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A natural occurrence of shift equivalence

by FATMA Muazzez SIMSIR and CEM TEZER (Ankara)

Abstract. A natural occcurrence of shift equivalence in a purely algebraic setting is
exhibited.

1. Introduction. Group endomorphisms o : G — G and 6 : H — H
are said to be conjugate if there exists an isomorphism ¢ : G — H such
that 6 o = B 00, and shift equivalent if there exist group endomorphisms
0:G— Handy: H— G andn € Z" such that

poa=pFop, Yop=a"
Ypof=aocth, potp=p",
that is, the diagrams

G——=G G——=G G

—_—
NENEA.
-8 -1 -2 H
commute. In the latter case we say that ¢, ¥ effect a shift equivalence of «
to Boflagn € Z™.

The concept of shift equivalence was introduced by R. F. Williams [W1],
[W2] in the context of topological dynamics. The fact that shift equivalence
is an equivalence relation among group endomorphisms can be demostrated
by a straightforward argument [T1].

Clearly both conjugacy and shift equivalence can be defined in any cat-
egory and the former constitutes a special case of the latter in two ways:

e A shift equivalence with lag 0 is a conjugacy.
e A shift equivalence between two automorphisms is a conjugacy.

The simple result presented here was independently observed by Yu. I.
Ustinov [U]. In our opinion this is the most straightforward and natural
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occurrence of shift equivalence as a complete invariant. Although by no
means entirely novel, we feel that this elegant result deserves to be available
to a wider public in the form of an independent exposition.

Another very natural occurrence of shift equivalence arises in shape and
homotopy theory [T2].

2. Statement and proof of the main result. Given a group en-
domorphism « : G — G the simple direct limit of «, denoted by & =
lim_, (G, ), is the set of equivalence classes in G x Z under the equiva-
lence relation ~ where

(g,n) ~ (¢',n) iff oV ""(g) =aN""(g) for some N > n,n.

This can be easily checked to be an equivalence relation. The set & has a
natural group structure with respect to the binary operation

(g,n)(g",n) = (@ (9)a"(¢),n + n)
where, by abuse of notation, we let (g,n) stand for the equivalence class
it represents. Again it can be routinely checked that this is a well-defined
operation satisfying all group axioms. There are two natural isomorphisms
on &: Firstly,
66—, al(g.n) = (alg)n),
secondly,
Sa:Qj_’ﬁa Sa((Q?”)):(gan+1)
(which we like to call the “coshift”).
Again, these can be checked to be well-defined homomorphisms. To see
that they are isomorphisms it is enough to observe that
0 Sq = Sq0d=I1d(8).
THEOREM 2.1. Let G and H be finitely generated groups, o : G — G and
B : H — H group endomorphisms, and = lim_,(G, «), $ = lim_(H, ).
The isomorphisms s, : & — & and sg : $ — 9 are conjugate iff o and 3
are shift equivalent.

Proof. Given a subset K of a group, let (K) denote the subgroup gen-
erated by K. There exist finite sets A C G and B C H such that G = (A)
and H = (B). Assume first that s, and sg, or equivalently & and 3, are
conjugate: there exists an isomorphism 7" : & — § such that Tod = o T.
Let

ian:G—6 and ig:H— 9
be the natural injections defined by

ia(9) = (9,0) € & and ig(h)=(h,0) € 9.
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We have
T 0ia(G) C (T 0 ia(A)).
Clearly T oi,(A) is a finite subset of ). Hence there exists k € Z* such that
T oin(G) C(Toin(A)) C H x {k}.
Therefore, 5
GF 0T oin(G) C H x {0}.
We define 3
p=iz'offoTois: G— H.
Similarly, there exists a sufficiently large [ € Z* such that
Y=itod oToiy: H—G
is a well-defined homomorphism. We claim that ¢ and 1 effect a shift equiv-
alence of a to 8 with lag k + 1 € Z™: Clearly

poa=foyp and Yof=aod.
Moreover,

Yoy =iyt

oo ! OZBO’L oﬁkoToza = o,
Similarly,
Qo w — ﬁk—l-l.

Conversely, assume that there exist ¢ : G — H, v : H — G and n € Z"
such that poa =Fo¢, Yo =aop, pop=a"™ and ¢ o) = B". Consider
the map

E:6—9, E((g,m) = (e(g),m).
Note that F is well-defined: if o/~ (g) = o/~ (g¢'), then

(
poal™m(g) = poal

B op(g) =B 0 o(g).
We also have Fod = o E owing to ¢ o a = [ 0 ¢, once again. Similarly
define

q)
9),

hence

F:9—6, F((hym)) = (h),m).

We observe

FoE((g,m)) = F((¢(g9),m)) = (¥ o p(g), m) = (" (g),m) = &"(g,m).
Thus F o E = &" . The right hand side is an isomorphism, so E is an

isomorphism, which commutes with & and 3. =
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