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Hydromagnetic stability of stratified shear flows
in the presence of cross flow

by Naresh Kumar Dua (Bahadurgarh), Hari Kishan (Meerut) and
Ruchi Goel (Meerut)

Abstract. The hydromagnetic stability of stratified shear flows in the presence of
cross flows is discussed. The magnetic field is applied in the direction of the main flow.
Some necessary conditions of instability, the growth rate of unstable modes and reduction
of the unstable region are discussed.

Introduction. The study of stability of stratified shear flows of an invis-
cid incompressible fluid is of importance in meteorology and oceanography.
The linear stability of a stratified parallel shear flow of inviscid incompress-
ible fluid has been extensively studied by many authors. L. M. Mack (1984)
discussed the stability of incompressible boundary layers in the presence of
cross flow. C. E. Grosch & T. J. Jackson (1991) analysed the stability of
compressible mixing layers in the presence of cross flow and showed that the
inclusion of cross flow enhances mixing at supersonic speed. The magnetic
field also has great impact on the stability of fluid flows.

M. Padmini & M. Subbiah (1995) studied the effect of the inclusion
of cross flow on the stability of shear flows. They extended the physical
arguments of S. Chandrasekhar (1961) and J. W. Miles (1961) to obtain
two different sufficient conditions for the stability of non-parallel flows. They
also obtained some necessary conditions for instability which generalize the
results of J. W. Miles (1961), L. N. Howard (1961), G. T. Kochar & R. K.
Jain (1983) and M. Subbiah & R. K. Jain (1987) in the parallel flow theory.

In this paper, the work of M. Padmini & M. Subbiah (1995) is extended
by considering a magnetic field applied parallel to the main flow. The sta-
bility of stratified shear flow of an inviscid, incompressible fluid confined
between two rigid planes in the presence of cross flow under a parallel mag-
netic field is discussed. The magnetic field is assumed to be weak.
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Formulation of the stability problem. The governing equations for
the motion of an inviscid, incompressible, stratified fluid confined between
two horizontal infinite rigid planes situated at y1 and y2 under a horizontal
parallel magnetic field are

ρ
∂vi
∂t

+ ρvj
∂vi
∂xj

= − ∂p

∂xi
+
µeHi

4π
∂Hi

∂xj
− ρgλi,(1)

∂Hi

∂t
+ vj

∂Hi

∂xj
= Hj

∂vi
∂xj

,(2)

∂ρ

∂t
+ vj

∂ρ

∂xj
= 0,(3)

∂vi
∂xi

= 0,(4)

∂Hi

∂xi
= 0,(5)

where vi is the velocity, ρ the density, p the pressure, g the acceleration due
to gravity, λi = (0, 1, 0) and Hi the magnetic field vector. The boundary
conditions are that the vertical component of the velocity vanishes on the
rigid planes situated at y = y1, y2.

Let the basic flow be given by vi = (U(y), 0,W (y)), ρ0 = ρ0(y), H =
(H0, 0, 0) and p0 = p(y) satisfying the governing equations. The boundary
conditions provide p′0(y) = −ρ0g, where the prime denotes differentiation
with respect to y.

Let U(y),W (y), ρ0(y) and p0(y) be twice continuously differentiable func-
tions of y in the flow domain. Let the perturbed state be given by [U(y) +
u, v,W (y)], ρ0(y) + ρ, p0(y) + p, (H0 + hx, hy, hz) where u, v, w, ρ, p and
(hx, hy, hz) are functions of x, y, z and t.

The linearised perturbation equations for infinitesimal normal modes of
the form f(y)ei(kx+lz−kct) are given by

iku+ v′ + ilw = 0,(6)
ikhx + h′y + ilhz = 0,(7)

i{k(U − c) + lw}ρ+ ρ′0v = 0,(8)

ρ0[i{k(U − c) + lw}u+ U ′v] = −ikp+
µe
4π

(ikH0hx),(9)

ρ0[i{k(U − c) + lw}v] = −p′ − ρg +
µe
4π

(ikH0hy),(10)

ρ0[i{k(U − c) + lw}w +W ′v] = −ilp+
µe
4π

(ikH0hz),(11)

ik(U − c)hx + ilWhx = ikH0u+ hyU
′,(12)

ik(U − c)hy + ilWhy = ikH0v,(13)
ik(U − c)hz + ilWhz = ikH0w.(14)
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Eliminating u,w, hx, hy, hz and p with the help of equations (6) to (14) we
get the following stability equation:

(15) [ρ0{k(U − c) + lw}v′ − ρ0(kU ′ + lW ′)v]′

− ρ0(k2 + l2){k(U − c) + lw}v +
ρ0(k2 + l2)N2v

k(U − c) + lW

= ρ0S

[(
v

k(U − c) + lW

)′′
− (k2 + l2)v
k(U − c) + lW

]
,

where N2(y) = −gρ′0/ρ0 is the square of the Brunt–Vaisala frequency and
S = µEH

2
0/(4πρ0). The associated boundary conditions are

(16) v = 0 at y = y1, y2.

Case of weak applied magnetic field. For weak applied magnetic
field (S � 1) and large wave number, equation (15) reduces to

(17) [ρ0{k(U − c) + lw}v′ − ρ0(kU ′ + lW ′)v]′

− ρ0(k2 + l2){k(U − c) + lw}v +
ρ0(k2 + l2)N2v

k(U − c) + lW

+ ρ0S
{ (k2 + l2)v
k(U − c) + lW

}
= 0.

We now discuss some theorems:

Theorem 1. Corresponding to an unstable parallel flow velocity (U(y),
0, 0) and Brunt–Vaisala frequency N there exists an unstable cross flow with
velocity (U(y)/2, 0, U(y)/2), Brunt–Vaisala frequency N/

√
2 and magnetic

field S/2.

Proof. We may consider two-dimensional disturbances for a parallel shear
flow with velocity(U(y), 0, 0) and applied magnetic field. Therefore the eigen-
value problem governing the stability of the parallel flow reduces to

(18) (ρ0v
′)′ − ρ0k

2v − (ρ0U
′)′v

U − c
+
ρ0(N2 + Sk2)v

(U − c)2
= 0.

The boundary conditions are given by

(19) v = 0 at y = y1, y2.

If the parallel flow is unstable then this eigenvalue problem has a complex
eigenvalue with ci > 0 for some k > 0. For the corresponding cross flow
with velocity (U(y)/2, 0, U(y)/2), Brunt–Vaisala frequency N/

√
2, magnetic

field S/2, and wave vector (k
√

2, 0, k
√

2), equations (17) and (16) reduce to
(18) and (19) which have a complex eigenvalue with ci > 0, i.e. the flow is
unstable.
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Theorem 2. The cross flow with velocity (U(y), 0, U(y)) supports an
internal gravity wave (under Boussinesq approximation) when N2+Sk2 > 0.

Proof. For the velocity field (U(y), 0, U(y)) and 1 = −k the stability
equation (17) (under Boussinesq approximation) reduces to

(20) v′′ − k2v +
2(βg + Sk2)v

c2
= 0.

Equation (20) together with boundary conditions (16) has the solution

(21) v = sin
[
nπ(y − y1)
y2 − y1

]
, n = 1, 2,

with

c2 =
2(N2 + Sk2)
2k2 + n2π2

(y2−y1)2

for N2 + Sk2 > 0. Here the real value of c implies the stability of the fluid
flow.

Theorem 3. The cross flow with velocity (U(y), 0, U(y)) is unstable (un-
der Boussinesq approximation) when N2 + Sk2 < 0.

Proof. For the velocity field (U(y), 0, U(y)) and 1 = −k the stability
equation (17) (under Boussinesq approximation) reduces to (20). WhenN2+
Sk2 < 0, equation (20) together with boundary conditions (16) has complex
eigenvalue c given by

c = ± i
√
N2 + Sk2√

2k2 + n2π2

(y2−y1)2

.

This implies the instability of the fluid flow.

For S = 0 these results reduce to that obtained by M. Padmini & M. Sub-
biah (1995).

Reduction of the stability problem. With the help of the transfor-
mations k2

1 = k2 + l2, k1U1 = kU + lW and k1c1 = kc equation (17) reduces
to

(22) [ρ0(U1 − c1)v′ − ρ0U
′
1v]′ − ρ0k

2
1(U1 − c1)v +

ρ0(N2 + Sk2
1)v

U1 − c1
= 0.

Equation (22) is similar to the corresponding equation of hydromagnetic
stratified parallel flows.

Thus the problem of stability of cross flow with velocity (U(y), 0,W (y)) is
reduced to the problem of stability of parallel flow with velocity (U1(y), 0, 0).

Therefore we have the following results:
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Theorem 4. A necessary condition for instability is that

N2 + Sk2
1 <

1
4
U ′21 =

1
4

(U ′2 +W ′2)

at least at one point in the flow domain.

Proof. For unstable modes (ci > 0) the transformation v = (U1−c1)1/2G
reduces equation (22) to

(23) [ρ0(U1 − c1)G′]′ − 1
2

(ρ0U
′
1)′G− ρ0U

′2
1 G

4(U1 − c1)

− k2
1(U1 − c1)G+

ρ0(N2 + Sk2
1)G

U1 − c1
= 0.

The corresponding boundary conditions are

(24) G = 0 at y = y1, y2.

Multiplying (23) by G, the complex conjugate of G, integrating the resulting
equation over the flow domain and using the boundary conditions (24) we
get

(25)
�
ρ0(U1 − c1)[|G′|2 + k2

1|G|2] +
1
2

�
(ρ0U

′
1)′|G|2

+
�
ρ0

[
U ′21
4
−N2 − Sk2

1

]
|G|2

U1 − c1
= 0.

The real and imaginary parts of (25) for unstable modes (ci > 0) give

(26)
�
ρ0(U1 − cr)[|G′|2 + k2

1|G|2] +
1
2

�
(ρ0U

′
1)′|G|2

+
�
ρ0

[
U ′21
4
−N2 − Sk2

1

]
(U1 − cr)|G|2

|U1 − c1|2
= 0

and

(27)
�
ρ0[|G′|2 + k2

1|G|2]−
�
ρ0

[
U ′21
4
−N2 − Sk2

1

]
|G|2

|U1 − c1|2
= 0.

Now for the validity of (27) it is necessary that

N2 + Sk2
1 <

1
4
U ′21

at least at one point in the flow domain. Thus a necessary condition for
instability is that

N2 + Sk2
1 <

1
4
U ′21 =

1
4

[U ′2 +W ′2]

at least at one point in the flow domain.
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Theorem 5. An estimate for the growth rate of an unstable mode is
given by

k2c2i ≤
[

1
4

(U ′2 +W ′2)−N2 − Sk2
1

]
max

.

Proof. From (27) it follows that

k2c2i ≤
1
4
U ′21 −N2 − Sk2

1

at least at one point in the flow domain. Since k1c1 = kc and U ′21 = U ′2+W ′2,
the above inequality implies

k2c2i ≤
[
U ′2 +W ′2

4
−N2 − Sk2

1

]
max

.

Theorem 6. A necessary condition for the existence of an unstable
mode is that

c2i ≤ λ(cr − a+ b)

where

λ =
max(U ′21 /4−N2 − Sk2

1)
ak2

1

, a > 0.

Proof. Adding a− b times (27) to (26), we get

(28)
�
ρ0(U1 − cr + a− b)Q+

� (ρ0U
′
1)′

2
|G|2

+
� ρ0(U1 − cr + b− a)(U ′21 /4−N2 − Sk2

1)
|U1 − c1|2

|G|2 = 0,

where a = U1min , b = U1max and Q = |G′|2 + k2
1|G|2.

Now U1 − cr + a − b is negative throughout the flow domain because
a < cr < b. Therefore (28) implies that

(29)
� (ρ0U

′
1)′

2
|G|2 ≥

� (a− b− U1 + cr)(U ′21 /4−N2 − Sk2
1)

|U1 − c1|2
|G|2.

Adding cr times (27) to (26), we get

(30)
�
ρ0U1Q+

� (ρ0U
′
1)′

2
|G|2 +

� ρ0(U1 − 2cr)(U ′21 /4−N2 − Sk2
1)

|U1 − c1|2
|G|2 = 0.

Eliminating
	 (ρ0U ′

1)′

2 |G|2 from (29) and (30) we get
�
ρ0U1Q+

� ρ0(a− b− cr)(U ′21 /4−N2 − Sk2
1)

|U1 − c1|2
|G|2 ≤ 0.

This can be written as

(31)
�
ρ0U1(|G′|2 +k2

1|G|
2)+

� ρ0(a− b− cr)(U ′21 /4−N2 − Sk2
1)

|U1 − c1|2
|G|2 ≤ 0.
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For the validity of (31) it is necessary that

U1k
2
1 ≤

(U ′21 /4−N2 − Sk2
1)(cr − a+ b)

|U1 − c1|2

at least at one point in the flow domain. This implies that

c2i ≤ λ(cr − a+ b) where λ =
max(U ′21 /4−N2 − Sk2

1)
ak2

1

.

Theorem 7. A necessary condition for the existence of an unstable
mode is that (

cr −
a+ b

2

)2

+ c2i ≤
(
b− a

2

)2

− Smin.

Proof. This can be proved by following the procedure of S. C. Agrawal
& G. S. Agrawal (1969).

Theorem 8. A necessary condition for the existence of an unstable
mode is that(

cr −
a+ b

2

)2

+ c2i +
J0c

4
i

[P + µ2]2
≤
(
b− a

2

)2

− Smin,

where

J0 = min J = min(βg/U ′21 ),

P 2 =
U ′21max

λ2 + k2
1

[
1
4
− J0 +

√(
1
4
− J0

)2

+
4(λ2 + k2)µ2

U ′21max

]
µ2 =

(
9
4

+
b|U ′′|max

U ′21max

)
Smax

and λ2 is the lower bound of
	
ρ|G′|2/ρ|G|2.

Proof. This can be proved by following the procedure of G. T. Kochar &
R. K. Jain (1983).

Theorem 9. For a > 0 and λ < λc = (3b − a) − 2
√
b(2b− a) + Smin,

the region of unstable modes obtained by S. C. Agrawal & G. S. Agrawal
(1969) gets reduced.

Proof. In Theorems 4 and 3 it is shown that arbitrary unstable modes
(if any) lie inside the semi-circle and parabola given by(

cr −
a+ b

2

)2

+ c2i =
(
b− a

2

)2

− Smin,(32)

c2i = λ(cr − a+ b).(33)

Equation (33) for given values of λ, a and b represents a parabola in the
upper half of the (cr, ci)-plane whose axis is the axis of cr, vertex at a − b
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and latus rectum equal to λ. Thus for given values of a and b equation (33)
gives different parabolas for different values of λ.

Now we calculate the value of λ = λc (say) for which the parabola (33)
touches the circle (32).

Eliminating c2i from equations (32) and (33), we get

(34) c2r − (a+ b− λ)cr + (λb− λa+ ab+ Smin) = 0.

The parabola (33) touches the circle (32) only when the two roots of cr given
by (34) coincide. For equal roots of (34), we have

(a+ b− λ)2 − 4(λb− λa+ ab+ Smin) = 0.

This implies that

λ2 − 2λ(3b− a) + (b− a)2 − 4Smin = 0.

This gives

(35)
λ = (3b− a)±

√
(3b− a)2 − (b− a)2 + 4Smin,

λ = (3b− a)± 2
√
b(2b− a) + Smin.

For the critical value of λ the smaller of two values given by equation (35) is
taken. Thus one obtains a criterion for reduction of the semi-circle region:
If λ < λc, where

λc = (3b− a)− 2
√
b(2b− a) + Smin,

then the region of unstable modes gets reduced.
This proves the theorem.

Concluding remarks. In this paper, the stability of stratified shear
flow of an inviscid, incompressible fluid confined between two rigid planes
in the presence of cross flow under a parallel magnetic field has been inves-
tigated. It has been shown that the cross flow with velocity (U(y), 0, U(y))
supports the internal gravity wave (under Boussinesq approximation) when
N2 + Sk2 > 0, and the flow is unstable when N2 + Sk2 < 0. The stabil-
ity problem for cross flow has also been reduced to the stability of parallel
flows by the introduction of suitable transformations. Then some necessary
conditions of instability, the growth rate of unstable modes and reduction
of the unstable region have been obtained. The result on the reduction of
the unstable region can be further improved by considering the semi-ellipse
type region of unstable modes.
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