Natural maps depending on reductions of frame bundles

by Ivan Kolář (Brno)

Abstract

We clarify how the natural transformations of fiber product preserving bundle functors on $\mathcal{F} \mathcal{M}_{m}$ can be constructed by using reductions of the r th order frame bundle of the base, $\mathcal{F} \mathcal{M}_{m}$ being the category of fibered manifolds with m-dimensional bases and fiber preserving maps with local diffeomorphisms as base maps. The iteration of two general r-jet functors is discussed in detail.

Consider a fibered manifold $p: Y \rightarrow M$ and its iterated jet prolongation $J^{s} J^{r} Y=J^{s}\left(J^{r} Y \rightarrow M\right)$. M. Modugno [12] constructed an involutive map ex ${ }_{\Lambda}: J^{1} J^{1} Y \rightarrow J^{1} J^{1} Y$ depending on a classical connection Λ on M. In [9], Modugno and the author proved that the only natural transformation $J^{1} J^{1} Y \rightarrow J^{1} J^{1} Y$ is the identity and the only two natural transformations $J^{1} J^{1} Y \rightarrow J^{1} J^{1} Y$ depending on a torsion-free Λ are $\operatorname{id}_{J^{1} J^{1} Y}$ and ex ${ }_{\Lambda}$. Using the Weil algebra technique, M. Doupovec and the author deduced that the only natural transformation $J^{r} J^{s} Y \rightarrow J^{r} J^{s} Y$ is the identity (see [1]). In 2], Doupovec and W. M. Mikulski constructed a map $J^{r} J^{s} Y \rightarrow J^{s} J^{r} Y$ depending naturally on Λ. Mikulski [11] discussed the natural transformations of two fiber product preserving bundle (for short: f.p.p.b.) functors on $\mathcal{F} \mathcal{M}_{m}$ depending on Λ.

We present a certain generalization of the last result by Mikulski. First of all, we point out that our main idea appears already in the case of classical natural bundles over m-manifolds. In Section 1, we consider two such bundles $F_{1} M=P^{r} M\left[S_{1}\right], F_{2} M=P^{r} M\left[S_{2}\right]$ and a map $\varphi: S_{1} \rightarrow S_{2}$ that is K equivariant with respect to a subgroup $K \subset G_{m}^{r}$ only. Then every reduction Q of $P^{r} M$ to K determines a map $\varphi_{Q}: F_{1} M \rightarrow F_{2} M$ that is natural in Q. In the most important cases, K is the classical injection of G_{m}^{1} into G_{m}^{r}. Here we find an interesting application of our result from [3] (see also [5]) that the reductions of $P^{r} M$ to G_{m}^{1} are in bijection with the torsion-free connections on $P^{r-1} M$. In particular, every classical torsion-free connection Λ on M

[^0]defines such a reduction by means of the exponential map. As a simple illustration, we determine all vector bundle morphisms $J^{1} T M \rightarrow T M \otimes T^{*} M$ depending naturally on Λ.

Section 2 is of auxiliary character. We consider a bundle functor E on the product category $\mathcal{M} f_{m} \times \mathcal{M} f$ preserving products in the second factor. According to [8], these functors are determined by a Weil algebra A and a group homomorphism $H: G_{m}^{r} \rightarrow$ Aut A, where Aut A is the group of all algebra automorphisms of A. Proposition 1 states that for two such functors $\left(A_{i}, H_{i}\right), i=1,2$, and $K \subset G_{m}^{r}$, an K-equivariant algebra homomorphism $\mu: A_{1} \rightarrow A_{2}$ and a K-reduction Q of $P^{r} M$ determine a map $\varphi_{Q, N}:\left(A_{1}, H_{1}\right)(M, N) \rightarrow\left(A_{2}, H_{2}\right)(M, N)$ that is natural in Q.

In Section 3 we consider the general case of a f.p.p.b. functor F of $\mathcal{F} \mathcal{M}_{m}$. Here we take into account the injection of categories $i: \mathcal{M} f_{m} \times \mathcal{M} f \rightarrow$ $\mathcal{F} \mathcal{M}_{m}$ transforming (M, N) into the product fibered manifold $M \times N \rightarrow M$. According to [8, F is determined by $\bar{F}=F \circ i=(A, H)$ and an equivariant algebra homomorphism $t: \mathbb{D}_{m}^{r} \rightarrow A, \mathbb{D}_{m}^{r}=J_{0}^{r}\left(\mathbb{R}^{m}, \mathbb{R}\right)$. Proposition 2 states that for a fibered manifold $Y \rightarrow M, \operatorname{dim} M=m$, and two such functors $F_{i}=$ $\left(A_{i}, H_{i}, t_{i}\right), i=1,2$, every K-equivariant algebra homomorphism $\mu: A_{1} \rightarrow$ A_{2} satisfying $t_{2}=\mu \circ t_{1}$ and every K-reduction $Q \subset P^{r} M$ determine a map $\tilde{\mu}_{Q, Y}: F_{1} Y \rightarrow F_{2} Y$ that is natural in Q. In the last section, we deduce from Proposition 2 that there exists an exchange map of the iteration of two general nonholonomic jet functors depending naturally on a classical torsion-free connection on the base.

All manifolds and maps are assumed to be infinitely differentiable. Unless otherwise specified, we use the terminology and notation from the book [7.

1. The case of $\mathcal{M} f_{m}$. The classical natural bundles over m-manifolds, i.e. the bundle functors on the category $\mathcal{M} f_{m}$ of m-dimensional manifolds and local diffeomorphisms, are in bijection with the left actions $l: G_{m}^{r} \times S$ $\rightarrow S$, where G_{m}^{r} means the r th jet group in dimension m, [7. For every m-manifold $M, F M$ is the bundle $P^{r} M[S, l]$ associated to the r th order frame bundle $P^{r} M$ and, for a local diffeomorphism $f: M \rightarrow M^{\prime}$, we have $F f=P^{r} f\left[\right.$ id $\left._{S}\right]$, i.e. $F f(\{u, z\})=\left\{P^{r} f(u), z\right\}, u \in P^{r} M, z \in S$. If $F_{i} M=$ $P^{r} M\left[S_{i}, l_{i}\right], i=1,2$, then natural transformations $F_{1} \rightarrow F_{2}$ are in bijection with G_{m}^{r}-maps $\varphi: S_{1} \rightarrow S_{2}$. The induced map $\varphi_{M}: F_{1} M \rightarrow F_{2} M$ is of the form

$$
\varphi_{M}(\{u, z\})=\{u, \varphi(z)\}, \quad u \in P^{r} M, z \in S_{1} .
$$

We are interested in the case where we have a subgroup $K \subset G_{m}^{r}$ and $\varphi: S_{1} \rightarrow S_{2}$ is K-equivariant only. Then we can use a reduction $Q \subset P^{r} M$ to K. Both $F_{i} M$ can be interpreted as associated bundles to Q, i.e. $F_{i} M=$
$Q\left[S_{i}\right], i=1,2$, and we define

$$
\varphi_{Q}: Q\left[S_{1}\right] \rightarrow Q\left[S_{2}\right], \varphi_{Q}(\{u, z\})=\{u, \varphi(z)\}, \quad u \in Q, z \in S_{1} .
$$

This definition is correct, for

$$
\begin{align*}
\varphi_{Q}\left(\left\{u \circ k, l_{1}\left(k^{-1}\right)(z)\right\}\right) & =\left\{u \circ k, \varphi\left(l_{1}\left(k^{-1}\right)\right)(z)\right\} \tag{1}\\
& =\left\{u \circ k, l_{2}\left(k^{-1}\right)(\varphi(z))\right\}=\varphi_{Q}(\{u, z\}), \quad k \in K,
\end{align*}
$$

by K-equivariance of φ.
If we consider a K-reduction Q^{\prime} of $P^{r} M^{\prime}$ that is f-related to Q, i.e. $P^{r} f(u) \in Q^{\prime}$ for all $u \in Q$, then the following diagram commutes:

Indeed, $F_{2} f(\{u, \varphi(z)\})=\left\{P^{r} f(u), \varphi(z)\right\}$. So we say that the maps φ_{Q} are natural with respect to the choice of K-reductions.

The most interesting case is $K=\iota_{r}\left(G_{m}^{1}\right)$, where $\iota_{r}: G_{m}^{1} \rightarrow G_{m}^{r}$ is the standard injection $\iota_{r}(a)=j_{0}^{r} \tilde{a}, \tilde{a}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ being the linear map determined by $a \in G_{m}^{1}$. Every classical torsion-free connection Λ on M defines a reduction $\exp _{A}^{r-1}: P^{1} M \rightarrow P^{r} M$ to $\iota_{r}\left(G_{m}^{1}\right)$ as follows, [5]. The exponential map $\exp _{\Lambda, x}$ of Λ at x is a local map of $T_{x} M$ into $M, u \in P_{x}^{1} M$ can be interpreted as a linear map $\tilde{u}: \mathbb{R}^{m} \rightarrow T_{x} M$ and we define

$$
\begin{equation*}
\exp _{\Lambda}^{r-1}(u)=j_{0}^{r}\left(\exp _{\Lambda, x} \circ \tilde{u}\right) \in P_{x}^{r} M . \tag{3}
\end{equation*}
$$

If $Q=\exp _{\Lambda}^{r-1}\left(P^{1} M\right)$, we say that $\varphi_{Q}=: \varphi_{\Lambda}$ is determined by Λ.
We recall there is a canonical $\left(\mathbb{R}^{m} \times \mathfrak{g}_{m}^{r-1}\right)$-valued one-form θ_{r} on $P^{r} M$ and the torsion of a connection Γ on $P^{r} M$ is the covariant exterior differential $D_{\Gamma} \theta_{r}$. In [3] (see also [5]) we deduced the following assertion.

Lemma 1. There is a canonical bijection between torsion-free connections on $P^{r-1} M$ and the reductions of $P^{r} M$ to $\iota_{r}\left(G_{m}^{1}\right)$.

Example. To illustrate this procedure, we consider a very simple case $J^{1} T M \rightarrow T M \otimes T^{*} M$. Then S_{1} is the G_{m}^{2}-space $\mathbb{R}^{m} \times \mathbb{R}^{m} \otimes \mathbb{R}^{m *}$ and S_{2} is the G_{m}^{1}-space $\mathbb{R}^{m} \otimes \mathbb{R}^{m *}$ interpreted as a G_{m}^{2}-space by means of the jet projection $G_{m}^{2} \rightarrow G_{m}^{1}$. We see directly that all G_{m}^{2}-maps $S_{1} \rightarrow S_{2}$ are the constant maps of S_{1} into $k \mathrm{id}_{\mathbb{R}^{m}}, k \in \mathbb{R}$. In the case of $\iota_{2}\left(G_{m}^{1}\right) \subset G_{m}^{2}$, it is reasonable to restrict ourselves to the linear G_{m}^{1}-maps $S_{2} \rightarrow S_{1}$. We find directly that all of them are of the form

$$
\begin{equation*}
x_{j}^{i}=c_{1} y_{j}^{i}+c_{2} \delta_{j}^{i} y_{k}^{k}, \quad c_{1}, c_{2} \in \mathbb{R}, \tag{4}
\end{equation*}
$$

$\left(y^{i}, y_{j}^{i}\right) \in S_{1}, x_{j}^{i} \in S_{2}$. In some local coordinates x^{i} on M, the geodesics of Λ are determined by

$$
\begin{equation*}
\frac{d^{2} x^{i}}{d t^{2}}+\Lambda_{j k}^{i}(x) \frac{d x^{j}}{d t} \frac{d x^{k}}{d t}=0 . \tag{5}
\end{equation*}
$$

Every frame from $\exp _{\Lambda}^{1}\left(P_{x}^{1} M\right)$ is characterized by $\Lambda_{j k}^{i}(x)=0$. Hence (4) implies that all vector bundle morphisms $J^{1} T M \rightarrow T M \otimes T^{*} M$ determined by Λ form the 2-parameter family

$$
\begin{equation*}
\left(j_{x}^{1} s\right) \mapsto c_{1}\left(\nabla_{\Lambda} s\right)(x)+c_{2} \operatorname{Ctr}\left(\left(\nabla_{\Lambda} s\right)(x)\right) \operatorname{id}_{T_{x} M}, \quad c_{1}, c_{2} \in \mathbb{R}, \tag{6}
\end{equation*}
$$

where $\nabla_{\Lambda} s$ is the covariant differential of a section s of $T M$ with respect to Λ and $\operatorname{Ctr}\left(\left(\nabla_{\Lambda} s\right)(x)\right)$ means the contraction of this (1,1)-tensor.
2. The case of $\mathcal{M} f_{m} \times \mathcal{M} f$. According to [8], if we intend to study a f.p.p.b. functor F on $\mathcal{F} \mathcal{M}_{m}$, we first have to discuss a bundle functor E on the product category $\mathcal{M} f_{m} \times \mathcal{M} f$ that preserves products in the second factor, i.e.

$$
E\left(M, N_{1} \times N_{2}\right)=E\left(M, N_{1}\right) \times_{M} E\left(M, N_{2}\right) .
$$

These functors are identified with pairs $E=(A, H)$ of a Weil algebra A and a group homomorphism $H: G_{m}^{r} \rightarrow$ Aut A. In general, every algebra homomorphism $\mu: A_{1} \rightarrow A_{2}$ of two Weil algebras determines a natural transformation $\mu_{M}: T^{A_{1}} M \rightarrow T^{A_{2}} M$ of the corresponding Weil functors (see [4], 7). This defines an action $H_{N}: g \mapsto H(g)_{N}$ of G_{m}^{r} on $T^{A} N$, and $E(M, N)$ is the corresponding associated bundle

$$
(A, H)(M, N)=P^{r} M\left[T^{A} N, H_{N}\right] .
$$

If $f_{1}: M \rightarrow M^{\prime}$ is a local diffeomorphism and $f_{2}: N \rightarrow N^{\prime}$ is a smooth map, we have

$$
\begin{equation*}
(A, H)\left(f_{1}, f_{2}\right)(\{u, Z\})=\left\{P^{r} f_{1}(u), T^{A} f_{2}(Z)\right\}, \quad u \in P^{r} M, Z \in T^{A} N . \tag{7}
\end{equation*}
$$

For two such functors $E_{i}=\left(A_{i}, H_{i}\right), i=1,2$, the natural transformations $E_{1} \rightarrow E_{2}$ are in bijection with G_{m}^{r}-equivariant algebra homomorphisms $\mu: A_{1} \rightarrow A_{2}$, i.e.

$$
\begin{equation*}
\mu\left(H_{1}(g)(a)\right)=H_{2}(g)(\mu(a)), \quad a \in A_{1}, g \in G_{m}^{r} \tag{8}
\end{equation*}
$$

(see [8). The induced map $\mu_{M, N}:\left(A_{1}, H_{1}\right)(M, N) \rightarrow\left(A_{2}, H_{2}\right)(M, N)$ is of the form

$$
\begin{equation*}
\mu_{M, N}(\{u, Z\})=\left\{u, \mu_{N}(Z)\right\}, \quad u \in P^{r} M, Z \in T^{A_{1}} N . \tag{9}
\end{equation*}
$$

Suppose μ is K-equivariant, i.e. (8) holds for $g \in K \subset G_{m}^{r}$ only. If we take a K-reduction $Q \subset P^{r} M$, we may write $E_{i}(M, N)=Q\left[T^{A_{i}} N\right], i=1,2$, and we can define $\mu_{Q, N}: E_{1}(M, N) \rightarrow E_{2}(M, N)$ by

$$
\begin{equation*}
\mu_{Q, N}(\{u, Z\})=\left\{u, \mu_{N}(Z)\right\}, \quad u \in Q, z \in T^{A_{1}} N . \tag{10}
\end{equation*}
$$

Since μ is K-equivariant, this definition is correct. Further, if Q^{\prime} is an f_{1-} related K-reduction of $P^{r} M^{\prime}$, then one verifies analogously to Section 1 that the following diagram commutes:

Thus, we have proved

Proposition 1. For two functors $E_{i}=\left(A_{i}, H_{i}\right), i=1,2$, with the same r and m, and a subgroup $K \subset G_{m}^{r}$, every K-equivariant algebra homomorphism $\mu: A_{1} \rightarrow A_{2}$ and every K-reduction $Q \subset P^{r} M$ determine a map $\mu_{Q, N}: E_{1}(M, N) \rightarrow E_{2}(M, N)$ that is natural in the sense of (11).
3. The case of $\mathcal{F} \mathcal{M}_{m}$. We have an injection of categories $i: \mathcal{M} f_{m} \times$ $\mathcal{M} f \rightarrow \mathcal{F} \mathcal{M}_{m}$ transforming (M, N) into the product fibered manifold $M \times$ $N \rightarrow M$ and $\left(f_{1}, f_{2}\right)$ into the product $\mathcal{F} \mathcal{M}_{m}$-morphism $f_{1} \times f_{2}$ with base map f_{1}. If F is a f.p.p.b. functor on $\mathcal{F} \mathcal{M}_{m}$, then $\bar{F}:=F \circ i$ is a bundle functor on $\mathcal{M} f_{m} \times \mathcal{M} f$ that preserves products in the second factor, so that $\bar{F}=(A, H)$. According to [8], F is identified with a triple $F=(A, H, t)$, where $t: \mathbb{D}_{m}^{r} \rightarrow A$ is an equivariant algebra homomorphism. Hence $t_{M}: T_{m}^{r} M \rightarrow T^{A} M$. For a fibered manifold $p: Y \rightarrow M$, we have $F Y \subset \bar{F}(M, Y)=P^{r} M\left[T^{A} Y\right]$ and

$$
\begin{equation*}
\{u, Z\} \in F Y \text { means } t_{M}(u)=T^{A} p(Z) \in T^{A} M, u \in P^{r} M, Z \in T^{A} Y \tag{12}
\end{equation*}
$$

where $T^{A} p: T^{A} Y \rightarrow T^{A} M$ and we use $P^{r} M \subset T_{m}^{r} M$. Let $p^{\prime}: Y^{\prime} \rightarrow M^{\prime}$ be another fibered manifold, $\operatorname{dim} M^{\prime}=m$, and $f: Y \rightarrow Y^{\prime}$ be an $\mathcal{F} \mathcal{M}_{m}$-morphism with base map $f: M \rightarrow M^{\prime}$. Then $F f: F Y \rightarrow F Y^{\prime}$ is the restriction and corestriction of $\bar{F}(\underline{f}, f): \bar{F}(M, Y) \rightarrow \bar{F}\left(M^{\prime}, Y^{\prime}\right)$.

Consider $F_{i}=\left(A_{i}, H_{i}, t_{i}\right), i=1,2$. According to [8], the natural transformations $F_{1} \rightarrow F_{2}$ are in bijection with G_{m}^{r}-equivariant algebra homomorphisms $\mu: A_{1} \rightarrow A_{2}$ satisfying $t_{2}=\mu \circ t_{1}$. The corresponding map $\tilde{\mu}_{Y}: F_{1} Y \rightarrow F_{2} Y$ is of the form

$$
\begin{equation*}
\tilde{\mu}_{Y}(\{u, Z\})=\left\{u, \mu_{Y}(Z)\right\}, \quad u \in P^{r} M, Z \in T^{A_{1}} Y \tag{13}
\end{equation*}
$$

where $\mu_{Y}: T^{A_{1}} Y \rightarrow T^{A_{2}} Y$ is the map determined by μ in the manifold case.
Assume again that μ is K-equivariant only, $K \subset G_{m}^{r}$, and we have a K-reduction $Q \subset P^{r} M$. Then $F_{i} Y \subset Q\left[T^{A_{i}} Y\right], i=1,2$, and there is a
restricted and corestricted map $\tilde{\mu}_{Q, Y}$,

Analogously to Section 2, one verifies directly that the following diagram commutes:

Thus, we have proved
Proposition 2. For two functors $F_{i}=\left(A_{i}, H_{i}, t_{i}\right), i=1$, 2 , with the same r and m, and a subgroup $K \subset G_{m}^{r}$, every K-equivariant algebra homomorphism $\mu: A_{1} \rightarrow A_{2}$ satisfying $t_{2}=\mu \circ t_{1}$ and every K-reduction $Q \subset P^{r} M$ determine a map $\tilde{\mu}_{Q, Y}: F_{1} Y \rightarrow F_{2} Y$ that is natural in the sense of 15 .
4. Iteration of general nonholonomic jet functors. The r th nonholonomic prolongation $\tilde{J}^{r} Y$ of Y is introduced by the iteration $\tilde{J}^{r} Y=$ $J^{1}\left(\tilde{J}^{r-1} Y \rightarrow M\right), \tilde{J}^{1} Y=J^{1} Y$. The bundle $\tilde{J}^{r}(M, N)$ of nonholonomic r-jets of M into N is defined as $\tilde{J}^{r}(M \times N \rightarrow M)$. We have $J^{r} Y \subset \tilde{J}^{r} Y$ and $J^{r}(M, N) \subset \tilde{J}^{r}(M, N)$. The composition $Z \circ X \in \tilde{J}_{x}^{r}(M, Q)_{z}$ of $X \in$ $\tilde{J}_{x}^{r}(M, N)_{y}$ and $Z \in \tilde{J}_{y}^{r}(N, Q)_{z}$ coincides with the classical one for holonomic r-jets (see [4]). We write $\beta_{Y}^{r}: \tilde{J}^{r} Y \rightarrow Y$ for the target jet projection. If we consider $\tilde{J}^{s} \tilde{J}^{r} Y=\tilde{J}^{s}\left(\tilde{J}^{r} Y \rightarrow M\right)$, we have the target projection $\beta_{\tilde{J}^{r} Y}^{s}: \tilde{J}^{s} \tilde{J}^{r} Y \rightarrow \tilde{J}^{r} Y$ and the induced map $\tilde{J}^{s} \beta_{Y}^{r}: \tilde{J}^{s} \tilde{J}^{r} Y \rightarrow \tilde{J}^{s} Y$. A map e: $\tilde{J}^{s} \tilde{J}^{r} Y \rightarrow \tilde{J}^{r} \tilde{J}^{s} Y$ is called an exchange if $\tilde{J}^{r} \beta_{Y}^{s} \circ \mathrm{e}=\beta_{\tilde{J}^{r} Y}^{s}$ and $\beta_{\tilde{J}^{s} Y}^{r} \circ \mathrm{e}=\tilde{J}^{s} \beta_{Y}^{r}$. We use Proposition 2 to prove the following assertion.

Proposition 3. Every classical torsion-free connection Λ on M determines an exchange map $\operatorname{ex}_{\Lambda}: \tilde{J}^{s} \tilde{J}^{r} Y \rightarrow \tilde{J}^{r} \tilde{J}^{s} Y$.

Proof. According to iteration theory (see [1]), the Weil algebra $\tilde{\mathbb{D}}_{m}^{r}$ of \tilde{J}^{r} is the tensor product $\tilde{\mathbb{D}}_{m}^{r}=\otimes^{r} \mathbb{D}_{m}^{1}, \mathbb{D}_{m}^{1}=J_{0}^{1}\left(\mathbb{R}^{m}, \mathbb{R}\right)=\mathbb{R} \times \mathbb{R}^{m *}$. The corresponding action of $\iota_{r}\left(G_{m}^{1}\right)$ on $\tilde{\mathbb{D}}_{m}^{r}$ is the tensor product of the identities on \mathbb{R} and the classical actions of G_{m}^{1} on $\mathbb{R}^{m *}$. By iteration theory, the Weil algebra of $\tilde{J}^{s} \tilde{J}^{r}$ is $\tilde{\mathbb{D}}_{m}^{s} \otimes \tilde{\mathbb{D}}_{m}^{r}$ and the corresponding action of $\iota_{r+s}\left(G_{m}^{1}\right)$ is of the same type. Hence the exchange map e: $\tilde{\mathbb{D}}_{m}^{s} \otimes \tilde{\mathbb{D}}_{m}^{r} \rightarrow \tilde{\mathbb{D}}_{m}^{r} \otimes \tilde{\mathbb{D}}_{m}^{s}$ is $\iota_{r+s}\left(G_{m}^{1}\right)$-equivariant. Using the exponential map of Λ, we construct ex ${ }_{\Lambda}$.

REmARK. We underline that for $r>1$ or $s>1$ there is no hope for the uniqueness result as in the case $r=s=1$ mentioned in the introduction. By Lemma 1. instead of $\exp _{\Lambda}^{r+s-1}$ we can use any natural operator transforming Λ into a torsion-free connection on $P^{r+s} M$. All those operators were characterized by Mikulski [10], with an addendum concerning the torsion-free case in [5].

This approach works even if we replace \tilde{J}^{r} by a general r-jet category C introduced in [6]. This is a rule transforming every pair (M, N) of manifolds into a fibered submanifold $C(M, N) \subset \tilde{J}^{r}(M, N)$ such that
(i) $J^{r}(M, N) \subset C(M, N)$ is a fibered submanifold,
(ii) if $X \in C_{x}(M, N)_{y}$ and $Z \in C_{y}(N, Q)_{z}$, then $Z \circ X \in C_{x}(M, Q)_{z}$,
(iii) if $X \in C_{x}(M, N)_{y}$ is regular, i.e. there exists $W \in \tilde{J}_{y}^{r}(N, M)_{x}$ such that $W \circ X=j_{x}^{r} \mathrm{id}_{M}$, then there exists $Z \in C_{y}(M, N)_{x}$ with this property,
(iv) $C(M, N \times Q)=C(M, N) \times{ }_{M} C(M, Q)$.

For every fibered manifold $p: Y \rightarrow M$, we define its horizontal C-prolongation

$$
C_{h} Y=\left\{X \in C(M, Y),\left(j_{\beta X}^{r} p\right) \circ X=j_{\alpha X}^{r} \operatorname{id}_{M}\right\}
$$

αX or βX being the source or target of X, and its vertical C-prolongation

$$
C_{v} Y=\bigcup_{x \in M} C_{x}\left(M, Y_{x}\right) \subset C(M, Y)
$$

Clearly, $\tilde{J}_{h}^{r} Y=\tilde{J}^{r} Y$. If we restrict $C_{h} Y$ or $C_{v} Y$ to fibered manifolds with m-dimensional bases, we obtain a f.p.p.b. functor $C_{h, m}$ or $C_{v, m}$ on $\mathcal{F} \mathcal{M}_{m}$, provided the values of $C_{h, m}$ or $C_{v, m}$ on $\mathcal{F} \mathcal{M}_{m}$-morphisms are defined by means of the jet composition.

If we consider another general s-jet category C^{\prime}, then the proof of Proposition 3 works for every pair from $C_{h, m}, C_{v, m}, C_{h, m}^{\prime}, C_{v, m}^{\prime}$.

Acknowledgments. The author was supported by the Ministry of Education of Czech Republic under the project MSM 0021622409 and by GACR under the grant 201/09/0981.

References

[1] M. Doupovec and I. Kolář, Iteration of fiber product preserving bundle functors, Monatsh. Math. 134 (2001), 39-50.
[2] M. Doupovec and W. M. Mikulski, Higher order jet involution, Czechoslovak Math. J. 57 (2007), 933-945.
[3] I. Kolář, Torsion-free connections on higher order frame bundles, in: New Developments in Differential Geometry, Kluwer, 1996, 233-241.
[4] I. Kolář, Weil bundles as generalized jet spaces, in: Handbook of Global Analysis, Elsevier, 2008, 625-665.
[5] -, Connections on higher order frame bundles and their gauge analogies, in: Variations, Geometry and Physics, Nova Science Publ., 2008, 199-223.
[6] -, On special types of nonholonomic contact elements, to appear.
[7] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, 1993.
[8] I. Kolář and W. M. Mikulski, On the fiber product preserving bundle functors, Differential Geom. Appl. 11 (1999), 105-115.
[9] I. Kolář and M. Modugno, Natural maps on the iterated jet prolongation of a fibered manifold, Ann. Mat. Pura Appl. 158 (1991), 151-165.
[10] W. M. Mikulski, Higher order linear connections from first order ones, Arch. Math. (Brno) 43 (2007), 285-288.
[11] -, On symmetrization of jets, Czechoslovak Math. J., to appear.
[12] M. Modugno, Jet involution and prolongation of connections, Čas. Pěst. Mat. 14 (1989), 356-365.

Ivan Kolář
Institute of Mathematics and Statistics
Masaryk University
Kotlářská 2
CZ 61137 Brno, Czech Republic
E-mail: kolar@math.muni.cz

Received 10.11.2010
and in final form 9.2.2011

[^0]: 2010 Mathematics Subject Classification: 58A20, 58A32.
 Key words and phrases: fiber product preserving bundle functor, natural transformation, reductions of frame bundles, nonholonomic r-jet category.

