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Multiplicity results for a class of
concave-convex elliptic systems involving

sign-changing weight functions

by Honghui Yin (Nanjing and Huaian) and Zuodong Yang (Nanjing)

Abstract. Our main purpose is to establish the existence of weak solutions of second
order quasilinear elliptic systems8>>>><>>>>:

−∆pu+ |u|p−2u = f1λ1(x)|u|q−2u+
2α

α+ β
gµ|u|α−2u|v|β , x ∈ Ω,

−∆pv + |v|p−2v = f2λ2(x)|v|q−2v +
2β

α+ β
gµ|u|α|v|β−2v, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

where 1 < q < p < N and Ω ⊂ RN is an open bounded smooth domain. Here λ1, λ2, µ ≥ 0
and fiλi(x) = λifi+(x) + fi−(x) (i = 1, 2) are sign-changing functions, where fi±(x) =
max{±fi(x), 0}, gµ(x) = a(x) +µb(x), and ∆pu = div(|∇u|p−2∇u) denotes the p-Laplace
operator. We use variational methods.

1. Introduction. In this paper we consider some new results concerning
the existence of solutions for quasilinear problems of the type

(1.1)


−∆pu+ |u|p−2u= f1λ1(x)|u|q−2u+

2α
α+β

gµ|u|α−2u|v|β, x∈Ω,

−∆pv+ |v|p−2v= f2λ2(x)|v|q−2v +
2β
α+β

gµ|u|α|v|β−2v, x∈Ω,

u = v = 0, x ∈ ∂Ω,

where 1 < q < p < N , α, β > 1 satisfy p < α+β ≤ p∗ and p∗ = pN/(N − p)
denotes the critical Sobolev exponent. Ω ⊂ RN is an open bounded smooth
domain. Moreover, λ1, λ2, µ ≥ 0 and fiλi(x) = λifi+(x) + fi−(x) (i = 1, 2)
are sign-changing functions, where fi±(x) = ±max{±fi(x), 0}, gµ(x) =
a(x) + µb(x), and ∆pu = div(|∇u|p−2∇u) denotes the p-Laplace operator.
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When we set f1λ1 = f2λ2 = f , gµ = g, α = β, α + β = s and
u = v, system (1.1) reduces to the semilinear scalar quasilinear elliptic
equation

(1.2)

{
−∆pu+ |u|p−2u = f(x)|u|q−2u+ g(x)|u|s−2u, x ∈ Ω,
u = 0, x ∈ ∂Ω.

It has been studied extensively since Ambrosetti, Brézis and Cerami [ABC]
considered the equation

(1.3)


−∆u = λuq−1 + us−1, x ∈ Ω,
u > 0, x ∈ Ω,
u ∈ H1

0 (Ω),

where 1 < q < 2 < s ≤ 2∗, λ > 0 and Ω is a bounded domain in RN .
They found that there exists λ0 > 0 such that problem (1.3) admits at least
two positive solutions for λ ∈ (0, λ0), a positive solution for λ = λ0 and no
positive solution for λ > λ0.

When f(x), g(x) are some positive constants, p = 2, 2 < s ≤ 2∗ and
q > 1, problem (1.2) was considered in [AGP], [BW], [CFP] and the ref-
erences therein. Subsequently, in [GMP], [GP], problem (1.2) was studied
when 1 < p < N and 1 < q < p. The results obtained were similar to the
results of [ABC], but only for some ranges of the exponents p, q. Prashanth–
Sreenadh [PS] have studied problem (1.2) in the unit ball BN (0; 1) ⊂ RN

when s = p∗ and g(x) ≡ 1. Recently, T. F. Wu [W1] studied (1.2) when
p = 2 and f(x) = λf+(x) + f−(x) is sign-changing and g(x) = a(x) +µb(x);
he obtained multiple positive solutions for (1.2) in RN by variational meth-
ods.

In recent years, much attention has been paid to the existence of solutions
for elliptic systems, in particular, for the system

(1.4)


−∆pu = λ|u|q−2u+

2α
α+ β

|u|α−2u|v|β, x ∈ Ω,

−∆pv = θ|v|q−2v +
2β

α+ β
|u|α|v|β−2v, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

where α + β = p∗. When p = 2 and q = 2, Alves et al. [AMS] proved the
existence of least energy solutions of (1.4) for any λ, θ ∈ (0, λ1), where λ1

denotes the first eigenvalue of the operator −∆. Subsequently, Han [H1],
[H2] considered the existence of multiple positive solutions for (1.4), and
T. S. Hsu [H3] studied (1.4) when 1 < q < p < N , α + β = p∗. Before
T. S. Hsu’s work, T. F. Wu [W2] considered the following semilinear elliptic
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system with sign-changing weight functions:

(1.5)


−∆u = λf(x)λ|u|q−2u+

α

α+ β
h(x)|u|α−2u|v|β, x ∈ Ω,

−∆v = µg(x)θ|v|q−2v +
β

α+ β
h(x)|u|α|v|β−2v, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.
He proved problem (1.5) has at least two positive solutions when (λ, µ) be-
longs to a certain subset of R2. More precisely, Costa and Magalhães [CM]
considered subquadratic perturbations of semilinear elliptic systems by min-
imization methods. Cao and Tang [CT] considered a class of superlinear
elliptic systems by variational methods. Bartsch and Clapp [BC] studied
an elliptic system by critical point theorems. In [ZW] and [DSZ], multiplic-
ity results for elliptic systems were obtained by using an abstract linking
theorem and the decomposition of the Nehari manifold respectively.

However, as far as we know, there are few results on problem (1.1) with
concave-convex nonlinearities. Motivated by [H3], [W1] and [W2], we shall
extend the above results to problem (1.1).

In this paper we assume that the functions fiλi , gµ with λi, µ ≥ 0 (i= 2)
satisfy the following conditions:

(C1) fi ∈ Lq
∗
(Ω), fiλi(x) = λifi+(x) + fi−(x) with fi±(x) =

±max{±fi(x), 0} for i = 1, 2 and q∗ = α+β
α+β−q ;

(C2) gµ(x) = a(x) + µb(x) ∈ C(Ω), where a(x), b(x) are nonnegative
continuous functions with a(x) ≤ 1;

(C3) there exists an open set Ω′ ⊂ Ω containing 0 such that fi(x) > 0,
i.e., fiλi(x) = λifi+(x) (i = 1, 2) in Ω′;

(C4) b(x) > 0 in Ω′, and µ is large enough such that gµ(x) ≥ 1 in Ω′.

For a bounded smooth open set Ω ⊂ RN , we denote by ‖ · ‖, ‖ · ‖Lp the
norm of W 1,p

0 (Ω) and Lp(Ω) respectively, that is,

‖u‖ =
( �

Ω

(|∇u|p + |u|p) dx
)1/p

, ‖u‖Lp =
( �

Ω

|u|p dx
)1/p

.

Obviously, H := W 1,p
0 (Ω)×W 1,p

0 (Ω) is a Banach space. Let H ′ be the dual
of H, and 〈 , 〉 the duality paring between H ′ and H. The norm on H is
given by

‖z‖ = ‖(u, v)‖ = (‖u‖p + ‖v‖p)1/p

and the norm on Lp(Ω)× Lp(Ω) by

‖z‖Lp = ‖(u, v)‖Lp = (‖u‖pLp + ‖v‖pLp)
1/p,

where z = (u, v) ∈ H.
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Then we have the following results:

Theorem 1.1. Assume conditions (C1) and (C2) hold, and p < α + β
≤ p∗. Then there exists Λ0 > 0 such that when

0 < (λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )α+β−p(1 + µ‖b‖∞)p−q < Λ0,

system (1.1) has at least one positive solution in H.

Theorem 1.2. Assume conditions (C1)–(C4) hold, and p < α+ β ≤ p∗.
Then there exists Λ1 > 0 such that when

0 < (λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )α+β−p(1 + µ‖b‖∞)p−q < Λ1,

system (1.1) has at least two positive solutions in H.

We will show the existence and multiplicity of nontrivial solutions of
(1.1) by looking for critical points of the associated functional

J(u, v) =
1
p

(‖u‖p + ‖v‖p)− 1
q

�

Ω

(f1λ1 |u|q + f2λ2 |v|q) dx(1.6)

− 2
α+ β

�

Ω

gµ|u|α|v|β dx.

This paper is organized as follows. In Section 2, we give some notation
and preliminaries. In Section 3, we prove Theorems 1.1 and 1.2.

2. Notation and preliminaries. We define the Palais–Smale sequence
((PS)-sequence), (PS)-value, and (PS)-conditions in H for J as follows.

Definition 2.1.

(I) For c ∈ R, a sequence {zn} ⊂ H is a (PS )c-sequence for J if
J(zn) = c+ o(1) and J ′(zn) = o(1) strongly in H ′ as n→∞;

(II) c ∈ R is a (PS )-value in H for J if there exists a (PS)c-sequence
in H for J ;

(III) J satisfies the (PS )c-condition in H if every (PS)c-sequence in H
for J contains a convergent subsequence.

Throughout this paper, we denote weak convergence by ⇀, and strong
convergence by →.

We define

Sα+β = inf
u∈W 1,p(Ω)\{0}

‖u‖p

(
	
Ω |u|α+β dx)

p
α+β

,(2.1)

Sαβ = inf
z∈H\{0}

‖z‖p

(
	
Ω |u|α|v|β dx)

p
α+β

.(2.2)

Clearly, we have
	
Ω |u|

α|v|β dx ≤ S−(α+β)/p
αβ ‖z‖α+β.
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Lemma 2.2. Assume α, β > 1 and α+β ≤ p∗, and let Ω ⊂ RN (N ≥ 3)
be a domain (not necessarily bounded). Then

Sαβ =
[(

α

β

) β
α+β

+
(
α

β

)− α
α+β
]
Sα+β.

Proof. The proof is essentially given in [AMS] when p = 2. Modifying
that proof, we can deduce our result. For the reader’s convenience, we give
a sketch here.

Suppose {wn} is a minimizing sequence for Sα+β, and let un = swn and
vn = twn, where s, t > 0 will be chosen later. Then from (2.2), we infer that

Sαβ ≤
sp + tp

(sαtβ)
p

α+β

‖wn‖p

(
	
Ω |wn|α+β dx)

p
α+β

(2.3)

=
[(

s

t

) pβ
α+β

+
(
s

t

) pα
α+β
]

‖wn‖p

(
	
Ω |wn|α+β dx)

p
α+β

.

Define

h(x) = x
pβ
α+β + x

− pα
α+β , x > 0.

By a direct calculation, the minimum of h is achieved at x0 = (α/β)1/p with
the minimum value

h(x0) =
(
α

β

) β
α+β

+
(
α

β

)− α
α+β

.

Thus, choosing s, t > 0 in (2.3) such that s/t = (α/β)1/p, we obtain

Sαβ ≤
[(

α

β

) β
α+β

+
(
α

β

)− α
α+β
]
Sα+β.

To complete the proof, let zn = (un, vn) be a minimizing sequence for Sαβ.
Define ωn = tnvn for some tn > 0 such that

�

Ω

|un|α+β dx =
�

Ω

|ωn|α+β dx.

Then
�

Ω

|un|α|ωn|β dx ≤
α

α+ β

�

Ω

|un|α+β dx+
β

α+ β

�

Ω

|ωn|α+β dx

=
�

Ω

|un|α+β dx =
�

Ω

|ωn|α+β dx.
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We deduce from the above inequality that
‖zn‖p

(
	
Ω |un|α|vn|β dx)

p
α+β

= t
pβ
α+β
n

‖zn‖p

(
	
Ω |un|α|ωn|β dx)

p
α+β

≥ t
pβ
α+β
n

‖un‖p

(
	
Ω |un|α+β dx)

p
α+β

+ t
pβ
α+β
−p

n
‖ωn‖p

(
	
Ω |ωn|α+β dx)

p
α+β

≥ h(tn)Sα+β ≥ h(t0)Sα+β.

Passing to the limit in the above inequality, we obtain

Sαβ ≥
[(

α

β

) β
α+β

+
(
α

β

)− α
α+β
]
Sα+β.

As the energy functional J defined in (1.6) is not bounded below on H,
it is useful to consider the functional on the Nehari manifold

N = {z ∈ H \ {0} | 〈J ′(z), z〉 = 0}.
Thus z = (u, v) ∈ N if and only if

(2.4) 〈J ′(z), z〉 = ‖z‖p −
�

Ω

(f1λ1 |u|q + f2λ2 |v|q) dx− 2
�

Ω

gµ|u|α|v|β dx = 0.

Note that N contains every nonzero solution of problem (1.1). Furthermore,
we have the following result.

Lemma 2.3. The energy functional J is coercive and bounded below
on N.

Proof. Assume z = (u, v) ∈ N. Then

J(u, v) =
(

1
p
− 1
α+ β

)
‖z‖p −

(
1
q
− 1
α+ β

) �

Ω

(f1λ1 |u|q + f2λ2 |v|q) dx.

By the Hölder inequality and the Sobolev embedding theorem,

J(u, v) ≥ α+ β − p
p(α+ β)

‖z‖p

− α+ β − q
q(α+ β)

(λ1‖f1+‖Lq∗‖u‖
q
Lα+β + λ2‖f2+‖Lq∗‖v‖

q
Lα+β )

≥ α+β−p
p(α+β)

‖z‖p − α+β−q
q(α+β)

(λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )S−q/pα+β ‖z‖
q

=
α+ β − p
p(α+ β)

‖z‖p − c1(λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )‖z‖q,

where c1 = α+β−q
q(α+β)S

−q/p
α+β . Thus J is coercive.
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By the Young inequality, we have

J(u, v) ≥ α+ β − p
p(α+ β)

‖z‖p − ε‖z‖p − cε(λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )
p
p−q .

Set ε = α+β−p
p(α+β) . Then

J(u, v) ≥ −c0(λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )
p
p−q ,

where c0 is a positive constant depending on α, β, p, q, Sα+β.

Set

c∞ =
2(α+ β − p)
p(α+ β)

(
Sαβ

2

) α+β
α+β−p

− c0(λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )
p
p−q .

Then we have the following result.

Lemma 2.4. J satisfies the (PS )c-condition on N for all c satisfying

(2.5) −∞ < c < c∞.

Proof. Let {zn} ⊂ N be a (PS)c-sequence for J with c ∈ (−∞, c∞).
Write zn = (un, vn). We know from Lemma 2.3 that zn is bounded on N,
and so zn ⇀ z = (u, v) up to a subsequence, where z is a critical point of J .
Furthermore, we may assume

un ⇀ u, vn ⇀ v, x ∈W 1,p
0 (Ω),

un → u, vn → v, a.e. in Ω,

un → u, vn → v, in Ls(Ω) for 1 ≤ s < p∗.

Hence J ′(z) = 0 and�

Ω

(f1λ1 |un|q + f2λ2 |vn|q) dx =
�

Ω

(f1λ1 |u|q + f2λ2 |v|q) dx+ o(1).

Let un = un − u, vn = vn − v, zn = (un, vn). Then by the Brézis–Lieb
lemma [BL], we have

‖zn‖p = ‖zn‖p − ‖z‖p + o(1),

and by an argument of Han [H2, Lemma 2.1], we obtain�

Ω

gµ|un|α|vn|β dx =
�

Ω

gµ|un|α|vn|β dx−
�

Ω

gµ|u|α|v|β dx+ o(1).

Since J(zn) = c+ o(1) and J ′(zn) = 0, we deduce that

(2.6)
1
p
‖zn‖p −

2
α+ β

�

Ω

gµ|un|α|vn|β dx = c− J(z) + o(1)

and

(2.7) ‖zn‖p − 2
�

Ω

gµ|un|α|vn|β dx = o(1).
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Assume ‖zn‖p → m, so 2
	
Ω gµ|un|

α|vn|β dx → m. If m = 0, the proof is
complete. Assume m > 0. From (2.7) we have(

m

2

) p
α+β

= lim
n→∞

( �

Ω

gµ|un|α|vn|β dx
) p
α+β ≤ S−1

αβ ‖zn‖
p = S−1

αβm.

Thus m ≥ 2(Sαβ/2)
α+β
α+β−p . From Lemma 2.3, (2.6) and (2.7) we obtain

c =
(

1
p
− 1
α+ β

)
m+ J(z)

≥ 2(α+ β − p)
p(α+ β)

(
Sαβ

2

) α+β
α+β−p

− c0(λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )
p
p−q .

This contradicts c < c∞.

The Nehari manifold N is closely linked to the behavior of the function
hz : t 7→ J(tz) for t > 0. Such maps are known as fibering maps and
were introduced by Drábek and Pohozaev in [DP] and also discussed by
Brown and Zhang [BZ] and Brown and Wu [BW1], [BW2]. If z = (u, v) ∈
W 1,p(Ω)×W 1,p(Ω), we have

hz(t) =
tp

p
‖z‖p − tq

q

�

Ω

(f1λ1 |u|q + f2λ2 |v|q) dx−
2tα+β

α+ β

�

Ω

gµ|u|α|v|β dx,

h′z(t) = tp−1‖z‖p − tq−1
�

Ω

(f1λ1 |u|q + f2λ2 |v|q) dx− 2tα+β−1
�

Ω

gµ|u|α|v|β dx,

h′′z(t) = (p− 1)tp−2‖z‖p − (q − 1)tq−2
�

Ω

(f1λ1 |u|q + f2λ2 |v|q) dx

− 2(α+ β − 1)tα+β−2
�

Ω

gµ|u|α|v|β dx.

It is easy to see that

th′z(t) = ‖tz‖p−
�

Ω

(f1λ1 |tu|q + f2λ2 |tv|q) dx−2
�

Ω

gµ|tu|α|tv|β dx= 〈J ′(tz), tz〉.

So for z ∈ W 1,p(Ω) ×W 1,p(Ω) \ {(0, 0)} and t > 0, we have tz ∈ N if and
only if h′z(t) = 0, i.e., positive critical points of hz correspond to points on
the Nehari manifold. In particular, h′z(1) = 0 if and only if z ∈ N. Thus it
is natural to split N into three parts corresponding to local minima, local
maxima, and points of inflection. Accordingly, we define

N+ = {z ∈ N | h′′z(1) > 0},
N0 = {z ∈ N | h′′z(1) = 0},
N− = {z ∈ N | h′′z(1) < 0}.

We now derive some basic properties of N+, N0 and N−.
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Lemma 2.5. Suppose that z0 is a local minimizer for J on N, and that
z0 6∈ N0. Then J ′(z0) = 0 in H ′(Ω).

Proof. The proof is almost the same as in Brown and Zhang [BZ, The-
orem 2.3] (or see Binding et al. [BDH]).

We can easily see that for each z ∈ N,

h′′z(1) = (p− 1)‖z‖p − (q − 1)
�

Ω

(f1λ1 |u|q + f2λ2 |v|q) dx

− 2(α+ β − 1)
�

Ω

gµ|u|α|v|β dx

= p‖z‖p − q
�

Ω

(f1λ1 |u|q + f2λ2 |v|q) dx− 2(α+ β)
�

Ω

gµ|u|α|v|β dx.

Then

h′′z(1) = (p− q)‖z‖p − 2(α+ β − q)
�

Ω

gµ|u|α|v|β dx,(2.8)

h′′z(1) = (p− α− β)‖z‖p − (q − α− β)
�

Ω

(f1λ1 |u|q + f2λ2 |v|q) dx.(2.9)

So we have the following result.

Lemma 2.6.

(i) For any z ∈ N+ ∪N0, we have
�

Ω

(f1λ1 |u|q + f2λ2 |v|q) dx > 0.

(ii) For any z ∈ N−, we have
	
Ω gµ|u|

α|v|β dx > 0.

Proof. The result follows immediately from (2.8) and (2.9).

If we assume

Λ0 =
(
p− q

2

)p−q (α+ β − p)α+β−p

(α+ β − q)α+β−q

[(
α

β

) β
α+β

+
(
α

β

)− α
α+β
] (α+β)(p−q)

p

Sα+β−q
α+β ,

then we have the following result.

Lemma 2.7. If

(2.10) (λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )α+β−p(1 + µ‖b‖∞)p−q < Λ0,

then N0 = ∅.
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Proof. Suppose the contrary. If there exist λ1, λ2 > 0 and µ ≥ 0 such
that (2.10) holds and N0 6= ∅, then for any z ∈ N0, from (2.8) we have

‖z‖p =
2(α+ β − q)

p− q

�

Ω

gµ|u|α|v|β dx

=
2(α+ β − q)

p− q

�

Ω

(a(x) + µb(x))|u|α|v|β dx

≤ 2(α+ β − q)
p− q

(1 + µ‖b‖∞)S−(α+β)/p
αβ ‖z‖α+β.

So we obtain

(2.11)
[ (p− q)S(α+β)/p

αβ

2(α+ β − q)(1 + µ‖b‖∞)

] 1
α+β−p

≤ ‖z‖.

Similarly, from (2.9) we have

‖z‖p =
q − α− β
p− α− β

�

Ω

(f1λ1 |u|q + f2λ2 |v|q) dx

≤ q − α− β
p− α− β

(λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )S−q/pα+β ‖z‖
q.

Then

(2.12) ‖z‖ ≤
[
q − α− β
p− α− β

(λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )S−q/pα+β

] 1
p−q

.

From (2.11) and (2.12), we see that[ (p− q)S(α+β)/p
αβ

2(α+ β − q)(1 + µ‖b‖∞)

] 1
α+β−p

≤
[
q − α− β
p− α− β

(λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )S−q/pα+β

] 1
p−q

,

which implies

(λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )α+β−p(1 + µ‖b‖∞)p−q

≥
(
p− q

2

)p−q (α+ β − p)α+β−p

(α+ β − q)α+β−q

[(
α

β

) β
α+β

+
(
α

β

)− α
α+β
] (α+β)(p−q)

p

Sα+β−q
α+β

= Λ0,

contradicting (2.10).

In order to get a better understanding of the Nehari manifold and fibering
maps, we consider the function mz : R+ → R defined by

(2.13) mz(t) = tp−q‖z‖p − 2tα+β−q
�

Ω

gµ|u|α|v|β dx.
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Clearly, tz ∈ N if and only if

(2.14) mz(t) =
�

Ω

(f1λ1 |u|q + f2λ2 |v|q) dx.

Moreover,

m′z(t) = (p− q)tp−q−1‖z‖p − 2(α+ β − q)tα+β−q−1
�

Ω

gµ|u|α|v|β dx.

So it is easy to see that if tz ∈ N, then

tq−1m′z(t) = h′′z(t).

Hence, tz ∈ N+ (N−) if and only if m′z > 0 (< 0).
Suppose z = (u, v) ∈W 1,p(Ω)×W 1,p(Ω)\{(0, 0)}. Then mz has a unique

critical point at t = tmax(z), where

tmax(z) =
[

(p− q)‖z‖p

2(α+ β − q)
	
Ω gµ|u|α|v|β dx

] 1
α+β−p

> 0,

and clearly mz is strictly increasing on (0, tmax(z)) and strictly decreasing
on (tmax(z),∞) with limt→∞mz(t) = −∞. Moreover, if (2.10) holds, then

mz(tmax(z)) =
α+ β − p
α+ β − q

[
p− q

2(α+ β − q)

] p−q
α+β−p

‖z‖
p(α+β−q)
α+β−p

×
( �

Ω

gµ|u|α|v|β dx
) q−p
α+β−p

≥ α+ β − p
α+ β − q

[
p− q

2(α+ β − q)

] p−q
α+β−p

‖z‖q

× [(1 + µ‖b‖∞)S−(α+β)/p
αβ ]

q−p
α+β−p

≥ α+ β − p
α+ β − q

[
p− q

2(α+ β − q)
1

(1 + µ‖b‖∞)S−(α+β)/p
αβ

] p−q
α+β−p

×
	
Ω(λ1f1+|u|q + λ2f2+|v|q) dx

(λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )S−q/pα+β

≥ α+ β − p
α+ β − q

[
p− q

2(α+ β − q)

] p−q
α+β−p

×
S
q/p
α+βS

(α+β)(q−p)
p(α+β−p)
αβ

	
Ω(λ1f1+|u|q + λ2f2+|v|q) dx

(λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )(1 + µ‖b‖∞)
p−q

α+β−p

≥
�

Ω

(f1λ1 |u|q + f2λ2 |v|q) dx.

Then we have the following result.



62 H. H. Yin and Z. D. Yang

Lemma 2.8. Fix z = (u, v) ∈W 1,p(Ω)×W 1,p(Ω) \ {(0, 0)}.

(i) If
	
Ω(f1λ1 |u|q+f2λ2 |v|q) dx ≤ 0, then there is a unique t− = t−(z) >

tmax(z) such that t−z ∈ N−. Moreover,

J(t−z) = sup
t≥0

J(tz).

(ii) If
	
Ω(f1λ1 |u|q+f2λ2 |v|q) dx > 0, then there are unique t− = t−(z) >

tmax(z) > t+(z) = t+ > 0 such that t−z ∈ N− and t+z ∈ N+.
Moreover,

J(t+z) = inf
0≤t≤tmax(z)

J(tz), J(t−z) = sup
t≥t+

J(tz).

Proof. (i) Suppose
	
Ω(f1λ1 |u|q + f2λ2 |v|q) dx ≤ 0. Then (2.14) has a

unique solution t− > tmax(z) such that m′z(t
−) < 0 and h′z(t

−) = 0. Hence,
as tq−1m′z(t) = h′′z(t), hz has a unique critical point at t = t− and h′′z(t

−) < 0,
thus t−z ∈ N− and

J(t−z) = sup
t≥0

J(tz).

(ii) Suppose
	
Ω(f1λ1 |u|q + f2λ2 |v|q) dx > 0. Since

mz(tmax(z)) >
�

Ω

(f1λ1 |u|q + f2λ2 |v|q) dx,

(2.14) has exactly two solutions t+ < tmax(z) < t− such that mz(t+) > 0 and
mz(t−) < 0. Hence, there are exactly two multiples of z lying in N, namely
t+z ∈ N+ and t−z ∈ N−. Thus, as tq−1m′z(t) = h′′z(t), hz has exactly two
critical points at t = t+ and t = t− with h′′z(t

+) > 0 and h′′z(t
−) < 0.

Thus, hz is decreasing on (0, t+) and on (t−,∞), and increasing on (t+, t−).
Therefore,

J(t+z) = inf
0≤t≤tmax(z)

J(tz), J(t−z) = sup
t≥t+

J(tz).

Remark 2.9. If λ1 = λ2 = 0, then by Lemma 2.8(i), we have N+ = ∅,
so N = N− for all µ ≥ 0.

Now we write N = N+ ∪N− and define

θ = inf
z∈N

J(z), θ+ = inf
z∈N+

J(z), θ− = inf
z∈N−

J(z).

Then we have the following result.

Theorem 2.10.

(i) If
0 < (λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )α+β−p(1 + µ‖b‖∞)p−q < Λ0,

then θ ≤ θ+ < 0.
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(ii) If

0 < (λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )α+β−p(1 + µ‖b‖∞)p−q <
q

p
Λ0,

then d < θ− for some positive constant d depending on p, q, α, β,
f1λ1 , f2λ2 and Ω.

Proof. (i) Let z ∈ N+. By (2.8) we have

p− q
2(α+ β − q)

‖z‖p >
�

Ω

gµ|u|α|v|β dx,

hence

J(z) =
(

1
p
− 1
q

)
‖z‖p + 2

(
1
q
− 1
α+ β

) �

Ω

gµ|u|α|v|β dx

<

[(
1
p
− 1
q

)
+ 2
(

1
q
− 1
α+ β

)
p− q

2(α+ β − q)

]
‖z‖p

=
[

p− q
q(α+ β)

− p− q
pq

]
‖z‖p.

So we deduce that θ ≤ θ+ < 0 by the definition of θ, θ+.

(ii) Set z ∈ N−. By (2.8) and (2.9) we have

p− q
2(α+ β − q)

‖z‖p <
�

Ω

gµ|u|α|v|β dx,

p− α− β
q − α− β

‖z‖p >
�

Ω

(f1λ1 |u|q + f2λ2 |v|q) dx.

Moreover, by the Hölder inequality and the Sobolev embedding theorem,
�

Ω

gµ|u|α|v|β dx ≤ (1 + µ‖b‖∞)S−(α+β)/p
αβ ‖z‖α+β.

This implies

‖z‖ >
[ (p− q)S(α+β)/p

αβ

2(α+ β − q)(1 + µ‖b‖∞)

] 1
α+β−p

.

Thus

J(z) ≥ α+ β − p
p(α+ β)

‖z‖p − α+ β − q
q(α+ β)

(λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )S−q/pα+β ‖z‖
q

= ‖z‖q
[
α+β−p
p(α+ β)

‖z‖p−q − α+β− q
q(α+ β)

(λ1‖f1+‖Lq∗+λ2‖f2+‖Lq∗ )S−q/pα+β

]
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>

[ (p− q)S(α+β)/p
αβ

2(α+ β − q)(1 + µ‖b‖∞)

] q
α+β−p

×
{
α+ β − p
p(α+ β)

[ (p− q)S(α+β)/p
αβ

2(α+ β − q)(1 + µ‖b‖∞)

] p−q
α+β−p

− α+ β − q
q(α+ β)

(λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )S−q/pα+β

}
.

So if 0 < (λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )α+β−p(1 + µ‖b‖∞)p−q < (q/p)Λ0, then
J(z) > d for all z ∈ N−, where d > 0 depends on p, q, α, β, f1λ1 , f2λ2

and Ω.

3. Proofs of main results. In this section we prove Theorems 1.1
and 1.2.

First, we establish the following result.

Proposition 3.1.

(i) If

0 < (λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )α+β−p(1 + µ‖b‖∞)p−q < Λ0,

then there exists a (PS )θ-sequence {zn} ⊂ N in H for J .
(ii) If

0 < (λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )α+β−p(1 + µ‖b‖∞)p−q <
q

p
Λ0,

then there exists a (PS )θ−-sequence {zn} ⊂ N in H for J .

Proof. The proof is almost the same as that in [W3, Proposition 9].

Now we establish the existence of a local minimum for J on N+.

Theorem 3.2. If

0 < (λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )α+β−p(1 + µ‖b‖∞)p−q < Λ0,

then there exists a minimizer z0 ∈ N+ of J and it satisfies:

(i) J(z0) = θ = θ+ < 0;
(ii) z0 is a positive solution of (1.1);

(iii) ‖z0‖ → 0 as λ1 → 0 and λ2 → 0 at the same time.

Proof. By Proposition 3.1(i), there exists a minimizing sequence {zn} ⊂
N for J such that

(3.1) J(zn) = θ + o(1), J ′(zn) = o(1).
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Thus by Lemma 2.3, {zn} is bounded in H. Then there exists a subsequence
(still denoted by {zn}) and z0 = (u0, v0) ∈ H such that

(3.2)


un ⇀ u0, vn ⇀ v0, x ∈W 1,p

0 (Ω),
un → u0, vn → v0, a.e. in Ω,

un → u0, vn → v0, in Ls(Ω) for 1 ≤ s < p∗.

Then as n→∞,

(3.3)
�

Ω

(f1λ1 |un|q + f2λ2 |vn|q) dx =
�

Ω

(f1λ1 |u0|q + f2λ2 |v0|q) dx+ o(1).

First, we claim that z0 is a nontrivial solution of (1.1). By (3.1) and (3.2),
it is easy to verify that z0 is a weak solution of (1.1). Combining (3.2) and
zn ∈ N, we deduce that

(3.4)
�

Ω

(f1λ1 |un|q + f2λ2 |vn|q) dx =
q

p

α+ β − p
α+ β − q

‖zn‖p −
q(α+ β)
α+ β − q

J(zn).

From θ < 0, we get

(3.5)
�

Ω

(f1λ1 |un|q + f2λ2 |vn|q) dx ≥ −
q(α+ β)
α+ β − q

θ > 0.

Thus z0 is a nontrivial solution of (1.1).
Next, we prove zn → z0 in H and J(z0) = θ. For any z ∈ N, by (3.4) we

have

J(z) =
α+ β − p
p(α+ β)

‖z‖p − α+ β − q
q(α+ β)

�

Ω

(f1λ1 |u|q + f2λ2 |v|q) dx.

By Fatou’s lemma,

θ ≤ J(z0) =
α+ β − p
p(α+ β)

‖z0‖p − α+ β − q
q(α+ β)

�

Ω

(f1λ1 |u0|q + f2λ2 |v0|q) dx

≤ lim inf
n→∞

[
α+ β − p
p(α+ β)

‖zn‖p −
α+ β − q
q(α+ β)

�

Ω

(f1λ1 |un|q + f2λ2 |vn|q) dx
]

= lim inf
n→∞

J(zn) = θ.

That is, J(z0) = θ, and by (3.3) we also have ‖zn‖p = ‖z0‖p + o(1). If we
let zn = zn − z0, then by the Brézis–Lieb lemma [BL],

‖zn‖p = ‖zn‖p − ‖z0‖p + o(1).

Thus we get zn → z0 in H.
Finally, we claim that z0 ∈ N+. On the contrary, if z0 ∈ N−, then

by Lemma 2.8, there exist unique t+ and t− such that t+z0 ∈ N+ and
t−z0 ∈ N−. Again by Lemma 2.8, we have t+ < t− = 1. Then h′z0(t+) =
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h′z0(t−) = 0, h′′z0(t+) = (t+)q−1m′z0(t+) > 0 and h′′z0(t−) = (t−)q−1m′z0(t−)
< 0. From the proof of Lemma 2.8(ii), we know hz is increasing on [t+, t−],
so

J(t+z0) < J(z0) = θ = inf
z∈N+

J(z),

which is a contradiction.
Since J(z0) = J(|z0|) and |z0| ∈ N+, Lemma 2.5 shows that z0 is a

nontrivial nonnegative solution of (1.1). Moreover, if λ1 > 0 or λ2 > 0 and
µ ≥ 0, by the maximum principle we conclude that z0 = (u0, v0) is a positive
solution of (1.1).

(iii) For z0 ∈ N+, by (2.9), the Hölder and the Sobolev inequalities we
get

‖z0‖p−q ≤ q − α− β
p− α− β

(λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )S−q/pα+β ,

and so ‖z0‖ → 0 as λ1 → 0 and λ2 → 0 at the same time.

Proof of Theorem 1.1. From Theorem 3.2, we obtain Theorem 1.1 im-
mediately.

To prove Theorem 1.2, we need to find another positive solution of (1.1),
and motivated by Theorem 3.2, we need to establish the existence of a local
minimum for J on N−. Since the functional J defined in (1.6) satisfies the
(PS)c-condition for any c ∈ R in the subcritical case (α+ β < p∗, α, β > 1),
we only need to consider the critical case: α+β = p∗. We have the following
lemma.

Lemma 3.3. Assume (C1)–(C4) hold, α+ β = p∗, α, β > 1. Then there
exists Λ∗ > 0 such that when

0 < (λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )α+β−p(1 + µ‖b‖∞)p−q < Λ∗,

we have θ− < c∞, where c∞ is given in Lemma 2.4.

Proof. First, we consider the functional I : H → R defined by

I(z) =
1
p

(‖u‖p + ‖v‖p)− 2
α+ β

�

Ω

gµ|u|α|v|β dx

for all z = (u, v) ∈ H. Define

uε(x) =
bε

N−p
p2

(ε+ |x|
p
p−1 )

N−p
p

,

where b > 0 is a constant. By the results of [DP], we have

‖∇uε‖pp = ‖uε‖p
∗

p∗ = SN/p,
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where S is the best Sobolev constant of W 1,p
0 ↪→ Lp

∗
. Since 0 ∈ Ω′, we can

choose r > 0 such that B2r(0) ⊂ Ω′, where B2r(0) is the ball centered at
the origin and of radius 2r. Let ψ ∈ C∞0 be such that ψ(x) ≡ 1 if |x| ≤ r,
ψ(x) ≡ 0 if |x| ≥ 2r, and let ψε(x) = ψ(x)uε(x). Then we have the following
estimates (see [Z] for the details):

�

Ω

|∇ψε|p dx = SN/p +O(ε(N−p)/p),

�

Ω

|ψε|p
∗
dx = SN/p +O(εN/p),

�

Ω

|ψε|p dx =


K1ε

(N−p)/p +O(ε(N−p)/p), p < N < p2,

K2ε
p−1(ln ε) +O(εp−1), N = p2,

K3ε
p−1 +O(ε(N−p)/p), N > p2 ≥ 21/2.

Set ũ = α1/pψε, ṽ = β1/pψε, and z̃ = (ũ, ṽ) ∈ H. Then

sup
t≥0

I(tz̃) = sup
t≥0

(
tp

p
‖z̃‖p − 2tp

∗

p∗
αα/pββ/p

�

Ω

gµ|ψε|p
∗
dx

)

≤ sup
t≥0

(
tp

p
‖z̃‖p − 2tp

∗

p∗
αα/pββ/p

�

Ω

|ψε|p
∗
dx

)

≤ 1
N2(N−p)/p

[(
α

β

)α/p∗
+
(
β

α

)β/p∗]N/p[ 	
Ω |∇ψε|

p dx

(
	
Ω |ψε|p

∗ dx)p/p∗

]N/p

=
1

N2(N−p)/p

[(
α

β

)α/p∗
+
(
β

α

)β/p∗]N/p
[S +O(ε(N−p)/p)]N/p

≤ 1
N2(N−p)/p

[((
α

β

)α/p∗
+
(
β

α

)β/p∗)
S

]N/p
+O(ε(N−p)/p)

=
2
N

(
Sαβ

2

)N/p
+O(ε(N−p)/p).

We choose δ1 > 0 such that when 0 < λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ < δ1, we
have

c∞ =
2
N

(
Sαβ

2

)N/p
− c0(λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )

p
p−q > 0,

and using the definitions of I and z̃, we obtain

I(tz̃) ≤ tp

p
‖z̃‖p, ∀t > 0 and λ1, λ2, µ ≥ 0.
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Then there exists t̃ ∈ (0, 1) satisfying

supet≥t≥0

I(tz̃) < c∞ when 0 < λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ < δ1.

Also, we have

sup
t≥et J(tz̃) = sup

t≥et
[
I(tz̃)− tq

q

�

Ω

(f1λ1 + f2λ2)|ψε|q dx
]

≤ 2
N

(
Sαβ

2

)N/p
+O(ε(N−p)/p)

− t̃q

q
(λ1 min

Br(0)
f1 + λ2 min

Br(0)
f2)

�

Br(0)

|ψε|q dx.

Let 0 < ε ≤ rp/(p−1). We have �

Br(0)

|ψε|q dx ≥ c1,

where c1 depends onN, p, q, r. Then for all ε= (λ1‖f1+‖Lq∗+λ2‖f2+‖Lq∗ )
p2

N−p

∈ (0, rp/(p−1)), we obtain

sup
t≥et J(tz̃) ≤ 2

N

(
Sαβ

2

)N/p
+O((λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )p)

− c1
t̃q

q
(λ1 min

Br(0)
f1 + λ2 min

Br(0)
f2).

Hence we can choose δ2 > 0 such that when 0 < λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗
< δ2, we have

O((λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )p)− c1
t̃q

q
(λ1 min

Br(0)
f1 + λ2 min

Br(0)
f2)

< −c0(λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )p/(p−q).

Set Λ∗ = min{δp
∗−p

1 , δp
∗−p

2 , r
p
p−1 } > 0, ε = (λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )

p2

N−p .
Then if 0 < (λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )α+β−p(1 + µ‖b‖∞)p−q < Λ∗, we have
supt≥0 J(tz̃) ≤ c∞. Recalling the definition of z̃, it is easy to see that

�

Ω

(f1λ1 |ũ|q + f2λ2 |ṽ|q) dx > 0.

Combining this with Lemma 2.8, there exists t− > tmax(z̃) such that
t−z̃ ∈ N−, and

θ− ≤ J(t−z̃) ≤ sup
t≥0

J(tz̃) < c∞
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whenever

0 < (λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )α+β−p(1 + µ‖b‖∞)p−q < Λ∗.

Set Λ1 = min{Λ∗, (q/p)Λ0}. Then we have

Theorem 3.4. If

0 < (λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )α+β−p(1 + µ‖b‖∞)p−q < Λ1,

then the functional J has a minimizer z1 in N− and satisfies

(i) J(z1) = θ−;
(ii) z1 is a positive solution of (1.1).

Proof. By Proposition 3.1(ii), there exists a minimizing sequence {zn}
⊂ N− for J such that

(3.6) J(zn) = θ− + o(1), J ′(zn) = o(1).

Thus by Lemma 2.3, {zn} is bounded in H. Then there exists a subsequence
(still denoted by {zn}) and z1 ∈ N− such that zn → z1 in H, and J(z1) =
θ− > 0. Next, by using the same argument as in the proof of Theorem
3.2, when 0 < (λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )α+β−p(1 + µ‖b‖∞)p−q < Λ1, we
conclude that z1 is a positive solution of (1.1).

Proof of Theorem 1.2 . When

0 < (λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )α+β−p(1 + µ‖b‖∞)p−q < Λ1 < Λ0,

by Theorem 3.2 there exists a positive solution z0 ∈ N+, and by Theorem 3.4
there exists a positive solution z1 ∈ N−. Since N+ ∩N− = ∅, problem (1.1)
have two positive solutions for any λ1, λ2, µ ≥ 0 satisfying

0 < (λ1‖f1+‖Lq∗ + λ2‖f2+‖Lq∗ )α+β−p(1 + µ‖b‖∞)p−q < Λ1.
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[BDH] P. A. Binding, P. Drábek and Y. X. Huang, On Neumann boundary value prob-
lems for some quasilinear elliptic equations, Electron. J. Differential Equations
1997, no. 05, 11 pp.
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imizers and global multiplicity for some quasilinear elliptic equations, Comm.
Contemp. Math. 2 (2000), 385–404.
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