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Existence of solutions of a second order

abstract functional Cauchy problem

with nonlocal conditions

by Hernán R. Henŕıquez (Santiago) and
Eduardo Hernández M. (São Carlos)

Abstract. We establish the existence of mild, strong, classical solutions for a class
of second order abstract functional differential equations with nonlocal conditions.

1. Preliminaries. The general purpose of this paper is to establish
some results on existence of mild, strong, classical solutions for a class of
second order functional differential equations.

Let X be a Banach space endowed with a norm ‖ · ‖. Throughout this
paper we will write I for the interval [0, T ], for some fixed T > 0. We let
C(I;X) denote the space of continuous functions from I into X endowed
with the norm of uniform convergence. Let A be the infinitesimal generator
of a strongly cosine function of bounded linear operators C(t) on X. We are
interested in the initial value problems of the form

x′′(t) = Ax(t) + f(t, x(t), x(a(t)), x′(t), x′(b(t))), t ∈ I,(1.1)

x(0) + p(x, x′) = x0,(1.2)

x′(0) + q(x, x′) = x1,(1.3)

where a, b : I → I, p, q : C(I;X)2 → X and f : I×X4 → X are appropriate
functions.

The study of initial value problems with nonlocal conditions is motivated
by some situations in physics. For the importance of nonlocal conditions in
different fields we refer to [1, 3] and the references therein. Specifically,
the development of the theory in the abstract framework was initiated by
Byszewski in [1–3]. In [1], Byszewski establishes the existence of mild, strong,
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classical solutions of the semilinear nonlocal Cauchy problem

x′(t) = Ax(t) + f(t, x(t)), t ∈ I,

x(0) = x0 + q(t1, . . . , tn, x(·)) ∈ X,

where A is the infinitesimal generator of a strongly continuous semigroup
of linear operators on X, f : [0, T ] × X → X and q : In × C(I;X) → X
are appropriate functions, and 0 < t1 < · · · < tn ≤ T . Here the symbol
q(t1, . . . , tn, u(·)) indicates that the function u(·) is evaluated only at the
points ti, for example q(t1, . . . , tn, u(·)) =

∑n
i=1

αiu(ti).

On the other hand, some second order nonlocal initial value problems
have been studied by Ntouyas & Tsamatos in [11–13]. In these works the
authors discuss the existence of solutions of a type of second order delay
integrodifferential equations with nonlocal conditions of the form

x′′(t) = Ax(t)

+ f
(
t, x(σ1(t)),

t\
0

k(t− s)h(s, x(σ2(s)), x
′(σ3(s))) ds, x(σ4(t))

)
,

x(0) = g(x) + x0, x′(0) = η,

for t ∈ (0, T ), where A is the generator of a strongly continuous cosine
function C of bounded linear operators on X, g : C(I;X) → X, f : I ×X3

→ X and h : I × X2 → X are appropriate functions, and x0, η ∈ X. The
results are obtained using the Leray–Schauder alternative and the strong
assumption that the cosine function C(t) is compact on (0,∞).

The specific object of this paper is to present some results on existence
of solutions for problem (1.1)–(1.3), without the hypotheses mentioned pre-
viously. Throughout this work C(t) will denote a strongly continuous linear
operator cosine function on X with infinitesimal generator A. For the nec-
essary concepts about cosine functions, the reader can consult [6, 15]. Next
we introduce some notation, and give a brief review of results needed to
establish our results. We let S(t) denote the sine function associated with
C(t) which is defined by

S(t)x =

t\
0

C(s)x ds, x ∈ X, t ∈ R.

We let [D(A)] denote the space D(A) endowed with the graph norm

‖x‖A = ‖x‖ + ‖Ax‖, x ∈ D(A).

Moreover, E stands for the space of vectors x ∈ X for which the function
C(·)x is of class C1. It was proved by Kisyński [9] that E endowed with the
norm
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‖x‖1 = ‖x‖ + sup
0≤t≤1

‖AS(t)x‖, x ∈ E,

is a Banach space. The operator-valued function

G(t) =

[
C(t) S(t)

AS(t) C(t)

]

is a strongly continuous group of linear operators on the space E ×X gen-
erated by the operator A =

[
0 I
A 0

]
defined on D(A) × E. The existence of

solutions of the second order abstract Cauchy problem

x′′(t) = Ax(t) + h(t), 0 ≤ t ≤ T,(1.4)

x(0) = x0, x′(0) = x1,(1.5)

where h : [0, T ] → X is an integrable function, has been discussed in
[16]. Similarly, the existence of solutions of semilinear second order abstract
Cauchy problems has been treated in [17]. We only mention here that the
function x(·) given by

(1.6) x(t) = C(t)x0 + S(t)x1 +

t\
0

S(t− s)h(s) ds, 0 ≤ t ≤ T,

is called a mild solution of (1.4)–(1.5). If x0 ∈ E, then x(·) is continuously
differentiable and

(1.7) x′(t) = AS(t)x0 + C(t)x1 +

t\
0

C(t− s)h(s) ds.

The remaining terminology and notations are those generally used in func-
tional analysis. In particular, L(X) stands for the Banach space of bounded
linear operators from X into X, the prefix R is used to indicate the range
of a map and Br(x) denotes the closed ball with centre at x and radius r in
an appropriate space.

This work contains three sections. In Section 2 we establish the existence
of mild, strong, classical solutions of some second order nonlocal initial value
Cauchy problems. The results are obtained using the ideas and techniques
developed in [8], Sadovskĭı’s fixed point theorem (see [14]) and the contrac-
tion mapping principle. In Section 3 we present an application of the results
established in Section 2 to the wave equation.

2. Existence of solutions. In this section we study existence of so-
lutions of some nonlocal second order functional abstract Cauchy problem.
Henceforth we use M ≥ 1 to denote a constant such that ‖C(t)‖ ≤ M for
all t ∈ I.
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We first consider the problem

x′′(t) = Ax(t) + f(t, x(t), x(a(t))), 0 ≤ t ≤ T,(2.1)

x(0) + p(x) = x0,(2.2)

x′(0) + q(x) = x1,(2.3)

where x0, x1 ∈ X. We assume that the following general conditions hold.

Assumption A.

(i) a : I → I is continuous.
(ii) f : I ×X2 → X satisfies the following Carathéodory conditions:

(a) f(t, ·) : X ×X → X is continuous a.e. t ∈ I;
(b) for each x, y ∈ X, f(·, x, y) : I → X is strongly measurable.

(iii) p, q : C(I;X) → X are continuous.

The expression (1.6) motivates the following concept of mild solution.

Definition 2.1. We say that x : I → X is a mild solution of problem
(2.1)–(2.3) if x is a continuous function which satisfies the integral equation

x(t) = C(t)(x0 − p(x)) + S(t)(x1 − q(x))(2.4)

+

t\
0

S(t− s)f(s, x(s), x(a(s))) ds, t ∈ I.

A cosine function defined on an infinite-dimensional Banach space can-
not be compact on an interval of positive length. However, sine functions,
especially those that arise in connection with practical situations, are fre-
quently compact ([16]). This fact leads naturally to include that property
in the statement of our results. For the theory of condensing maps, we re-
fer to [4]. In what follows we will denote by Br the closed ball in C(I;X)
with centre at 0 and radius r, and for a given x ∈ C(I;X) we abbreviate
u(s) = (x(s), x(a(s))).

Theorem 2.1. Assume that Assumption A and the following conditions

hold :

(H-1) p and q take closed and bounded sets into bounded sets. For r > 0,
let

αr = sup{‖p(x)‖ : x ∈ Br}, βr = sup{‖q(x)‖ : x ∈ Br}.

(H-2) The map C(I;X) → C(I;X), x 7→ C(·)p(x), is condensing.

(H-3) The map C(I;X) → C(I;X), x 7→ S(·)q(x), is completely conti-

nuous.

(H-4) For each r > 0, there is a positive function γr ∈ L1(I) such that

sup{‖f(t, x, y)‖ : ‖x‖, ‖y‖ ≤ r} ≤ γr(t) a.e. for t ∈ I.
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(H-5) For each 0 ≤ t ≤ T and r > 0, the set {S(t)f(s, x, y) : 0 ≤ s ≤ T,
‖x‖, ‖y‖ ≤ r} is relatively compact.

(H-6) lim inf
k→∞

M

k

(
αk + Tβk +

T\
0

(T − s) γk(s) ds
)
< 1.

Then there is a mild solution of (2.1)–(2.3). Furthermore, if

(H-6′) lim sup
r→∞

M

r

(
αr + Tβr +

T\
0

(T − s) γr(s) ds
)
< 1,

then the set S of all mild solutions of (2.1)–(2.3) is compact in C(I;X).

Proof. Let T : C(I;X) → C(I;X) be defined by

T (x)(t) = C(t)(x0 − p(x)) + S(t)(x1 − q(x))(2.5)

+

t\
0

S(t− s)f(s, x(s), x(a(s))) ds.

Clearly, T is well defined and Lebesgue’s dominated convergence theorem
implies that T is continuous. We claim that there exists n ∈ N such that
T : Bn → Bn. In fact, otherwise we can select a sequence (xk)k∈N in C(I;X)
such that ‖xk‖∞ ≤ k and ‖T (xk)‖∞ > k for every k ∈ N. Consequently, by
(2.5), for all k ∈ N, we have

k < ‖T (xk)‖∞ ≤M(‖x0‖ + αk) +MT (‖x1‖ + βk) +M

T\
0

(T − s)γk(s) ds.

It then follows that

1 ≤ lim inf
k→∞

M

k

(
αk + Tβk +

T\
0

(T − s)γk(s) ds
)

contrary to (H-6).
Now, we introduce the decomposition T = T1 + T2 where the maps

T1, T2 : C(I;X) → C(I;X) are defined by

T1(x)(t) = C(t)(x0 − p(x)),

T2(x)(t) = S(t)(x1 − q(x)) +

t\
0

S(t− s)f(s, x(s), x(a(s))) ds, t ∈ I.

It is clear that T1, T2 are continuous maps. Moreover, hypothesis (H-2) im-
plies that T1 is condensing.

Next we prove that T2 is completely continuous. Define

z(t) =

t\
0

S(t− s)f(s, x(s), x(a(s))) ds
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for x ∈ C(I;X). Applying (H-3), it remains to show that the set {z(·) :
‖x‖∞ ≤ r} is relatively compact in C(I;X) for each r > 0. We begin by
establishing that this set is equicontinuous. For this, we fix t ≥ 0 and take
h ≥ 0 such that t+ h ≤ T . Since

z(t+ h) − z(t) =

t\
0

[S(t+ h− s) − S(t− s)]f(s, u(s)) ds

+

t+h\
t

S(t+ h− s)f(s, u(s)) ds,

from (H-4) we obtain the elementary estimate

‖z(t+ h) − z(t)‖ ≤Mh

t\
0

γr(s) ds+MT

t+h\
t

γr(s) ds,

which yields the assertion. Next we show that, for every 0 ≤ t ≤ T, the set
{z(t) : ‖x‖∞ ≤ r} is relatively compact in X. Since S(·) is uniformly con-
tinuous on I, given ε > 0, let δ > 0 be such that ‖S(t1) − S(t2)‖ ≤ ε when
|t1 − t2| ≤ δ. We select 0 = s0 < s1 < · · · < sk = t so that |si − si−1| ≤ δ.
We can write

z(t) =
k∑

i=1

si\
si−1

S(t− s)f(s, u(s)) ds

=
k∑

i=1

si\
si−1

[S(t− s) − S(t− si)]f(s, u(s)) ds

+

k∑

i=1

si\
si−1

S(t− si)f(s, u(s)) ds.

Applying (H-5) we deduce easily that the second term on the right hand side
of the above expression is included in a compact set. Since we can estimate
the first term as

∥∥∥
k∑

i=1

si\
si−1

[S(t− s) − S(t− si)]f(s, u(s)) ds
∥∥∥ ≤ ε

k∑

i=1

si\
si−1

γr(s) ds

≤ ε

T\
0

γr(s) ds

and ε was arbitrarily chosen, the assertion follows.
From these assertions we conclude that T is a condensing map and com-

bining this result with the first part of the proof and applying Sadovskĭı’s
fixed point theorem (see [14]) we infer that T has a fixed point x in Bn.
Clearly x is a mild solution of (2.1)–(2.3).
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On the other hand, the continuity of T implies that S is closed. Moreover,
if we assume that (H-6′) holds, proceeding as at the beginning of the proof,
but using (H-6′) instead of (H-6), we can see that S is bounded. In fact,
otherwise there is a sequence xk ∈ S such that rk = ‖xk‖∞ ≥ k. Hence we
obtain

‖xk(t)‖ = ‖T xk(t)‖

≤M(‖x0‖ + αrk
) +MT (‖x1‖ + βrk

) +M

T\
0

(T − s)γrk
(s) ds,

which yields

1 ≤ lim sup
k→∞

M

rk

(
αrk

+ Tβrk
+

T\
0

(T − s)γrk
(s) ds

)

contrary to (H-6′). Finally, using the fact that T is condensing we infer that
S is compact. Thus the proof is complete.

For those functions f which can be considered as perturbations of a li-
near function, we can establish the following modification of the previous
result.

Theorem 2.2. Assume that conditions (H-1), (H-3) and (H-4) are ful-

filled , that the function a is such that a(t) ≤ t for t ∈ I, and that p is

completely continuous. Suppose further that the function f can be split as

f = g + ℓ, where g, ℓ : I ×X2 → X satisfy the following conditions:

(a) g, ℓ satisfy the Carathéodory conditions (ii) of Assumption A;
(b) ℓ(t, ·) : X2 → X is linear and L(t) = ‖ℓ(t, ·)‖ is integrable on I;
(c) for each 0 ≤ t ≤ T and r > 0, the set {S(t)g(s, x, y) : 0 ≤ s ≤ T,

‖x‖, ‖y‖ ≤ r} is relatively compact.

If (H-6) holds, then there is a mild solution of (2.1)–(2.3). Furthermore, if

(H-6′) holds, then the set S of mild solutions of (2.1)–(2.3) is compact in

C(I;X).

Proof. We define T̃ = T +T0, where T is defined by (2.5) with g instead
of f and T0 is given by

T0x(t) =

t\
0

S(t− s)ℓ(s, x(s), x(a(s))) ds.

It is clear from the proof of Theorem 2.1 that T is completely continuous
and T̃ : Bn → Bn for some n ∈ N. Moreover, T0 is a bounded linear operator
and
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‖T0x(t)‖ ≤M

t\
0

(t− s)L(s)(‖x(s)‖ + ‖x(a(s))‖) ds

≤ 2M

t\
0

(t− s)L(s) max
0≤ξ≤s

‖x(ξ)‖ ds.

This estimate implies that, for m sufficiently large, T m
0 is a contraction,

which in turn implies that the spectrum of T0 is included in the open unit
ball. Using Lemma 4.4.4 of [7], we infer that the space C(I;X) can be

renormed by ||| · ||| so that |||T0||| < 1. Consequently, T̃ is a condensing map,
and since Bn is a bounded, closed, convex set, Sadovskĭı’s theorem shows
that T̃ has a fixed point in Bn. The proof is completed by arguing as in the
proof of Theorem 2.1

When p or q satisfies a Lipschitz condition, we can establish a slightly
different result. To state it, we introduce the conditions:

(H-7) ‖p(x) − p(y)‖ ≤ Np‖x− y‖∞ for x, y ∈ C(I;X).

(H-8) ‖q(x) − q(y)‖ ≤ Nq‖x− y‖∞ for x, y ∈ C(I;X).

Here Np, Nq are positive constants.

Theorem 2.3. Assume that Assumption A and conditions (H-4) and

(H-5) are fulfilled. Suppose also that at least one of the following statements

holds:

(i) Conditions (H-1), (H-3) and (H-7) are satisfied , and

(2.6) MNp + lim inf
k→∞

M

k

(
Tβk +

T\
0

(T − s) γk(s) ds
)
< 1.

(ii) Conditions (H-7) and (H-8) are satisfied , and

(2.7) MNp +MTNq + lim inf
k→∞

M

k

T\
0

(T − s) γk(s) ds < 1.

Then there is a mild solution of (2.1)–(2.3).

Proof. We prove the statement in case (i). Let T = T1 + T2 be as in the
proof of Theorem 2.1. Using condition (2.6), we can select n ∈ N sufficiently
large such that

MNpn+M‖x0 − p(0)‖ +MT (‖x1‖ + βn) +M

T\
0

(T − s) γn(s) ds ≤ n.

We claim that T : Bn → Bn. In fact, for x(·) ∈ Br and t ∈ I, we have
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‖T (x)(t)‖ ≤ ‖C(t)(p(0) − p(x)) + C(t)(x0 − p(0))‖ + ‖S(t)(x1 − q(x))‖

+
∥∥∥

t\
0

S(t− s)f(s, x(s), x(a(s))) ds
∥∥∥

≤MNpn+M‖x0 − p(0)‖ +MT (‖x1‖ + βn)

+M

T\
0

(T − s) γn(s) ds

≤ n,

which yields the assertion. Moreover, it is immediate that T1 is a contraction
and, proceeding as in the proof of Theorem 2.1, it follows that T2 is com-
pletely continuous. Thus T is a condensing map and Sadovskĭı’s theorem
implies that T has a fixed point in Bn.

The proof when condition (ii) holds is similar, except that in this case
we modify the definition of T1 and T2 as

T1(x)(t) = C(t)(x0 − p(x)) + S(t)(x1 − q(x)),

T2(x)(t) =

t\
0

S(t− s)f(s, x(s), x(a(s))) ds, t ∈ I.

We omit the details of this case.

When we can ensure that the set S of mild solutions is bounded, we infer
its compactness. Thus the following result can be proved with the argument
employed in the proof of Theorem 2.1. We omit the details.

Corollary 2.1. Assume that Assumption A and conditions (H-4) and

(H-5) are fulfilled. Suppose further that at least one of the following two

statements holds:

(i) Conditions (H-1), (H-3) and (H-7) are satisfied , and

MNp + lim sup
r→∞

M

r

(
Tβr +

T\
0

(T − s)γr(s) ds
)
< 1.

(ii) Conditions (H-7) and (H-8) are satisfied , and

MNp +MTNq + lim sup
r→∞

M

r

T\
0

(T − s)γr(s) ds < 1.

Then the set S is compact.

As already mentioned, in most situations of practical interest, the sine
function S(t) is compact ([16]). For this reason we state separately the fol-
lowing result.
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Corollary 2.2. Assume that Assumption A holds, the operator S(t) is

compact for every t ∈ R, and one of the following statements is satisfied :

(i) The map p is completely continuous and (H-1), (H-4) and (H-6)
hold.

(ii) Conditions (H-1), (H-4), (H-7) and (2.6) hold.

(iii) Conditions (H-4), (H-7), (H-8) and (2.7) hold.

Then there is a mild solution of (2.1)–(2.3).

Proof. The compactness of S(t) implies easily that condition (H-3) is
satisfied. Furthermore, the operator T0 : C(I;X) → C(I;X) defined by

T0(x)(t) =

t\
0

S(t− s)f(s, x(s), x(a(s))) ds

is completely continuous. We repeat the argument used in the proof of The-
orem 2.1 to establish that T2 is completely continuous. Therefore, it suffices
to show that the set {T0x(t) : ‖x‖∞ ≤ r}, for r > 0, is relatively compact
in X, for every 0 ≤ t ≤ T . To prove this, we point out first that if we take
ξ > 0, then we can write S(nξ) = S(ξ)Pn for n ∈ N, where Pn is a certain
bounded linear operator on X.

Since S(·) is uniformly continuous on I, given ε > 0, there is δ > 0 such
that ‖S(t1) − S(t2)‖ ≤ ε when |t1 − t2| ≤ δ. We select n ∈ N such that
ξ = t/n < δ and define si = iξ for i = 0, 1, . . . , n. Hence we can write

T0x(t) =
n∑

i=1

si\
si−1

S(t− s)f(s, u(s)) ds

=
n∑

i=1

si\
si−1

[S(t− s) − S(t− si)]f(s, u(s)) ds

− S(ξ)

n−1∑

i=1

Pi

si+1\
si

f(s, u(s)) ds.

Applying (H-4), we can establish the estimates

∥∥∥
k∑

i=1

si\
si−1

[S(t− s) − S(t− si)]f(s, u(s)) ds
∥∥∥ ≤ ε

T\
0

γr(s) ds,

∥∥∥
n−1∑

i=1

Pi

si+1\
si

f(s, u(s)) ds
∥∥∥ ≤ max

i=1,...,n−1
‖Pi‖

T\
0

γr(s) ds,

which are valid independent of x(·). Since S(ξ) is a compact operator, and
since ε was arbitrarily chosen, the assertion follows.
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We complete the proof by observing that if condition (i) is satisfied, then
the statement is a consequence of Theorem 2.1, while if (ii) or (iii) holds,
then the assertion follows from Theorem 2.3.

From the properties of the abstract Cauchy problem mentioned in the
preliminaries we know that if x0 − p(x) ∈ E, then the mild solution x is
continuously differentiable on I and

x′(t) = AS(t)(x0 − p(x)) + C(t)(x1 − q(x))(2.8)

+

t\
0

C(t− s)f(s, x(s), x(a(s))) ds.

Next we study the differentiability of the function x′(t). We first consider
the following concept of strong solution.

Definition 2.2. A function x : [0, T ] → X is a strong solution of (2.1)–
(2.3) if x ∈ W 2,1([0, T ];X), the equation (2.1) is satisfied a.e., and the
conditions (2.2) and (2.3) are satisfied.

In our next results, we consider Banach spaces that have the Radon–Ni-
kodym property (abbreviated, RNP). We refer to [5] for a discussion about
this matter.

Theorem 2.4. Assume that X has the RNP and that the hypotheses

of Theorem 2.1 or 2.3 are fulfilled. Suppose, in addition, that the following

assertions hold :

(H-9) R(p) ⊆ x0 +D(A) and R(q) ⊆ x1 +E.

(H-10) γk ∈ L∞(I).
(H-11) For each bounded set D ⊆ X, the functions C(·)f(t, x, y) for t ∈ I

and x, y ∈ D are uniformly Lipschitz continuous on I.

Then each mild solution x(·) of (2.1)–(2.3) is a strong solution.

Proof. Let x(·) be a mild solution of (2.1)–(2.3). It follows from (2.8)
and (H-9) that

x′(t+ s) − x′(t) = (AS(t+ s) −AS(t))(x0 − p(x))

+ (C(t+ s) − C(t))(x1 − q(x))

+

t\
0

(C(t+ s− ξ) − C(t− ξ))f(ξ, x(ξ), x(a(ξ))) dξ

+

t+s\
t

C(t+ s− ξ)f(ξ, x(ξ), x(a(ξ))) dξ,

which, by applying jointly (H-10) and (H-11), implies that x′(·) is Lipschitz
continuous. Combining this with the fact that X has the RNP, it follows
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that x ∈W 2,1(I;X). The assertion is now a consequence of Proposition 3.3
in [8].

Relating to this result, it is worthwhile to point out that if X has the
RNP and the function C(·)z is locally Lipschitz continuous, then z ∈ E ([8]).
In addition, from the results of [9], it follows that (H-11) holds if R(f) ⊆ E
and f : I ×D ×D → E is bounded.

Next we discuss existence of classical solutions. We begin with the fol-
lowing definition.

Definition 2.3. A function x : I → X is said to be a classical solution

of problem (2.1)–(2.3) if x is of class C2 and satisfies the equation (2.1) and
the initial conditions (2.2) and (2.3).

Theorem 2.5. Assume that X has the RNP and that condition (H-9)
as well as the hypotheses of Theorem 2.1 or 2.3 are fulfilled. Suppose also

that the following two conditions hold :

(H-12) a is Lipschitz continuous.

(H-13) For each bounded set D ⊆ X, f : I × D × D → X is Lipschitz

continuous.

Then each mild solution x(·) of (2.1)–(2.3) is a classical solution.

Proof. It follows from (H-9) that every mild solution x(·) is of class C1.
Applying (H-12) and (H-13), it is easy to see that t 7→ f(t, x(t), x(a(t))) is
Lipschitz continuous. The assertion is now a consequence of Theorem 3.1
of [8].

We can omit the RNP condition for X whenever f(·) and a(·) are differ-
entiable. We state the following result without proof (see [16, Corollary 3.5]).

Proposition 2.1. Assume that the hypotheses in Theorem 2.1 or 2.3
are satisfied. Suppose further that (H-9) holds and that f(·), a(·) are con-

tinuously differentiable. Then each mild solution x(·) of (2.1)–(2.3) is a

classical solution.

Next we establish an existence result for the linear nonhomogeneous case.
We henceforth assume that the space X ×X is endowed with the norm

‖(x, y)‖ = max{‖x‖, ‖y‖}.

In the next result we assume that f(t, x, y) = ℓ(x, y)+h(t) where ℓ : X ×X
→ X is a bounded linear map and h ∈ L1(I;X). Furthermore, p, q :
C(I;X) → X are bounded linear maps which can be represented as the
Riemann–Stieltjes integrals

p(x) =

T\
0

dsP (s)x(s), q(x) =

T\
0

dsQ(s)x(s)
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where the operator-valued maps P, Q : I → L(X) have bounded variation.
We let V (P ) (resp. V (Q)) denote the variation of P (resp. Q).

Theorem 2.6. Assume that

(2.9) M

(
V (P ) + TV (Q) +

1

2
T 2‖ℓ‖

)
< 1.

Then problem (2.1)–(2.3) has a unique mild solution x(·). Furthermore, if

X has the RNP , h ∈ L∞(I;X), and (H-9) holds, then x is a strong solu-

tion. If , in addition, a and h are Lipschitz continuous, then x is a classical

solution.

Proof. The inequality (2.9) implies that the operator T : C(I;X) →
C(I;X) defined by (2.5) is a contraction. Consequently, the existence of a
unique mild solution x(·) follows from the contraction principle. Using the
corresponding hypotheses, according to Theorem 2.4 (respectively, Theo-
rem 2.5), x is a strong solution (respectively, a classical solution).

This result shows the importance of distinguishing between strong and
classical solutions.

In what follows we consider the second order initial value problem (1.1)–
(1.3). We assume that the following three general conditions are satisfied:

Assumption B.

(i) a, b : I → I are continuous.
(ii) f : I ×X4 → X satisfies the following Carathéodory conditions:

(a) f(t, ·) : X4 → X is continuous a.e. for t ∈ I;
(b) for each u ∈ X4, f(·, u) : I → X is strongly measurable.

(iii) p, q : C(I;X)2 → X are continuous.

We begin by introducing the concept of mild solution.

Definition 2.4. A function x : I → X is said to be a mild solution

of problem (1.1)–(1.3) if x is a continuously differentiable function which
satisfies the integral equation

x(t) = C(t)(x0 − p(x, x′)) + S(t)(x1 − q(x, x′))(2.10)

+

t\
0

S(t− s)f(s, x(s), x(a(s)), x′(s), x′(b(s))) ds, t ∈ I.

It is clear that if x is a function of class C1 that satisfies (2.10), then
x0 − p(x, x′) ∈ E and x′ satisfies the equation

x′(t) = AS(t)(x0 − p(x, x′)) + C(t)(x1 − q(x, x′))(2.11)

+

t\
0

C(t− s)f(s, x(s), x(a(s)), x′(s), x′(b(s))) ds.
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Since the operator map AS(·) is strongly continuous with values in L(E;X),
there is a constant N such that ‖AS(t)‖ ≤ N for 0 ≤ t ≤ T . Next we
establish our first existence result.

Theorem 2.7. Assume that Assumption B and the following conditions

hold :

(H-14) p and q are completely continuous. For each r > 0, set

αr = sup{‖p(x, y)‖ : x, y ∈ Br},

βr = sup{‖q(x, y)‖ : x, y ∈ Br}.

(H-15) One of the following two conditions is fulfilled :

(a) x0 − p is completely continuous with values in E.

(b) x0 − p : X × X → [D(A)] maps closed bounded sets into

bounded sets and S(·) is compact.

Set er = sup{‖x0 − p(x, y)‖1 : x, y ∈ Br}.
(H-16) For each r > 0, the set f(I × B4

r ) is relatively compact. Define

γr = sup{‖z‖ : z ∈ f(I ×B4
r )}.

(H-17) lim inf
k→∞

M

k

(
αk + Tβk +

1

2
T 2γk

)
< 1,

lim inf
k→∞

1

k
(Nek +Mβk +MTγk) < 1.

Then there is a mild solution of (1.1)–(1.3). If , in addition,

(H-18) lim sup
r→∞

M

r

(
αr + Tβr +

1

2
T 2γr

)
< 1,

lim sup
r→∞

1

r
(Ner +Mβr +MTγr) < 1,

then the set S of mild solutions of (1.1)–(1.3) is compact in C1(I;X).

Proof. We define the map T : C(I;X)2 → C(I;X)2 by

T (x, y) = (T 1(x, y), T 2(x, y))

where T i : C(I;X)2 → C(I;X) are given by

T 1(x, y)(t) = C(t)(x0 − p(x, y)) + S(t)(x1 − q(x, y))(2.12)

+

t\
0

S(t− s)f(s, u(s), v(s)) ds,

T 2(x, y)(t) = AS(t)(x0 − p(x, y)) + C(t)(x1 − q(x, y))(2.13)

+

t\
0

C(t− s)f(s, u(s), v(s)) ds,

where, for brevity, we have set u(t)= (x(t), x(a(t))) and v(t)=(y(t), y(b(t))).
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Now we can repeat the argument used in the proof of Theorem 2.1 to
conclude that T is a completely continuous map and that there exists n ∈ N

such that T : B2
n → B2

n. Hence, by Schauder’s theorem, T has a fixed point
(x, y) ∈ B2

n. It is clear from (2.12)–(2.13) that y = x′, which by (2.10)
implies that x is a mild solution of (1.1)–(1.3).

Finally, in a similar way we prove that the set S̃ = {(x, x′) : x ∈ S} is
compact in C(I;X)2, which implies that S is compact in C1(I;X).

Remark. Arguing as in the proof of Theorem 2.2, we can generalize
this result to cover some functions f which are compact perturbations of
linear operators.

3. Application to the wave equation. The one-dimensional wave
equation modelled as an abstract Cauchy problem has been studied exten-
sively (see [18] and the references therein). In this section, we apply some
results of the preceding section to the wave equation with nonlocal condi-
tions. Specifically, we consider the boundary value problem

∂2w

∂t2
=
∂2w

∂ξ2
+ F (ξ, t, w(ξ, t), w(ξ, a(t))), 0 ≤ ξ ≤ π,(3.1)

w(0, t) = w(π, t) = 0,(3.2)

for 0 ≤ t ≤ T , where F : [0, π] × [0, T ] × R
2 → R satisfies appropriate

conditions. It is well known that this equation can be modelled as an abstract
Cauchy problem on the space X = L2(0, π) defining x(t) = w(·, t). The
operator A is given by Aϕ = ϕ′′ on the domain

D(A) = {x ∈ H2(0, π) : x(0) = x(π) = 0}.

This operator generates a cosine function C on X. Furthermore, A has dis-
crete spectrum, the eigenvalues of A are −n2 for n ∈ N with corresponding
normalized eigenvectors zn(ξ) = (2/π)1/2 sin (nξ), and the following proper-
ties hold:

(a) {zn : n ∈ N} is an orthonormal basis of X.

(b) If ϕ ∈ D(A), then Aϕ = −
∑∞

n=1
n2〈ϕ, zn〉zn.

(c) For each ϕ ∈ X,C(t)ϕ =
∑∞

n=1
cosnt〈ϕ, zn〉zn. Therefore, ‖C(t)‖

= 1.
(d) The corresponding sine function is given by

S(t)ϕ =
∞∑

n=1

sinnt

n
〈ϕ, zn〉zn.

It follows that ‖S(t)‖ = 1 and that S(t) is a compact operator.
(e) If G denotes the group of translations on X defined by G(t)x(ξ) =

x̃(ξ + t), where x̃ is the odd extension of x with period 2π, then
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C(t) = 1

2
(G(t) +G(−t)). Hence A = B2, where B is the infinite-

simal generator of G and E = {x ∈ H1(0, π) : x(0) = x(π) = 0}
(see [6]).

We assume that F satisfies the following Carathéodory conditions :

(a) F (ξ, t, ·) : R
2 → R is continuous a.e. for ξ ∈ [0, π], t ∈ I.

(b) For each w1, w2 ∈ R, F (·, w1, w2) : [0, π]× [0, T ] → R is measurable.
(c) There are a positive constant N1 and a measurable positive func-

tion η defined on [0, π] × [0, T ], with
TT
0
(
Tπ
0
η2(ξ, t) dξ)1/2 dt < ∞,

such that

|F (ξ, t, w1, w2)| ≤ η(ξ, t) +N1(|w1| + |w2|).

With these conditions (we refer to [10] for a similar result) the substitution
operator f : [0, T ] ×X2 → X defined by

f(t, x, y)(ξ) = F (ξ, t, x(ξ), y(ξ))

satisfies Assumption A.

We consider problem (3.1)–(3.2) subject to the following initial condi-
tions:

w(ξ, 0) +

T\
0

P (w(·, s))(ξ) dµ(s) = ϕ(ξ), 0 ≤ ξ ≤ π,(3.3)

∂w(ξ, 0)

∂t
+

T\
0

Q(w(·, s))(ξ) dν(s) = ψ(ξ), 0 ≤ ξ ≤ π,(3.4)

where µ, ν : [0, T ] → R are functions of bounded variation. We also assume
that P,Q : X → X are continuous, P is completely continuous and Q takes
closed bounded sets to bounded sets. We introduce the positive constants
α1,r and β1,r with ‖P (x)‖2 ≤ α1,r and ‖Q(x)‖2 ≤ β1,r when ‖x‖2 ≤ r.
We refer to [10] for examples of operators with these properties. We define
p, q : C(I;X) → X by

p(x) =

T\
0

P (x(s)) dµ(s),(3.5)

q(x) =

T\
0

Q(x(s)) dν(s).(3.6)

It is not difficult to see that p, q are continuous and p is completely conti-
nuous. Furthermore, for x ∈ C(I;X) with ‖x‖∞ ≤ r, it follows from (3.5)
that

‖p(x)‖2 ≤ max
0≤s≤T

‖P (x(s))‖2V (µ) ≤ α1,rV (µ).
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Similarly, it follows from (3.6) that

‖q(x)‖2 ≤ β1,rV (ν).

On the other hand, if x, y ∈ X and ‖x‖2, ‖y‖2 ≤ r, then

‖f(t, x, y)‖2 = ‖F (ξ, t, x(ξ), y(ξ))‖2 =
(π\

0

|F (ξ, t, x(ξ), y(ξ))|2 dξ
)1/2

≤
(π\

0

|η(ξ, t) +N1(|x(ξ)| + |y(ξ)|)|2 dξ
)1/2

≤
(π\

0

η2(ξ, t) dξ
)1/2

+N1(‖x‖2 + ‖y‖2)

≤
(π\

0

η2(ξ, t) dξ
)1/2

+ 2N1r.

We denote by γr(t) the last right hand side. Applying our previous estimate,
it is clear that

αk + Tβk +

T\
0

(T − s) γk(s) ds ≤ α1,kV (µ) + Tβ1,kV (ν) +N1T
2k

+

T\
0

(T − s)
(π\

0

η2(ξ, t) dξ
)1/2

ds,

which yields

lim inf
k→∞

M

k

(
αk + Tβk +

T\
0

(T − s) γk(s) ds
)

≤ N1T
2 + lim inf

k→∞

1

k
(α1,kV (µ) + Tβ1,kV (ν)).

Similarly we obtain

lim sup
r→∞

M

r

(
αr + Tβr +

T\
0

(T − s) γr(s) ds
)

≤ N1T
2 + lim sup

r→∞

1

r
(α1,rV (µ) + Tβ1,rV (ν)).

Employing these properties and Corollary 2.2, Theorem 2.4 and Theorem 2.5
we can establish the following consequences:

(i) If

(3.7) N1T
2 + lim inf

k→∞

1

k
(α1,kV (µ) + Tβ1,kV (ν)) < 1,

then problem (3.1)–(3.4) has a mild solution.
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(ii) Suppose that (3.7) hold and

(a) R(p) ⊆ ϕ+D(A) and R(q) ⊆ ψ + E;

(b) sup0≤t≤T

Tπ
0
η2(ξ, t) dξ <∞;

(c) for each bounded set D ⊆ X, there is a sequence (an)n of
positive numbers with

∑∞
n=1

nan <∞ such that

∣∣∣
π\
0

F (ξ, t, x(ξ), y(ξ))zn(ξ) dξ
∣∣∣ ≤ an

for all t ∈ I and every x, y ∈ D.

Then the mild solutions of (3.1)–(3.4) are strong solutions.
(iii) Suppose that (3.7) and

(a) R(p) ⊆ ϕ+D(A) and R(q) ⊆ ψ + E;
(b) a is Lipschitz continuous;
(c) there is a positive function N2 ∈ L2(0, π) and a constant N3 > 0

such that

|F (ξ, t2, x2, y2 − F (ξ, t1, x1, y1)| ≤ N2(ξ)|t2 − t1|

+N3(|x2 − x1| + |y2 − y1|)

for a.e. ξ ∈ [0, π], all t1, t2 ∈ I and all x1, x2, y1, y2 ∈ R.

Then each mild solution of (3.1)–(3.4) is a classical solution.
(iv) If

N1T
2 + lim sup

r→∞

1

r
(α1,rV (µ) + Tβ1,rV (ν)) < 1,

then the set of mild solutions of problem (3.1)–(3.4) is compact.
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