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Multiple positive solutions for a second order

delay boundary value problem on the half-line

by K. G. Mavridis, Ch. G. Philos and
P. Ch. Tsamatos (Ioannina)

Abstract. Second order nonlinear delay differential equations are considered, and
Krasnosel’skĭı’s fixed point theorem is used to establish a result on the existence of positive
solutions of a boundary value problem on the half-line. This result can be used to guarantee
the existence of multiple positive solutions. A specification of the result obtained to the
case of second order nonlinear ordinary differential equations as well as to a particular case
of second order nonlinear delay differential equations is also presented. The applicability
of the main result is demonstrated by an example.

1. Introduction. Boundary value problems on unbounded intervals
have many applications in physical problems. Such problems arise, e.g., in
the study of linear elasticity, fluid flows and foundation engineering (see [1,
8, 15] and the references therein). An interesting overview on unbounded
interval problems, including real world examples, history and various meth-
ods of proving solvability, can be found in the recent book by Agarwal and
O’Regan [1]. Boundary value problems on unbounded intervals concerning
second order ordinary or delay differential equations are of specific interest
in these applications.

For second order ordinary or delay differential equations, boundary value
problems on the half-line are closely related to the problems of existence
of global solutions on the half-line with prescribed asymptotic behavior.
Recently, there is, in particular, a growing interest in positive solutions of
such boundary value problems (see, for example, [5–6, 8, 13–22]).

For the basic theory of delay differential equations, the reader is referred
to the books by Diekmann et al. [7], and Hale and Verduyn Lunel [10]. In
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particular, as concerns initial value problems, we refer to the monograph by
Lakshmikantham and Leela [12], while, regarding boundary value problems,
we mention the monographs by Azbelev, Maksimov and Rakhmatullina [3],
and Azbelev and Rakhmatullina [4].

This paper deals with the existence of (multiple) nonnegative solutions
of a boundary value problem on the half-line for second order nonlinear
delay (and, especially, ordinary) differential equations. The paper can be
considered as a continuation of the authors’ previous work [17], but in a
different direction.

Throughout the paper, for any interval J of the real line R and any
subset S of R, by C(J, S) we will denote the set of all continuous functions
defined on J and having values in S. Moreover, r will be a nonnegative real

number. Furthermore, if t ∈ [0,∞) and χ is a continuous real-valued function
defined at least on [t− r, t], the notation χt will be used for the function in
C([−r, 0],R) defined by

χt(τ) = χ(t+ τ) for −r ≤ τ ≤ 0.

Notice that C([−r, 0],R) is a Banach space with the usual sup-norm

‖ψ‖ = sup
−r≤τ≤0

|ψ(τ)| for ψ ∈ C([−r, 0],R).

Consider the second order nonlinear delay differential equation

(1.1) x′′(t) + f(t, xt) = 0,

where f is a real-valued function defined on the set [0,∞) × C([−r, 0],R),
which satisfies the following Continuity Condition:

(C) f(t, χt) is continuous with respect to t in [0,∞) for each given function

χ in C([−r,∞),R).

Our interest is concentrated on solutions of (1.1) on the whole interval
[0,∞). By a solution on [0,∞) of (1.1), we mean a function x in C([−r,∞),R)
which is twice continuously differentiable on [0,∞) and satisfies (1.1) for all
t ≥ 0.

With the delay differential equation (1.1), one associates an initial con-
dition of the form

(1.2) x0 = φ,

where φ in C([−r, 0],R) is given. In what follows, it will be supposed that

φ(0) = 0.

Also, together with (1.1), we impose a condition of the form

(1.3) lim
t→∞

x′(t) = ξ,
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where ξ is a given real number. Note that (1.3) implies

lim
t→∞

x(t)

t
= ξ.

Equations (1.1)–(1.3) constitute a boundary value problem (BVP, for
short) on the half-line. A solution of (1.1)–(1.3) is a solution x on [0,∞)
of the delay differential equation (1.1) which satisfies the conditions (1.2)
and (1.3).

Consider now the special case of the second order nonlinear ordinary
differential equation

(1.4) x′′(t) + g(t, x(t)) = 0,

where g is a continuous real-valued function on [0,∞) × R.

We confine our attention only to solutions of (1.4) on the whole interval
[0,∞). With (1.4), we associate the initial condition

(1.5) x(0) = 0

as well as the condition (1.3). In this special case, the BVP (1.1)–(1.3)
reduces to the BVP (1.4), (1.5), (1.3).

Equation (1.1) is of a very general form, which includes as particular
cases the ordinary differential equation (1.4), equations with retarded argu-
ments (such as equation (1.6) below), and several other types of functional
integrodifferential equations, for example the equation

x′′(t) + g
(

t,

0\
−r

x(t+ s) ds
)

= 0.

Here we specify our results for the most familiar particular cases of equation
(1.4) and equation (1.6) below.

Next, consider the second order nonlinear delay differential equation

(1.6) x′′(t) + h(t, x(t− T1(t)), . . . , x(t− Tm(t))) = 0,

where m is a positive integer, h is a continuous real-valued function on

[0,∞) × R
m, and Tj (j = 1, . . . ,m) are nonnegative continuous real-valued

functions on [0,∞) with

max
j=1,...,m

sup
t≥0

Tj(t) = r.

We are interested in solutions of (1.6) on the whole interval [0,∞). The
initial condition

(1.2′) x(t) = φ(t) for −r ≤ t ≤ 0

(which is an equivalent form of (1.2)) as well as the condition (1.3) are
associated with the delay differential equation (1.6).



176 K. G. Mavridis et al.

If (1.1) is to be equivalent to (1.6), we must define

f(t, ψ) = h(t, ψ(−T1(t)), . . . , ψ(−Tm(t))) for (t, ψ) ∈ [0,∞) × C([−r, 0],R).

The following lemma (see [17]) gives a useful integral representation of
solutions of (1.1)–(1.3), which will be used to obtain the main result of the
paper.

Lemma. A function x in C([−r,∞),R) is a solution of (1.1)–(1.3) if

and only if

(1.7) x(t) =































φ(t) for −r ≤ t ≤ 0,

ξt+

∞\
0

min{t, s}f(s, xs) ds

= ξt+

t\
0

sf(s, xs)ds+ t

∞\
t

f(s, xs) ds for t ≥ 0.

In [17], the authors studied the existence of solutions of (1.1)–(1.3) by
using the classical Schauder fixed point theorem. Note that more general
second order nonlinear delay differential equations, in which the nonlinear
term involves the derivative of the unknown function, are also considered
in [17]. In the present paper, we deal with the existence of nonnegative
solutions of (1.1)–(1.3). It is noteworthy that the results given here can be
used to guarantee the existence of multiple nonnegative solutions (see the
example in Section 4). Our results in this paper are new even in the special
case of ordinary differential equations.

Our purpose is to examine the existence of nonnegative solutions of (1.1)–
(1.3). So, without further mention, it will be assumed that

φ(t) ≥ 0 for −r ≤ t ≤ 0, and ξ ≥ 0.

By the Lemma, every solution x of (1.1)–(1.3) satisfies (1.7). Thus, we
can easily arrive at the following simple result:

Assume that

(1.8) f(t, ψ) ≥ 0 for all (t, ψ) ∈ [0,∞) × C([−r, 0], [0,∞)).

Then every nonnegative solution x of (1.1)–(1.3) satisfies

(1.9) x(t) ≥ ξt for every t ≥ 0

and

(1.10) x′(t) ≥ ξ for every t ≥ 0.

[Because of x(0) = φ(0) = 0, (1.9) is a consequence of (1.10).] Furthermore,

every nonnegative solution x of (1.1)–(1.3) with ξ > 0 is positive on (0,∞)
with limt→∞ x(t) = ∞, and strictly increasing on [0,∞).
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The results of the paper are stated in Section 2. The main result gives
sufficient conditions for (1.1)–(1.3) to have at least one nonnegative solution
with a certain property. Two corollaries (Corollaries 1 and 2) are obtained
by specifying the theorem to the case of the BVP (1.4), (1.5), (1.3) as well as
to the particular case of the BVP (1.6), (1.2′), (1.3). Moreover, the theorem
(specifically, Corollary 1 or 2) is applied to second order nonlinear (ordinary
or delay) differential equations of Emden–Fowler type.

The proof of the theorem is given in Section 3.
The last section (Section 4) contains an example, which demonstrates

the applicability of the results of the present paper.

2. Statement of the results. The main result of the paper is the
following theorem, which provides sufficient conditions for (1.1)–(1.3) to
have at least one nonnegative solution with a certain property.

Theorem. Suppose that (1.8) holds. Also, assume that, for each t≥ 0,
the function f(t, ·) is increasing on C([−r, 0], [0,∞)) in the sense that

f(t, ψ) ≤ f(t, ω) for any ψ, ω in C([−r, 0], [0,∞)) with ψ ≤ ω (i.e., ψ(τ) ≤
ω(τ) for −r ≤ τ ≤ 0).

Assume that there exists a real number c with c ≥ ‖φ‖ and c > ξ so that

(2.1)

∞\
0

f(t, ηt) dt ≤ c− ξ,

where η ∈ C([−r,∞), [0,∞)) depends on c and is defined by

(2.2) η(t) =

{

c for −r ≤ t ≤ 0,

c(t+ 1) for t ≥ 0.

Moreover, suppose that there exists a real number b with b > 0 and b 6= c so

that, for some fixed t0 > 0,

(2.3)

∞\
0

min{t0, t}f(t, ζt) dt ≥ b(t0 + 1) − ξt0,

where ζ ∈ C([−r,∞), [0,∞)) depends on φ, b and is defined by

(2.4) ζ(t) =

{

φ(t) for −r ≤ t ≤ 0,

bmin{t, 1} for t ≥ 0.

Also, in the case where b > c, assume that

(2.5)

∞\
0

f(t, ǫt) dt <∞,

where ǫ ∈ C([−r,∞), [0,∞)) depends on b and is defined by

(2.6) ǫ(t) =

{

b for −r ≤ t ≤ 0,

b(t+ 1) for t ≥ 0.
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Then (1.1)–(1.3) has a nonnegative solution x such that

(2.7) x(t) ≥

[

sup
T≥0

x(T )

T + 1

]

min{t, 1} for every t ≥ 0

and

(2.8) min{c, b} ≤ sup
t≥0

x(t)

t+ 1
≤ max{c, b}.

Notes. (i) Assume that ξ > 0. Inequality (2.3) holds automatically if
b ≤ ξ t0

t0+1 . (If b ≤ ξ t0
t0+1 , then b < ξ and so b < c.)

(ii) Inequality (2.3) can equivalently be written as follows:

t0\
0

tf(t, ζt)dt+ t0

∞\
t0

f(t, ζt)dt ≥ b(t0 + 1) − ξt0.

(iii) From (2.7) and the first inequality of (2.8) it follows that the solution
x satisfies

x(t) ≥ min{c, b}min{t, 1} for every t ≥ 0.

By specifying our theorem to the case of the BVP (1.4), (1.5), (1.3), we
get the following corollary.

Corollary 1. Suppose that

g(t, y) ≥ 0 for all t ≥ 0 and y ≥ 0.

Also, assume that , for each t ≥ 0, the function g(t, ·) is increasing on [0,∞)
in the sense that g(t, y) ≤ g(t, w) for any y, w with 0 ≤ y ≤ w.

Assume that there exists a real number c with c > ξ so that
∞\
0

g(t, c(t+ 1)) dt ≤ c− ξ.

Moreover , suppose that there exists a real number b with b > 0 and b 6= c so

that , for some fixed t0 > 0,
∞\
0

min{t0, t}g(t, bmin{t, 1})dt ≥ b(t0 + 1) − ξt0.

Also, in the case where b > c, assume that
∞\
0

g(t, b(t+ 1)) dt <∞.

Then the BVP (1.4), (1.5), (1.3) has a nonnegative solution x such that (2.7)
and (2.8) hold.

Similarly, specifying our theorem to the case of the BVP (1.6), (1.2′),
(1.3) leads to the next corollary.
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Corollary 2. Suppose that

h(t, y1, . . . , ym) ≥ 0 for all t ≥ 0 and y1 ≥ 0, . . . , ym ≥ 0.

Also, assume that , for each t ≥ 0, the function h(t, ·, . . . , ·) is increasing

on [0,∞)m in the sense that h(t, y1, . . . , ym) ≤ h(t, w1, . . . , wm) for any

(y1, . . . , ym), (w1, . . . , wm) with 0 ≤ y1 ≤ w1, . . . , 0 ≤ ym ≤ wm.

Assume that there exists a real number c with c ≥ ‖φ‖ and c > ξ so that

∞\
0

h(t, ̺1(t), . . . , ̺m(t)) dt ≤ c− ξ,

where, for each j ∈ {1, . . . ,m}, the function ̺j in C([0,∞), [0,∞)) depends

on c and is defined by

̺j(t) =

{

c for 0 ≤ t ≤ Tj(t),

c(t− Tj(t) + 1) for t ≥ Tj(t).

Moreover , suppose that there exists a real number b with b > 0 and b 6= c so

that , for some fixed t0 > 0,
∞\
0

min{t0, t}h(t, σ1(t), . . . , σm(t)) dt ≥ b(t0 + 1) − ξt0,

where, for each j ∈ {1, . . . ,m}, the function σj in C([0,∞), [0,∞)) depends

on φ, b and is defined by

σj(t) =

{

φ(t− Tj(t)) for 0 ≤ t ≤ Tj(t),

bmin{t− Tj(t), 1} for t ≥ Tj(t).

Also, in the case where b > c, assume that

∞\
0

h(t, τ1(t), . . . , τm(t)) dt <∞,

where, for each j ∈ {1, . . . ,m}, the function τj in C([0,∞), [0,∞)) depends

on b and is defined by

τj(t) =

{

b for 0 ≤ t ≤ Tj(t),

b(t− Tj(t) + 1) for t ≥ Tj(t).

Then the BVP (1.6), (1.2′), (1.3) has a nonnegative solution x such that

(2.7) and (2.8) hold.

To end this section, we will apply our theorem (or, specifically, Corol-
laries 1 and 2) to second order nonlinear (ordinary or delay) differential
equations of Emden–Fowler type.

Consider the differential equations of Emden–Fowler type

(2.9) x′′(t) + p(t)|x(t)|γ sgnx(t) = 0
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and

(2.10) x′′(t) + p(t)|x(t− r)|γ sgnx(t− r) = 0,

where p is a nonnegative continuous real-valued function on [0,∞), and γ is

a positive real number.

For the BVP (2.9), (1.5), (1.3), our theorem (more specifically, Corol-
lary 1) is formulated as follows:

Assume that there exists a real number c with c > ξ so that

cγ
∞\
0

(t+ 1)γp(t) dt ≤ c− ξ.

Moreover, suppose that there exists a real number b with b > 0 and b 6= c so

that, for some fixed t0 > 0,

bγ
∞\
0

min{t0, t}(min{t, 1})γp(t) dt ≥ b(t0 + 1) − ξt0.

Then the BVP (2.9), (1.5), (1.3) has a nonnegative solution x such that (2.7)
and (2.8) hold.

Similarly, in the case of the BVP (2.10), (1.2′), (1.3), our theorem (more
specifically, Corollary 2) leads to the following result:

Assume that there exists a real number c with c ≥ ‖φ‖ and c > ξ so that

cγ
[

r\
0

p(t) dt+

∞\
r

(t− r + 1)γp(t) dt
]

≤ c− ξ.

Moreover, suppose that there exists a real number b with b > 0 and b 6= c so

that, for some fixed t0 > 0,
r\
0

min{t0, t}[φ(t− r)]γp(t) dt

+ bγ
∞\
r

min{t0, t}(min{t− r, 1})γp(t) dt ≥ b(t0 + 1) − ξt0.

Then the BVP (2.10), (1.2′), (1.3) has a nonnegative solution x such that

(2.7) and (2.8) hold.

3. Proof of the Theorem. The proof of our theorem is based on the
use of the following Krasnosel’skĭı fixed point theorem (see Krasnosel’skĭı
[11]; see also Guo and Lakshmikantham [9]).

The Krasnosel’skĭı theorem. Let E be a real Banach space endowed

with the norm ‖ · ‖E, and K be a cone in E. Let also Ω1 and Ω2 be open
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bounded subsets of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Assume that

M : K ∩ (Ω2 \Ω1) → K

is a completely continuous mapping such that either

‖My‖E ≤ ‖y‖E for y ∈ K ∩ ∂Ω1,

‖My‖E ≥ ‖y‖E for y ∈ K ∩ ∂Ω2,

or
‖My‖E ≥ ‖y‖E for y ∈ K ∩ ∂Ω1,

‖My‖E ≤ ‖y‖E for y ∈ K ∩ ∂Ω2.

Then the mapping M has a fixed point (i.e., there exists y ∈ K ∩ (Ω2 \Ω1)
with y = My).

Let BC([0,∞),R) be the Banach space of all bounded continuous real-
valued functions on [0,∞), endowed with the sup-norm ‖ · ‖.

We need the following compactness criterion for subsets of BC([0,∞),R),
which is a consequence of the well-known Arzelà–Ascoli theorem (see the
paper by Avramescu [2]). In order to formulate this criterion, we note that
a set U of real-valued functions defined on [0,∞) is called equiconvergent

at ∞ if all functions in U have finite limits at ∞ and, in addition, for each
ε > 0, there exists T ≡ T (ǫ) > 0 such that, for all functions u in U , we have
|u(t) − lims→∞ u(s)| < ǫ for every t ≥ T .

Compactness criterion. Let U be an equicontinuous and uniformly

bounded subset of the Banach space BC([0,∞),R). If U is equiconvergent

at ∞, then it is relatively compact.

Throughout the remainder of this section, E stands for the set of all
functions y in C([0,∞),R) with y(t) = O(t) for t→ ∞. The set E is a real

Banach space endowed with the norm

‖y‖E = sup
t≥0

|y(t)|

t+ 1
for y ∈ E.

Also, P denotes the cone in E consisting of all nonnegative functions y in
E with y(0) = 0. Moreover, for any function y in P , we denote by x the
function in C([−r,∞), [0,∞)) defined by the formula

(3.1) x(t) =

{

φ(t) for −r ≤ t ≤ 0,

y(t) for t ≥ 0.

(Note that φ(t) ≥ 0 for −r ≤ t ≤ 0, and φ(0) = 0.)
In order to prove our theorem, we will first establish the following propo-

sition.

Proposition. Suppose that (1.8) holds. Also, assume that, for each

t ≥ 0, the function f(t, ·) is increasing on C([−r, 0], [0,∞)).
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Let d be a positive real number with d ≥ ‖φ‖ such that

(3.2)

∞\
0

f(t, θt) dt <∞,

where θ ∈ C([−r,∞), [0,∞)) depends on d and is defined by

(3.3) θ(t) =

{

d for −r ≤ t ≤ 0,

d(t+ 1) for t ≥ 0.

Set

Ω = {y ∈ E : ‖y‖E < d}.

Then the formula

(My)(t) = ξt+

∞\
0

min{t, s}f(s, xs) ds(3.4)

= ξt+

t\
0

sf(s, xs) ds+ t

∞\
t

f(s, xs) ds for t ≥ 0

makes sense for any y ∈ P∩Ω, and defines a completely continuous mapping

M of P ∩Ω into P .

Proof. Let y ∈ P ∩Ω. Then

0 ≤ y(t) ≤ d(t+ 1) for t ≥ 0.

As d ≥ ‖φ‖, we have

0 ≤ φ(t) ≤ d for −r ≤ t ≤ 0.

Thus, by taking into account (3.1) and (3.3), we find

0 ≤ x(t) ≤ θ(t) for every t ≥ −r

and consequently

0 ≤ xt ≤ θt for all t ≥ 0.

(Note that, in view of φ(0) = 0 = y(0), x is continuous on [−r,∞).) Hence,
by using the assumption (1.8) as well as the hypothesis that, for each t ≥ 0,
the function f(t, ·) is increasing on C([−r, 0], [0,∞)), we obtain

(3.5) 0 ≤ f(t, xt) ≤ f(t, θt) for every t ≥ 0.

From (3.2) and (3.5) it follows that

(3.6) 0 ≤

∞\
0

f(t, xt) dt <∞ for each y ∈ P ∩Ω.

By (3.6), we immediately see that the formula (3.4) makes sense for any
y ∈ P ∩Ω, and that it defines a mapping M of P ∩Ω into C([0,∞), [0,∞)).
We will show that M(P ∩ Ω) ⊆ P . We observe that, for any y ∈ P ∩ Ω,



Positive solutions of a BVP on the half-line 183

My is nonnegative on [0,∞), and (My)(0) = 0. Furthermore, by (3.5) and
(3.2), for any y ∈ P ∩Ω and t ≥ 0, we obtain

(My)(t)

t+ 1
= ξ

t

t+ 1
+

∞\
0

min{t, s}

t+ 1
f(s, xs) ds

≤ ξ +

∞\
0

f(s, xs) ds ≤ ξ +

∞\
0

f(s, θs) ds.

Thus, we have

(3.7)
(My)(t)

t+ 1
≤ N for every t ≥ 0,

where

(3.8) N = ξ +

∞\
0

f(s, θs) ds.

Because of (1.8) and (3.2), N is a nonnegative real number. We have thus
proved that, for any y in P ∩Ω, My ∈ P , i.e., M(P ∩Ω) ⊆ P .

Now, we prove that M(P ∩Ω) is relatively compact. By the definition of
‖ · ‖E , it suffices to show that the set

U =

{

u : there exists y ∈ P ∩Ω such that u(t) =
(My)(t)

t+ 1
for t ≥ 0

}

is relatively compact in the Banach space BC([0,∞),R). We first observe
that, by (3.7), U is uniformly bounded. Moreover, by (3.5), for any y ∈ P∩Ω
and t ≥ 0, we get
∣

∣

∣

∣

[

(My)(t)

t+ 1

]′∣
∣

∣

∣

=
|(t+ 1)(My)′(t) − (My)(t)|

(t+ 1)2

=
1

(t+ 1)2

∣

∣

∣
(t+ 1)

[

ξ +

∞\
t

f(s, xs) ds
]

−
[

ξt+

t\
0

sf(s, xs) ds+ t

∞\
t

f(s, xs) ds
]∣

∣

∣

=
1

(t+ 1)2

∣

∣

∣
ξ −

t\
0

sf(s, xs) ds+

∞\
t

f(s, xs) ds
∣

∣

∣

≤
1

(t+ 1)2

[

ξ +

t\
0

sf(s, xs) ds+

∞\
t

f(s, xs) ds
]

=
ξ

(t+ 1)2
+

1

t+ 1

t\
0

s

t+ 1
f(s, xs) ds+

1

(t+ 1)2

∞\
t

f(s, xs) ds
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≤ ξ +

t\
0

f(s, xs) ds+

∞\
t

f(s, xs) ds

= ξ +

∞\
0

f(s, xs) ds ≤ ξ +

∞\
0

f(s, θs) ds

and consequently

(3.9)

∣

∣

∣

∣

[

(My)(t)

t+ 1

]′∣
∣

∣

∣

≤ N for all t ≥ 0,

where the nonnegative real constant N is defined by (3.8). In view of (3.9),
we can apply the mean value theorem to conclude that

∣

∣

∣

∣

(My)(t1)

t1 + 1
−

(My)(t2)

t2 + 1

∣

∣

∣

∣

≤ N |t1 − t2| for every t1, t2 ≥ 0.

Hence U is equicontinuous. Furthermore, by (3.5) again,
∣

∣

∣

∣

(My)(t)

t+ 1
− ξ

∣

∣

∣

∣

=

∣

∣

∣

∣

ξt+
T∞
0 min{t, s}f(s, xs)ds

t+ 1
− ξ

∣

∣

∣

∣

=
|−ξ +

T∞
0 min{t, s}f(s, xs) ds|

t+ 1

≤
ξ +

T∞
0 min{t, s}f(s, xs) ds

t+ 1

≤
ξ +

T∞
0 min{t, s}f(s, θs) ds

t+ 1
,

i.e.,

(3.10)

∣

∣

∣

∣

(My)(t)

t+ 1
− ξ

∣

∣

∣

∣

≤
ξ +

T∞
0 min{t, s}f(s, θs) ds

t+ 1
for all t ≥ 0.

But, by (3.2), we have

lim
t→∞

ξ +
T∞
0 min{t, s}f(s, θs) ds

t+ 1
= lim

t→∞

[

ξ +

∞\
0

min{t, s}f(s, θs) ds
]′

= lim
t→∞

∞\
t

f(s, θs) ds = 0.

Hence, because of (3.10), U is equiconvergent at ∞. By the given compact-
ness criterion, U is relatively compact in BC([0,∞),R). So, the relative
compactness of M(P ∩Ω) in E has been established.

Next, we will show that the mapping M is continuous. Let (y[ν])ν≥1 be
any sequence of functions in P ∩Ω with

‖ · ‖E- lim
ν→∞

y[ν] = y ∈ P ∩Ω.
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For each ν ≥ 1, we define

x[ν](t) =

{

φ(t) for −r ≤ t ≤ 0,

y[ν](t) for t ≥ 0.

It is not difficult to verify that

‖ · ‖- lim
ν→∞

x
[ν]
t = xt for every t ≥ 0.

On the other hand, by (3.5), we have

0 ≤ f(t, x
[ν]
t ) ≤ f(t, θt) for all t ≥ 0 and ν ≥ 1.

So, because of (3.2), we can apply the Lebesgue dominated convergence
theorem to obtain, for t ≥ 0,

lim
ν→∞

∞\
0

min{t, s}f(s, x[ν]
s ) ds =

∞\
0

min{t, s}f(s, xs) ds.

Thus, we have the pointwise convergence

lim
ν→∞

(My[ν])(t) = (My)(t) for all t ≥ 0.

We shall also prove that

(3.11) ‖ · ‖E- lim
ν→∞

My[ν] = My.

For this, consider an arbitrary subsequence (My[µν ])ν≥1 of (My[ν])ν≥1. As
M(P ∩Ω) is relatively compact, there exists a subsequence (My[µλν

])ν≥1 of
(My[µν ])ν≥1 such that

‖ · ‖E- lim
ν→∞

My[µλν
] = u

for some function u in E. As ‖·‖E-convergence implies pointwise convergence
to the same limit function, we must have u = My. This means that (3.11)
holds true. Consequently, M is continuous.

Since M(P ∩Ω) is relatively compact and M is continuous, the mapping

M is completely continuous.

The proof of the proposition has been finished.

Now, we proceed to the proof of our theorem.

Proof of the Theorem. Set

d = max{c, b}.

Clearly, d is a positive real number with d ≥ ‖φ‖. Let θ be the function in
C([−r,∞), [0,∞)), which depends on d and is defined by (3.3). We see that

θ = η if c > b, and θ = ǫ if b > c,

where the functions η and ǫ depend on c and b, respectively, and are defined
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by (2.2) and (2.6), respectively. From (2.1) it follows, in particular, that

(3.12)

∞\
0

f(t, ηt) dt <∞.

By taking into account (3.12) if c > b, and (2.5) if b > c, we conclude that
(3.2) holds true. Set

Ω2 = {y ∈ E : ‖y‖E < d}.

Then Ω2 is an open bounded subset of E. By our Proposition, the formula
(3.4) makes sense for any y ∈ P ∩ Ω2, and defines a completely continuous

mapping M of P ∩Ω2 into P .
We will show that

(3.13) ‖My‖E ≤ ‖y‖E for any y ∈ P ∩Ω2 with ‖y‖E = c.

Indeed, take any such y. Then

0 ≤ y(t) ≤ c(t+ 1) for t ≥ 0.

Since c ≥ ‖φ‖, we also have

0 ≤ φ(t) ≤ c for −r ≤ t ≤ 0.

So, in view of (3.1) and (2.2),

0 ≤ x(t) ≤ η(t) for all t ≥ −r,

which yields
0 ≤ xt ≤ ηt for every t ≥ 0.

(x is continuous on [−r,∞), since φ(0) = 0 = y(0).) Thus, by using (1.8)
and the assumption that, for each t ≥ 0, the function f(t, ·) is increasing on
C([−r, 0], [0,∞)), we conclude that

0 ≤ f(t, xt) ≤ f(t, ηt) for all t ≥ 0.

Hence, for every t ≥ 0, we obtain

(My)(t)

t+ 1
= ξ

t

t+ 1
+

∞\
0

min{t, s}

t+ 1
f(s, xs) ds

≤ ξ +

∞\
0

f(s, xs) ds ≤ ξ +

∞\
0

f(s, ηs) ds.

Consequently, by (2.1),

(My)(t)

t+ 1
≤ c for every t ≥ 0,

which gives

‖My‖E = sup
t≥0

(My)(t)

t+ 1
≤ c = ‖y‖E

and so (3.13) has been proved.
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Now, we define

K = {y ∈ E : y(0) = 0, and y(t) ≥ min{t, 1}‖y‖E for t ≥ 0}.

We immediately see that K is a cone in E with K ⊆ P . We shall prove that
M maps P ∩ Ω2 into K. Let y ∈ P ∩ Ω2. We observe that (My)(0) = 0.
Next, it is easy to see that, for any t, T ≥ 0,

t ≥











t

T + 1
T for 0 ≤ t ≤ 1,

1

T + 1
T for t ≥ 1.

That is,

(3.14) t ≥
min{t, 1}

T + 1
T for all t, T ≥ 0.

Moreover, it is not difficult to verify that, if t, T, s ≥ 0, then

min{t, s} ≥











t

T + 1
min{T, s} if 0 ≤ t ≤ 1,

1

T + 1
min{T, s} if t ≥ 1.

Hence

(3.15) min{t, s} ≥
min{t, 1}

T + 1
min{T, s} for all t, T, s ≥ 0.

By taking into account the hypothesis (1.8) and using (3.14) and (3.15), we
obtain, for any t, T ≥ 0,

(My)(t) = ξt+

∞\
0

min{t, s}f(s, xs) ds

≥ ξ
min{t, 1}

T + 1
T +

min{t, 1}

T + 1

∞\
0

min{T, s}f(s, xs) ds

= min{t, 1}

{

1

T + 1

[

ξT +

∞\
0

min{T, s}f(s, xs) ds

]}

= min{t, 1}
(My)(T )

T + 1
.

Therefore,

(My)(t) ≥ min{t, 1} sup
T≥0

(My)(T )

T + 1
for all t ≥ 0,

i.e.,

(My)(t) ≥ min{t, 1}‖My‖E for every t ≥ 0.

Thus My ∈ K for any y ∈ P ∩Ω2.
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The next step is to show that

(3.16) ‖My‖E ≥ ‖y‖E for any y ∈ K ∩Ω2 with ‖y‖E = b.

For any such y,
y(t) ≥ min{t, 1}‖y‖E for t ≥ 0.

Consequently, because of ‖y‖E = b, we have

y(t) ≥ bmin{t, 1} for every t ≥ 0.

Hence, by taking into account (3.1) and (2.4), we obtain

x(t) ≥ ζ(t) ≥ 0 for all t ≥ −r,

which gives
xt ≥ ζt ≥ 0 for every t ≥ 0.

Thus, by using the hypothesis (1.8) as well as the assumption that, for each
t ≥ 0, the function f(t, ·) is increasing on C([−r, 0], [0,∞)), we get

f(t, xt) ≥ f(t, ζt) ≥ 0 for t ≥ 0.

So, by the hypothesis (2.3), we derive

sup
t≥0

(My)(t)

t+ 1
≥

(My)(t0)

t0 + 1
=

1

t0 + 1

[

ξt0 +

∞\
0

min{t0, s}f(s, xs) ds
]

≥
1

t0 + 1

[

ξt0 +

∞\
0

min{t0, s}f(s, ζs) ds
]

≥
1

t0 + 1
{ξt0 + [b(t0 + 1) − ξt0]} = b,

i.e.,
‖My‖E ≥ b = ‖y‖E .

We have thus established (3.16).
Next, we put

a = min{c, b}.

Clearly, 0 < a < d. Also, we consider the open bounded subset Ω1 of E
defined by

Ω1 = {y ∈ E : ‖y‖E < a}.

It is obvious that the zero function in E belongs to Ω1, and Ω1 ⊂ Ω2. By
combining (3.13) and (3.16), it is easy to conclude that

(3.17)
‖My‖E ≥ ‖y‖E for y ∈ K ∩ ∂Ω1,

‖My‖E ≤ ‖y‖E for y ∈ P ∩ ∂Ω2,

if c > b, and

(3.18)
‖My‖E ≤ ‖y‖E for y ∈ P ∩ ∂Ω1,

‖My‖E ≥ ‖y‖E for y ∈ K ∩ ∂Ω2,
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if b > c. That is, M satisfies either (3.17) or (3.18). By the Krasnosel’skĭı
theorem, the restriction of M to K ∩ (Ω2 \Ω1) has a fixed point. So, there
exists y ∈ K ∩ (Ω2 \Ω1) with y = My, i.e.,

(3.19) y(t) = ξt+

∞\
0

min{t, s}f(s, xs) ds for all t ≥ 0.

As y ∈ K, we have

(3.20) y(t) ≥ min{t, 1}‖y‖E for every t ≥ 0.

Also, since y ∈ Ω2 \Ω1,

(3.21) a ≤ ‖y‖E ≤ d.

Now, because of (3.1) and (3.19), the function x satisfies (1.7) and hence,
by our lemma, x is a nonnegative solution of (1.1)–(1.3). Furthermore, as
x|[0,∞) = y, we see that (3.20) and (3.21) coincide with (2.7) and (2.8),
respectively.

The proof of the theorem is complete.

4. An example. Consider the Emden–Fowler differential equation

(4.1) x′′(t) + p(t)[x(t)]2 sgnx(t) = 0,

where p is a nonnegative continuous real-valued function on [0,∞).
By applying our theorem or Corollary 1 (or, more specifically, the first

of the two results stated in the last part of Section 2) to the BVP (4.1),
(1.5), (1.3), we are led to the following result:

Assume that there exists a real number c with c > ξ so that

(4.2) c2
∞\
0

(t+ 1)2p(t) dt ≤ c− ξ.

Moreover, suppose that there exists a real number b with b > 0 and b 6= c so

that, for some fixed t0 > 0,

(4.3) b2
∞\
0

min{t0, t}(min{t, 1})2p(t) dt ≥ b(t0 + 1) − ξt0.

Then the BVP (4.1), (1.5), (1.3) has a nonnegative solution x such that (2.7)
and (2.8) hold.

Now, set

ξ = 1, p(t) =
1

36
e−t for t ≥ 0.

Then it is a matter of elementary calculations to verify that (4.2) holds if
and only if

6/5 ≤ c ≤ 6.



190 K. G. Mavridis et al.

(Note that c must be greater than 1.) Furthermore, after some manipula-
tions, we see that, if we choose t0 = 1, then (4.3) is satisfied if and only
if

either 0 < b ≤
2[6 −

√

15(2 + e−1)]

2 − 5e−1
or b ≥

2[6 +
√

15(2 + e−1)]

2 − 5e−1
.

(We note that b must be positive.) Take either

c =
6

5
and b =

2[6 −
√

15(2 + e−1)]

2 − 5e−1
,

or

c = 6 and b =
2[6 +

√

15(2 + e−1)]

2 − 5e−1
.

Then we conclude that:

The boundary value problem

x′′(t) +
1

36
e−t[x(t)]2 sgnx(t) = 0, x(0) = 0, lim

t→∞
x′(t) = 1,

has two nonnegative solutions x1 and x2 such that

x1(t) ≥

[

sup
T≥0

x1(T )

T + 1

]

min{t, 1}, x2(t) ≥

[

sup
T≥0

x2(T )

T + 1

]

min{t, 1}

for every t ≥ 0, and

2[6 −
√

15(2 + e−1)]

2 − 5e−1
≤ sup

t≥0

x1(t)

t+ 1
≤

6

5
,

6 ≤ sup
t≥0

x2(t)

t+ 1
≤

2[6 +
√

15(2 + e−1)]

2 − 5e−1
.
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différentielles non linéaires, Ann. Mat. Pura Appl. 81 (1969), 147–168.
[3] N. Azbelev, V. Maksimov and L. Rakhmatullina, Introduction to the Theory of Lin-

ear Functional-Differential Equations, Adv. Ser. Math. Sci. Engrg. 3, World Feder-
ation Publishers Company, Atlanta, GA, 1995.

[4] N. Azbelev and L. Rakhmatullina, Theory of Linear Abstract Functional-Differential

Equations and Applications, Mem. Differential Equations Math. Phys. 8 (1996).
[5] C. Bai and J. Fang, On positive solutions of boundary value problems for second-

order functional differential equations on infinite intervals, J. Math. Anal. Appl.
282 (2003), 711–731.



Positive solutions of a BVP on the half-line 191

[6] A. Constantin, On the existence of positive solutions of second order differential

equations, Ann. Mat. Pura Appl. 184 (2005), 131–138.
[7] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, Delay

Equations: Functional, Complex, and Nonlinear Analysis, Springer, New York, 1995.
[8] D. Guo, Multiple positive solutions for first order nonlinear impulsive integro-diffe-

rential equations in a Banach space, Appl. Math. Comput. 143 (2003), 233–249.
[9] D. J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Aca-

demic Press, San Diego, 1988.
[10] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equa-

tions, Springer, New York, 1993.
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