get (2.22) by the choice of D and (2.23) as follows:

v−1
(

2rD

τ − C0τ0

)
≤ v−1

(
r

(τ2 − C0τ)Γ̃

)
≤ v−1

(
r

τ2 − C0τ

)
− 2B̃2/a for large r.

We thus may apply (2.7) for large r and for |x| ≤ v−1
(

2rD
τ−C0τ0

)
(since then

a|x| ≤ A − B̃2 by the preceding reasoning) and get by the definition of A
in (2.19), since C0τ0 − τ < 0,

|1−Er,A(az)|e(C0τ0−τ)v(x)≤C7e
− r

8
exp(A−a|x|)

≤C7e
− r

8
exp(av−1( r

τ2−C0τ
)−B̃2−av−1( 2rD

τ−C0τ0
))≤C7e

−r.

Here the last estimate holds if

ln(8) + av−1
(

2rD

τ − C0τ0

)
≤ av−1

(
r

τ2 − C0τ

)
− B̃2.

Calculating inverse functions again, the latter estimate holds if and only if

v(y + (ln(8) + B̃2)/a) ≤ Γ̂ v(y) and D ≤ τ − C0τ0

(τ2 − C0τ)2Γ̂
.

Again, Γ̂ exists by (2.2). Summarizing we have the estimate

(2.24) |f0(z)|eC0τv(x) ≤ C11e
−Gr,

where G := min(θ/2, D, 1), for z ∈ Vt0 and r sufficiently large. Theorem 2.2
is proved by rescaling r since (2.3) has to be proved only for large r.

3. Logarithmically convex estimates. Logarithmically convex esti-
mates for the norms in Hτ (Vt) are obtained much easier than the decompo-
sition results from the preceding section. We start with the space A([−1, 1])
of analytic germs near [−1, 1]: for t > 0 let Wt denote the ellipse with foci

at ±1 and half-axes [0,
√

1 + t2] and i[0, t], and let H∞(Wt) be the space
of bounded holomorphic functions on Wt. The norm in H∞(Wt) is denoted
by ||| |||t. Clearly, A([−1, 1]) := indt↓0H∞(Wt).

Moreover, it is well known that there is A > 0 such that, for any 0 <
t0 < t < t2 and any f ∈ H∞(Wt2),

(3.1) |||f |||At ≤ |||f |||1−θt0
|||f |||θt2 for θ ≥ (t− t0)/(t2 − t0)

(see e.g. [11, (3.1)] for a proof). This implies the following:

Proposition 3.1. There are t̃, A > 0 such that for any 0 < τ0 < τ < τ2
(respectively, for any τ0 < τ < τ2 < 0) and any 0 < t0 < t < t2 < t̃ there is
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C1 ≥ 1 such that for any f ∈ Hτ2(Vt2),

(3.2) ‖f‖Aτ,At ≤ C1‖f‖1−θτ0,t0
‖f‖θτ2,t2

where θ ≥ max[(t− t0)/(t2 − t0), (τ − τ0)/(τ2 − τ0)].
Proof. Let z = x+ iy ∈ VAt. By (3.1) we get

|f(x+ iy)|eτv(x) ≤ |||f(x+ ·)|||Ateτv(x)

≤ |||f(x+ ·)|||1−θt e(1−θ)τv(x)|||f(x+ ·)|||θt0e
θτv(x)

≤ |||f(x+ ·)|||1−θt e(1−θ)τ0v(x)|||f(x+ ·)|||θt0e
θτ2v(x)

≤ C1‖f‖1−θGτ0,t0
‖f‖θGτ2,t2

where G := F is chosen by (2.2) such that

v(x+ 2) ≤ Fv(x) + C if τ0 > 0

(and G := 1/F if τ2 < 0). The second to last estimate holds since θ ≥
(τ − τ0)/(τ2 − τ0).

4. Bases in weighted spaces of holomorphic germs. The results
of the preceding sections will now be used to show that certain spaces of
weighted germs of holomorphic functions admit a basis and in fact are iso-
morphic to the dual of a power series space of finite type. More precisely,
we are considering the following weighted spaces of holomorphic functions:

Hv(R) := lim ind
n→∞

H1/n(V1/n)

where

H1/n(V1/n) :=
{
f ∈ H(V1/n)

∣∣∣ ‖f‖n := ‖f‖1/n,1/n := sup
z∈V1/n

|f(z)|ev(z)/n<∞
}

as before. A typical example is the test function space P∗(R) of Fourier
hyperfunctions (here v(x) = |x|). More examples are provided in the next
section.

Remark 4.1. Let v and u be weight functions. Then Hv(R) ⊂ Hu(R) if
and only if there is C > 0 such that u(x) ≤ Cv(x) for large x.

Proof. The sufficiency is obvious. If Hv(R) ⊂ Hu(R) then the inclusion
is continuous by the closed graph theorem, and Grothendieck’s factoriza-
tion theorem [17, 24.33] implies that there is k ∈ N such that Hv

τ (Vτ ) ⊂
Hu

1/k(V1/k) with continuous inclusion (again by the closed graph theorem)

for τ := t̃ from Lemma 2.4. Hence there is C1 > 0 such that

‖f‖u1/k,1/k ≤ C1‖f‖vτ,τ if f ∈ Hv
τ (Vτ ).

This can be applied to f(t) := 1/w(t) since ‖f‖vτ,τ ≤ 1 by Lemma 2.4. This
shows that

u(x) ≤ k(Re(w(x)) + ln(C1)).
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Applying Lemma 2.4 again we get

u(x) ≤ 2kB3v(x) for large x

as desired.

Since we are aiming at power series spaces of finite type we will need to
consider rather precise continuity estimates i.e. we will use graded spaces and
tame linear mappings. For the convenience of the reader the basic related
notions and tools are briefly recalled.

A Fréchet space E with a fixed increasing system (| |j)j∈N of seminorms
defining the topology of E is called a graded Fréchet space. A linear mapping

T : (E, | |j)→ (F, | |j)
between two graded (F)-spaces (E, | |j) and (F, | |j) is called (linearly)
tame if there is A ∈ N such that for any j ∈ N there is C1 > 0 such that for
any f ∈ E,

|T (f)|j ≤ C1|f |Aj .
Finally, T is called a tame isomorphism if T is bijective and T and T−1 are
tame.

The main tool used in this paper is the tame structure theory of power
series spaces of finite type. Recall that power series spaces of finite type and
their canonical gradings are defined as follows: Let (ak)k∈N be an increasing
sequence of positive numbers. Then

Λ0(ak) :=
{

(ck)k∈N

∣∣∣ ∀j ∈ N : |(ck)|j :=
∑
k∈N
|ck|e−ak/j <∞

}
.

The existence of a basis is provided by tame variants of the conditions (Ω)
and (DN) of Vogt (see e.g. [17]) which were introduced in [9]: Let (E, | |j) be
a graded Fréchet space and let Un denote the unit ball with respect to | |n.
We say that E has property (Ω)t if for any k ∈ N there is B ∈ N such that
for any n, j ∈ N there is C1 > 0 such that for any r > 0,

(4.1) UBn ⊂ rUj + C1r
1−nUk.

Furthermore, E has property (DN)t if there are p,B ∈ N such that for any
n ∈ N there are m ∈ N and C1 > 0 such that

(4.2) |f |n ≤ C1|f |1/(Bn)p |f |1−1/(Bn)m .

An easy calculation shows that power series spaces of finite type satisfy
(Ω)t and (DN)t when endowed with their canonical grading from above.
The following theorem states that the converse is also true, and it will be
applied to Hv(R)′b being the basic tool for our considerations:

Theorem 4.2 ([9, Theorem 1.5]). A nuclear graded Fréchet space E is
tamely isomorphic to a power series space of finite type if E satisfies (Ω)t
and (DN)t.
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In this section we will prove (Ω)t and (DN)t in a dual formulation. Us-
ing [17, Lemma 29.13] the following is easily shown: A graded Fréchet space
E satisfies (Ω)t if and only if for any k ∈ N there is B ∈ N such that for any
n, j ∈ N there is C1 > 0 such that

(4.3) | |∗Bn ≤ C1(| |∗j )1−1/n(| |∗k)1/n

where

|f |∗k := sup{|ν(f)| | ν ∈ E, |ν|k ≤ 1}, f ∈ E′,
are the dual “seminorms” in E′b.

Similarly (see e.g. [22, Lemma 2.4]), E has (DN)t if and only if there are
p,B ∈ N such that for any n ∈ N there are C1 > 0 and m ∈ N such that for
any r > 0,

(4.4) Bn ⊂ rBp + C1r
−1/(Bn)Bm

where Bn are the unit balls with respect to | |∗n.
Clearly, the “norms” ‖ ‖n in Hv(R) could also be defined by taking

L2-norms instead of sup-norms leading to a tamely equivalent topology
on Hv(R). This implies that Hv(R) is a (DFN)-space (compare e.g. [13,
Section 2, Satz 2]). The Fréchet space Hv(R)′b will always be considered
with the canonical grading defined by

|ν|n := sup{|ν(f)| | f ∈ H1/n,1/n(V1/n), ‖f‖n ≤ 1} if ν ∈ Hv(R)′.

Lemma 4.3. Let v be a weight function. Then the space Hv(R) endowed
with the canonical “norms” ‖ ‖n is tamely isomorphic to Hv(R) endowed
with the dual “norms” | |∗n.

Proof. Since v is a weight function, the dual “norms” | |∗n on Hv(R)
satisfy

|g|∗n = sup{|ν(g)| | ν ∈ Hv(R)′, |ν|n ≤ 1}
= sup{|ν(g)| | ν ∈ Hv(R)′, sup{|ν(f)| | ‖f‖n ≤ 1} ≤ 1}
≤ ‖g‖n if g ∈ Hv(R).

Moreover, for Γ from (2.2) we get

‖g‖Γn = sup{|g(x+ iy)|ev(x)/(Γn) | |y| < 1/(Γn)}

≤ sup
{∣∣∣ k∑

j=0

g(j)(x)(iy)j/j!
∣∣∣ev(x)/(Γn) ∣∣∣ |y| < 1/(Γn), k ∈ N

}
= sup{|νk,x,y(g)| | x ∈ R, |y| < 1/(Γn), k ∈ N} ≤ C1|g|∗n

where

νk,x,y(g) :=
k∑
j=0

g(j)(x)((iy)j/j!)ev(x)/(Γn).
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The last estimate follows since νk,x,y ∈ Hv(R)′ and since, for n ≥ 1,

|νk,x,y(g)| ≤
∞∑
j=0

|g(j)(x)|((Γn)−j/j!)ev(x)/(Γn)

≤
∞∑
j=0

(2/Γ )j sup{|g(j)(x)|((2n)−j/j!)ev(x)/(Γn) | j ∈ N}

≤ C1‖g‖n sup{e−v(x+z)/n+v(x)/(Γn) | x ∈ R, |z| ≤ 1/n}
≤ C1‖g‖n if |x| ≥ x0 + 1

by Cauchy’s estimate with radius 1/(2n) and (2.2) since we can assume that
Γ ≥ 3 in (2.2).

We may thus use ‖f‖n instead of the dual norms |f |∗n when proving (Ω)t
and (DN)t for Hv(R)′b via (4.3) and (4.4).

Theorem 4.4.

(a) Hv(R)′b is tamely isomorphic to a power series space Λ0(αn) of finite
type.

(b) Hv(R) is tamely isomorphic to Λ0(αn)′b.

Proof. (b) follows from (a) by duality. To prove (a) we have to show (4.3)
and (4.4) for ‖f‖n := ‖f‖1/n,1/n by Theorem 4.2 and the remarks above.

The estimate (4.3) now follows from Proposition 3.1 upon choosing τ =
t = 1/(kn), τ0 = t0 = 1/j if j > kn and τ2 = t2 = 1/k. We thus get

θ = (1/(kn)− 1/j)/(1/k − 1/j) ≤ 1/n

(for j ≤ kn, (4.3) is trivially satisfied).

The proof of (4.4) follows from Theorem 2.2 by choosing τ = t = 1/n,
τ0 = t0 = 1/(K0m) for m > 2n(C0 + 1)/K0 and τ2 = t2 = 1/p for 2/p < t̃
(notice that K0 is at most 1).

Since we know by Theorem 4.4 that Hv(R) is tamely isomorphic to some
Λ0(αn)′b we can use the diametral dimension (see [5, p. 209]) to determine the
sequence (αn)n. For this we need to find suitable subspaces or quotients of
Hv(R) (and represent Hv(R) as a subspace or quotient) of spaces for which
the diametral dimension can be calculated. This is done in [12]. In fact,
we also need the generalized diametral dimension introduced in [8] which is
based on a linear topological invariant of (DN) type. Here the decomposition
in Theorem 2.2 is used again. In this way the sequence (αn) in Theorem 4.4
is calculated in [12, Theorem 4.6], giving the following result:

Theorem 4.5. Hv(R) is tamely isomorphic to Λ0(n/g(n))′b where g is
the inverse function of f(t) := tv(t).
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5. Examples. Since the assumptions needed in this paper are hardly
restrictive, many examples are available, and we will mention some of them
in this section. We start with an easy observation:

Lemma 5.1. A positive function v ∈ C1([0,∞[) satisfies (2.2) if there is
C > 0 such that

(5.1) v′(x) ≤ Cv(x) for large x.

If v(x) = ew(ln(x)) with w ∈ C1([0,∞[) then (5.1) is equivalent to

(5.2) w′(x) ≤ Cex for large x.

Proof. This is evident since

ln(v(x+ 1))− ln(v(x)) =

x+1�

x

(ln(v(t)))′ dt =

x+1�

x

v′(t)

v(t)
dt ≤ C for large x

and since v′(x) = v(x)w′(ln(x))/x if v(x) = ew(ln(x)).

Example 5.2. Each of the following is a weight function:

(i) v(x) := vα,β(x) := (ln(x))α(ln(ln(x)))β for x ≥ x0 where α > 1 and
β ∈ R or α = 1 and β > 0.

(ii) v(x) := evα,β(x) for x ≥ x0 where α > 0 and β ∈ R.
(iii) v(x) := vα,β(ex) = xα(ln(x))β for x ≥ x0 where α > 0 and β ∈ R.

(iv) v(x) := eax
α(ln(x))β where a > 0 and 1 > α > 0 and β ∈ R or α = 1

and β ≤ 0.

Proof. (2.1) is obviously satisfied. (2.2) directly follows from Remark 5.1.

The functions v(x) := ea|x|, a > 0, are the maximal weight functions
satisfying (2.2) by (2.14).

Of course, products of the weight functions from Example 5.2 are also
weight functions.

Two sequences (αn) and (βn) are said to be equivalent if there is C > 1
such that

αn/C ≤ βn ≤ Cαn for large n.

Notice that Λ0(αn) = Λ0(βn) if (αn) is equivalent to (βn). Hence we only
need to calculate the sequence (n/g(n)) from Theorem 4.5 up to equivalence.

We recall the results from [12, Example 5.3] for the examples from 5.2:

Example 5.3. (n/g(n)) is equivalent to:

(i) (v(n)) if v(x) := vα,β(x) := (ln(x))α(ln(ln(x)))β for x ≥ x0 where
α > 1 and β ∈ R or α = 1 and β > 0.

(ii) (v(n)) if v(x) := evα,β(x) for x ≥ x0 where 1/2 > α > 0 and β ∈ R
or α = 1/2 and β ≤ 0.

(iii) (ne−(ln(n))
1/α

) if v(x) := e(ln(x))
α

where α ≥ 2.
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(iv) nα/(α+1) if v(x) := xα where α > 0.
(v) n(ln(n))−1/α if v(x) := eax

α
where 1 ≥ α > 0 and a > 0.

Specifically the spaces S1
α of Gelfand–Shilov for α > 0 satisfy the as-

sumptions of this paper. Recall that the spaces Sβα are defined as follows
(for α, β > 0, see [2, Chap. IV]):

Sβα := {f ∈ C∞(R) | ∃A,B > 0 ∀k, j ∈ N0 : |xkf (j)(x)| ≤ CAkkkαBjjjβ}.
Example 5.4.

(a) Let S1
α be endowed with the grading defined by

‖f‖n := sup
j,k∈N, x∈R

|xkf (j)(x)|(kn)−kα(jn)−j .

Then S1
α is tamely isomorphic to Λ0(n

1/(α+1))′b for α > 0.

(b) Let Sβ1 be endowed with the grading defined by

‖f‖n := sup
j,k∈N, x∈R

|xkf (j)(x)|(kn)−k(jn)−jβ.

Then Sβ1 is tamely isomorphic to Λ0(n
1/(β+1))′b for β > 0.

Proof. (a) By [2, Chap. IV, Sect. 2], S1
α is tamely isomorphic to Hv(R)

for the weight v(x) := |x|1/α treated in Example 5.2(iii). The claim now
follows by Theorem 4.5 and Example 5.2(iii).

(b) This follows from (a) since the Fourier transform is a tame isomor-

phism between Sβ1 and S1
β by [2, Chap. IV, Sect. 6.2, formula (11)].

In particular, we have given a new proof for the result from [10] that
the space P∗(R)′b of Fourier hyperfunctions on R is tamely isomorphic to

Λ0(n
1/2). Since P∗(R) = S1

1 this is the special case α = 1 of Example 5.4(a)
(see [6] for the respective definitions).

By [2, Chap. IV, Sect. 2.3]), Sβ1 with the above grading can be tamely
identified for 0 < β < 1 with the following weighted space of entire functions:

H1, 1
1−β

:=
{
f ∈ H(C)

∣∣∣ ∃n ∈ N :

|f |n := sup
z∈C
|f(z)|e

1
n
|Re(z)|−n

β
1−β |Im(z)|

1
1−β

<∞
}
.

Corollary 5.5. When endowed with the above grading, H1,1/(1−β) is

tamely isomorphic to Λ0(n
1/(β+1))′b for 1 > β > 0.

The following example shows that different spaces Hv(R) may be iso-
morphic.

Example 5.6. Let va(x) := ea|x|
β

for fixed 0 < β ≤ 1. Then the spaces
Hva(R), a > 0, are a strictly decreasing scale of weighted spaces which are
isomorphic for any a > 0.
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Proof. By Remark 4.1 we have Hvb(R)  Hva(R) if 0 < a < b. The
spaces are isomorphic by Theorem 4.5 and Example 5.3(v).

6. A modification. The space of modified Fourier hyperfunctions (see
[7], [20]) does not fit in the setting used so far since the corresponding test
functions are defined on conic neighborhoods of R defined by

W1/n := {z ∈ C | |Im(z)| < (1 + |Re(z)|)/n}.

However a slight modification of our arguments will also include this type
of weighted holomorphic germs defined by weight conditions as before: let
H̃v(R) := lim indn→∞H1/n(W1/n), where

H1/n(W1/n) :=
{
f ∈ H(W1/n)

∣∣∣ ‖f‖n := sup
z∈W1/n

|f(z)|ev(|Re(z)|)/n <∞
}
.

Theorem 6.1. Let v : [0,∞[ → [0,∞[ be continuous and strictly in-
creasing and let ln(ln(t)) = o(v(t)). Also assume that v is stable, i.e. there
is C > 0 such that

v(2x) ≤ Cv(x) if x ≥ C.

(a) H̃v(R) is tamely isomorphic to Hv◦exp(R).

(b) H̃v(R)′b is tamely isomorphic to Λ0(n/g̃(n)) where g̃ is the inverse

function of f̃(t) := tv(et).

(c) H̃v(R) is tamely isomorphic to Λ0(n/g̃(n))′b.

Proof. We only need to show (a) since the remaining statements follow
from Theorem 4.5, because v ◦ exp is a weight function by the stability of v.

(a) follows from the fact that the mapping

T : H̃v(R)→ Hv◦exp(R), f 7→ f ◦ sinh,

defines a tame isomorphism between H̃v(R) and Hv◦exp(R). Notice that

v(e|x|)/Γ ≤ v(e|x|/2) ≤ v(|Re(sinh(x+ iy))|) = v(|sinh(x) cos(y)|) ≤ v(e|x|)

for |y| ≤ 1 by the stability of v.

From Example 5.2 we immediately get

Example 6.2. The following functions v satisfy the assumptions of The-
orem 6.1:

(i) v(x) := (ln(ln(x)))α for x ≥ x0 where α > 1.

(ii) v(x) := e(ln(ln(x)))
α

for x ≥ x0 where α > 0.
(iii) v(x) := (ln(x))β for x ≥ x0 where β > 0.

(iv) v(x) := ea(ln(x))
β

for x ≥ x0 where 1 ≥ β > 0 and a > 0.
(v) v(x) := xβ for β > 0.
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The corresponding functions g̃ in Theorem 6.1 can be obtained from
Example 5.3.

Theorem 6.3. The space of modified Fourier hyperfunctions on R is
tamely isomorphic to Λ0(n/ln(n)) .

Proof. The space of test functions for the modified Fourier hyperfunc-
tions on R is just H̃v(R) for v(x) := |x| (see [7, 20] for the respective defini-
tions). The conclusion thus follows from Theorem 6.1 and Example 5.3(iv).

Since the space of Fourier hyperfunctions is isomorphic to Λ0(n
1/2), the

spaces of Fourier hyperfunctions and of modified Fourier hyperfunctions are
not isomorphic.

The sequence (n/ln(n))n is maximal for the sequences (n/g(n))n con-
sidered in Theorem 4.5(use the remark after Example 5.2). By [21, Corol-
lary 4.3] this implies that Λ0(n/ln(n)) is isomorphic to a closed subspace
of Λ0(n/g(n)) for g as in Theorem 4.5 (notice that the stability of Hv(R)
is proved in [12, Corollary 4.7]). Therefore, the modified Fourier hyperfunc-
tions are contained as closed subspaces in all spaces Hv(R)′b considered in
this paper.
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