Natural maps depending on reductions of frame bundles

by Ivan Kolář (Brno)

Abstract. We clarify how the natural transformations of fiber product preserving bundle functors on \mathcal{FM}_m can be constructed by using reductions of the *r*th order frame bundle of the base, \mathcal{FM}_m being the category of fibered manifolds with *m*-dimensional bases and fiber preserving maps with local diffeomorphisms as base maps. The iteration of two general *r*-jet functors is discussed in detail.

Consider a fibered manifold $p: Y \to M$ and its iterated jet prolongation $J^s J^r Y = J^s (J^r Y \to M)$. M. Modugno [12] constructed an involutive map $ex_A: J^1 J^1 Y \to J^1 J^1 Y$ depending on a classical connection Λ on M. In [9], Modugno and the author proved that the only natural transformation $J^1 J^1 Y \to J^1 J^1 Y$ is the identity and the only two natural transformations $J^1 J^1 Y \to J^1 J^1 Y$ depending on a torsion-free Λ are $id_{J^1 J^1 Y}$ and ex_A . Using the Weil algebra technique, M. Doupovec and the author deduced that the only natural transformation $J^r J^s Y \to J^r J^s Y$ is the identity (see [1]). In [2], Doupovec and W. M. Mikulski constructed a map $J^r J^s Y \to J^s J^r Y$ depending naturally on Λ . Mikulski [11] discussed the natural transformations of two fiber product preserving bundle (for short: f.p.p.b.) functors on \mathcal{FM}_m depending on Λ .

We present a certain generalization of the last result by Mikulski. First of all, we point out that our main idea appears already in the case of classical natural bundles over *m*-manifolds. In Section 1, we consider two such bundles $F_1M = P^r M[S_1], F_2M = P^r M[S_2]$ and a map $\varphi: S_1 \to S_2$ that is *K*equivariant with respect to a subgroup $K \subset G_m^r$ only. Then every reduction Q of $P^r M$ to K determines a map $\varphi_Q: F_1M \to F_2M$ that is natural in Q. In the most important cases, K is the classical injection of G_m^1 into G_m^r . Here we find an interesting application of our result from [3] (see also [5]) that the reductions of $P^r M$ to G_m^1 are in bijection with the torsion-free connections on $P^{r-1}M$. In particular, every classical torsion-free connection Λ on M

²⁰¹⁰ Mathematics Subject Classification: 58A20, 58A32.

Key words and phrases: fiber product preserving bundle functor, natural transformation, reductions of frame bundles, nonholonomic r-jet category.

I. Kolář

defines such a reduction by means of the exponential map. As a simple illustration, we determine all vector bundle morphisms $J^1TM \to TM \otimes T^*M$ depending naturally on Λ .

Section 2 is of auxiliary character. We consider a bundle functor E on the product category $\mathcal{M}f_m \times \mathcal{M}f$ preserving products in the second factor. According to [8], these functors are determined by a Weil algebra Aand a group homomorphism $H: G_m^r \to \operatorname{Aut} A$, where $\operatorname{Aut} A$ is the group of all algebra automorphisms of A. Proposition 1 states that for two such functors $(A_i, H_i), i = 1, 2$, and $K \subset G_m^r$, an K-equivariant algebra homomorphism $\mu: A_1 \to A_2$ and a K-reduction Q of $P^r M$ determine a map $\varphi_{Q,N}: (A_1, H_1)(M, N) \to (A_2, H_2)(M, N)$ that is natural in Q.

In Section 3 we consider the general case of a f.p.p.b. functor F of \mathcal{FM}_m . Here we take into account the injection of categories $i: \mathcal{M}f_m \times \mathcal{M}f \to \mathcal{FM}_m$ transforming (M, N) into the product fibered manifold $M \times N \to M$. According to [8], F is determined by $\overline{F} = F \circ i = (A, H)$ and an equivariant algebra homomorphism $t: \mathbb{D}_m^r \to A, \mathbb{D}_m^r = J_0^r(\mathbb{R}^m, \mathbb{R})$. Proposition 2 states that for a fibered manifold $Y \to M$, dim M = m, and two such functors $F_i = (A_i, H_i, t_i), i = 1, 2$, every K-equivariant algebra homomorphism $\mu: A_1 \to A_2$ satisfying $t_2 = \mu \circ t_1$ and every K-reduction $Q \subset P^r M$ determine a map $\tilde{\mu}_{Q,Y}: F_1 Y \to F_2 Y$ that is natural in Q. In the last section, we deduce from Proposition 2 that there exists an exchange map of the iteration of two general nonholonomic jet functors depending naturally on a classical torsion-free connection on the base.

All manifolds and maps are assumed to be infinitely differentiable. Unless otherwise specified, we use the terminology and notation from the book [7].

1. The case of $\mathcal{M}f_m$. The classical natural bundles over *m*-manifolds, i.e. the bundle functors on the category $\mathcal{M}f_m$ of *m*-dimensional manifolds and local diffeomorphisms, are in bijection with the left actions $l: G_m^r \times S \to S$, where G_m^r means the *r*th jet group in dimension m, [7]. For every *m*-manifold M, FM is the bundle $P^r M[S, l]$ associated to the *r*th order frame bundle $P^r M$ and, for a local diffeomorphism $f: M \to M'$, we have $Ff = P^r f[\operatorname{id}_S]$, i.e. $Ff(\{u, z\}) = \{P^r f(u), z\}, u \in P^r M, z \in S$. If $F_i M =$ $P^r M[S_i, l_i], i = 1, 2$, then natural transformations $F_1 \to F_2$ are in bijection with G_m^r -maps $\varphi: S_1 \to S_2$. The induced map $\varphi_M: F_1 M \to F_2 M$ is of the form

$$\varphi_M(\{u,z\}) = \{u,\varphi(z)\}, \quad u \in P^r M, \ z \in S_1.$$

We are interested in the case where we have a subgroup $K \subset G_m^r$ and $\varphi: S_1 \to S_2$ is K-equivariant only. Then we can use a reduction $Q \subset P^r M$ to K. Both $F_i M$ can be interpreted as associated bundles to Q, i.e. $F_i M =$

 $Q[S_i], i = 1, 2, \text{ and we define}$

$$\varphi_Q \colon Q[S_1] \to Q[S_2], \ \varphi_Q(\{u, z\}) = \{u, \varphi(z)\}, \quad u \in Q, \ z \in S_1$$

This definition is correct, for

(1)
$$\varphi_Q(\{u \circ k, l_1(k^{-1})(z)\}) = \{u \circ k, \varphi(l_1(k^{-1}))(z)\}\$$

= $\{u \circ k, l_2(k^{-1})(\varphi(z))\} = \varphi_Q(\{u, z\}), \quad k \in K,$

by K-equivariance of φ .

If we consider a K-reduction Q' of P^rM' that is f-related to Q, i.e. $P^rf(u) \in Q'$ for all $u \in Q$, then the following diagram commutes:

(2)
$$F_{1}M \xrightarrow{\varphi_{Q}} F_{2}M$$
$$F_{1}f \bigvee \qquad \qquad \downarrow F_{2}f$$
$$F_{1}M' \xrightarrow{\varphi_{Q'}} F_{2}M'$$

Indeed, $F_2f(\{u, \varphi(z)\}) = \{P^r f(u), \varphi(z)\}$. So we say that the maps φ_Q are natural with respect to the choice of K-reductions.

The most interesting case is $K = \iota_r(G_m^1)$, where $\iota_r \colon G_m^1 \to G_m^r$ is the standard injection $\iota_r(a) = j_0^r \tilde{a}, \tilde{a} \colon \mathbb{R}^m \to \mathbb{R}^m$ being the linear map determined by $a \in G_m^1$. Every classical torsion-free connection Λ on M defines a reduction $\exp_{\Lambda}^{r-1} \colon P^1M \to P^rM$ to $\iota_r(G_m^1)$ as follows, [5]. The exponential map $\exp_{\Lambda,x}$ of Λ at x is a local map of T_xM into $M, u \in P_x^1M$ can be interpreted as a linear map $\tilde{u} \colon \mathbb{R}^m \to T_xM$ and we define

(3)
$$\exp_{\Lambda}^{r-1}(u) = j_0^r(\exp_{\Lambda,x} \circ \tilde{u}) \in P_x^r M.$$

If $Q = \exp_{\Lambda}^{r-1}(P^1M)$, we say that $\varphi_Q =: \varphi_{\Lambda}$ is determined by Λ .

We recall there is a canonical $(\mathbb{R}^m \times \mathfrak{g}_m^{r-1})$ -valued one-form θ_r on $P^r M$ and the torsion of a connection Γ on $P^r M$ is the covariant exterior differential $D_{\Gamma}\theta_r$. In [3] (see also [5]) we deduced the following assertion.

LEMMA 1. There is a canonical bijection between torsion-free connections on $P^{r-1}M$ and the reductions of P^rM to $\iota_r(G_m^1)$.

EXAMPLE. To illustrate this procedure, we consider a very simple case $J^1TM \to TM \otimes T^*M$. Then S_1 is the G_m^2 -space $\mathbb{R}^m \times \mathbb{R}^m \otimes \mathbb{R}^{m*}$ and S_2 is the G_m^1 -space $\mathbb{R}^m \otimes \mathbb{R}^{m*}$ interpreted as a G_m^2 -space by means of the jet projection $G_m^2 \to G_m^1$. We see directly that all G_m^2 -maps $S_1 \to S_2$ are the constant maps of S_1 into $k \operatorname{id}_{\mathbb{R}^m}$, $k \in \mathbb{R}$. In the case of $\iota_2(G_m^1) \subset G_m^2$, it is reasonable to restrict ourselves to the linear G_m^1 -maps $S_2 \to S_1$. We find directly that all of them are of the form

(4)
$$x_j^i = c_1 y_j^i + c_2 \delta_j^i y_k^k, \quad c_1, c_2 \in \mathbb{R},$$

 $(y^i, y^i_j) \in S_1, x^i_j \in S_2$. In some local coordinates x^i on M, the geodesics of A are determined by

(5)
$$\frac{d^2x^i}{dt^2} + \Lambda^i_{jk}(x)\frac{dx^j}{dt}\frac{dx^k}{dt} = 0.$$

Every frame from $\exp^1_{\Lambda}(P^1_x M)$ is characterized by $\Lambda^i_{jk}(x) = 0$. Hence (4) implies that all vector bundle morphisms $J^1TM \to TM \otimes T^*M$ determined by Λ form the 2-parameter family

(6)
$$(j_x^1 s) \mapsto c_1(\nabla_A s)(x) + c_2 Ctr((\nabla_A s)(x)) \operatorname{id}_{T_x M}, \quad c_1, c_2 \in \mathbb{R},$$

where $\nabla_A s$ is the covariant differential of a section s of TM with respect to Λ and $Ctr((\nabla_A s)(x))$ means the contraction of this (1, 1)-tensor.

2. The case of $\mathcal{M}f_m \times \mathcal{M}f$. According to [8], if we intend to study a f.p.p.b. functor F on $\mathcal{F}\mathcal{M}_m$, we first have to discuss a bundle functor E on the product category $\mathcal{M}f_m \times \mathcal{M}f$ that preserves products in the second factor, i.e.

$$E(M, N_1 \times N_2) = E(M, N_1) \times_M E(M, N_2).$$

These functors are identified with pairs E = (A, H) of a Weil algebra Aand a group homomorphism $H: G_m^r \to \operatorname{Aut} A$. In general, every algebra homomorphism $\mu: A_1 \to A_2$ of two Weil algebras determines a natural transformation $\mu_M: T^{A_1}M \to T^{A_2}M$ of the corresponding Weil functors (see [4], [7]). This defines an action $H_N: g \mapsto H(g)_N$ of G_m^r on T^AN , and E(M, N) is the corresponding associated bundle

$$(A,H)(M,N) = P^r M[T^A N, H_N].$$

If $f_1: M \to M'$ is a local diffeomorphism and $f_2: N \to N'$ is a smooth map, we have

(7)
$$(A, H)(f_1, f_2)(\{u, Z\}) = \{P^r f_1(u), T^A f_2(Z)\}, \quad u \in P^r M, Z \in T^A N.$$

For two such functors $E_i = (A_i, H_i)$, i = 1, 2, the natural transformations $E_1 \rightarrow E_2$ are in bijection with G_m^r -equivariant algebra homomorphisms $\mu: A_1 \rightarrow A_2$, i.e.

(8)
$$\mu(H_1(g)(a)) = H_2(g)(\mu(a)), \quad a \in A_1, g \in G_m^r$$

(see [8]). The induced map $\mu_{M,N}$: $(A_1, H_1)(M, N) \to (A_2, H_2)(M, N)$ is of the form

(9)
$$\mu_{M,N}(\{u, Z\}) = \{u, \mu_N(Z)\}, \quad u \in P^r M, Z \in T^{A_1} N.$$

Suppose μ is K-equivariant, i.e. (8) holds for $g \in K \subset G_m^r$ only. If we take a K-reduction $Q \subset P^r M$, we may write $E_i(M, N) = Q[T^{A_i}N], i = 1, 2,$ and we can define $\mu_{Q,N} \colon E_1(M, N) \to E_2(M, N)$ by

(10)
$$\mu_{Q,N}(\{u, Z\}) = \{u, \mu_N(Z)\}, \quad u \in Q, z \in T^{A_1}N.$$

Since μ is K-equivariant, this definition is correct. Further, if Q' is an f_1 -related K-reduction of $P^r M'$, then one verifies analogously to Section 1 that the following diagram commutes:

(11)
$$(A_{1}, H_{1})(M, N) \xrightarrow{(A_{1}, H_{1})(f_{1}, f_{2})} (A_{1}, H_{1})(M', N') \xrightarrow{(A_{1}, H_{2})(M, N)} (A_{2}, H_{2})(M, N) \xrightarrow{(A_{2}, H_{2})(F_{1}, f_{2})} (A_{2}, H_{2})(M', N')$$

Thus, we have proved

PROPOSITION 1. For two functors $E_i = (A_i, H_i)$, i = 1, 2, with the same r and m, and a subgroup $K \subset G_m^r$, every K-equivariant algebra homomorphism $\mu: A_1 \to A_2$ and every K-reduction $Q \subset P^r M$ determine a map $\mu_{Q,N}: E_1(M, N) \to E_2(M, N)$ that is natural in the sense of (11).

3. The case of \mathcal{FM}_m . We have an injection of categories $i: \mathcal{M}f_m \times \mathcal{M}f \to \mathcal{FM}_m$ transforming (M, N) into the product fibered manifold $M \times N \to M$ and (f_1, f_2) into the product \mathcal{FM}_m -morphism $f_1 \times f_2$ with base map f_1 . If F is a f.p.p.b. functor on \mathcal{FM}_m , then $\overline{F} := F \circ i$ is a bundle functor on $\mathcal{M}f_m \times \mathcal{M}f$ that preserves products in the second factor, so that $\overline{F} = (A, H)$. According to [8], F is identified with a triple F = (A, H, t), where $t: \mathbb{D}_m^r \to A$ is an equivariant algebra homomorphism. Hence $t_M: T_m^r M \to T^A M$. For a fibered manifold $p: Y \to M$, we have $FY \subset \overline{F}(M, Y) = P^r M[T^A Y]$ and

(12)
$$\{u, Z\} \in FY$$
 means $t_M(u) = T^A p(Z) \in T^A M, u \in P^r M, Z \in T^A Y$,

where $T^A p: T^A Y \to T^A M$ and we use $P^r M \subset T^r_m M$. Let $p': Y' \to M'$ be another fibered manifold, dim M' = m, and $f: Y \to Y'$ be an $\mathcal{F}\mathcal{M}_m$ -morphism with base map $f: M \to M'$. Then $Ff: FY \to FY'$ is the restriction and corestriction of $\overline{F}(f, f): \overline{F}(M, Y) \to \overline{F}(M', Y')$.

Consider $F_i = (A_i, H_i, t_i)$, i = 1, 2. According to [8], the natural transformations $F_1 \to F_2$ are in bijection with G_m^r -equivariant algebra homomorphisms $\mu: A_1 \to A_2$ satisfying $t_2 = \mu \circ t_1$. The corresponding map $\tilde{\mu}_Y: F_1Y \to F_2Y$ is of the form

(13)
$$\tilde{\mu}_Y(\{u, Z\}) = \{u, \mu_Y(Z)\}, \quad u \in P^r M, Z \in T^{A_1} Y,$$

where $\mu_Y: T^{A_1}Y \to T^{A_2}Y$ is the map determined by μ in the manifold case.

Assume again that μ is K-equivariant only, $K \subset G_m^r$, and we have a K-reduction $Q \subset P^r M$. Then $F_i Y \subset Q[T^{A_i}Y]$, i = 1, 2, and there is a

restricted and corestricted map $\tilde{\mu}_{Q,Y}$,

(14)
$$F_{1}Y \xrightarrow{\tilde{\mu}_{Q,Y}} F_{2}Y$$

$$Q[T^{A_{1}}Y] \xrightarrow{\mu_{Q,Y}} Q[T^{A_{2}}Y]$$

Analogously to Section 2, one verifies directly that the following diagram commutes: $\tilde{\mu}_{O,V}$

(15)
$$F_{1}Y \xrightarrow{\mu_{Q,Y}} F_{2}Y$$
$$F_{1}f \bigvee \qquad \qquad \downarrow F_{2}f$$
$$F_{1}Y' \xrightarrow{\tilde{\mu}_{Q',Y'}} F_{2}Y'$$

Thus, we have proved

PROPOSITION 2. For two functors $F_i = (A_i, H_i, t_i)$, i = 1, 2, with the same r and m, and a subgroup $K \subset G_m^r$, every K-equivariant algebra homomorphism $\mu: A_1 \to A_2$ satisfying $t_2 = \mu \circ t_1$ and every K-reduction $Q \subset P^r M$ determine a map $\tilde{\mu}_{Q,Y}: F_1 Y \to F_2 Y$ that is natural in the sense of (15).

4. Iteration of general nonholonomic jet functors. The *r*th nonholonomic prolongation $\tilde{J}^r Y$ of Y is introduced by the iteration $\tilde{J}^r Y = J^1(\tilde{J}^{r-1}Y \to M), \ \tilde{J}^1Y = J^1Y$. The bundle $\tilde{J}^r(M,N)$ of nonholonomic r-jets of M into N is defined as $\tilde{J}^r(M \times N \to M)$. We have $J^r Y \subset \tilde{J}^r Y$ and $J^r(M,N) \subset \tilde{J}^r(M,N)$. The composition $Z \circ X \in \tilde{J}^r_x(M,Q)_z$ of $X \in \tilde{J}^r_x(M,N)_y$ and $Z \in \tilde{J}^r_y(N,Q)_z$ coincides with the classical one for holonomic r-jets (see [4]). We write $\beta^r_Y : \tilde{J}^r Y \to Y$ for the target jet projection. If we consider $\tilde{J}^s \tilde{J}^r Y = \tilde{J}^s(\tilde{J}^r Y \to M)$, we have the target projection $\beta^s_{\tilde{J}^r Y} : \tilde{J}^s \tilde{J}^r Y \to \tilde{J}^r \tilde{J}^s Y$ is called an *exchange* if $\tilde{J}^r \beta^s_Y \circ e = \beta^s_{\tilde{J}^r Y}$ and $\beta^r_{\tilde{J}^s Y} \circ e = \tilde{J}^s \beta^r_Y$. We use Proposition 2 to prove the following assertion.

PROPOSITION 3. Every classical torsion-free connection Λ on M determines an exchange map $ex_{\Lambda} : \tilde{J}^s \tilde{J}^r Y \to \tilde{J}^r \tilde{J}^s Y$.

Proof. According to iteration theory (see [1]), the Weil algebra $\tilde{\mathbb{D}}_m^r$ of \tilde{J}^r is the tensor product $\tilde{\mathbb{D}}_m^r = \otimes^r \mathbb{D}_m^1$, $\mathbb{D}_m^1 = J_0^1(\mathbb{R}^m, \mathbb{R}) = \mathbb{R} \times \mathbb{R}^{m*}$. The corresponding action of $\iota_r(G_m^1)$ on $\tilde{\mathbb{D}}_m^r$ is the tensor product of the identities on \mathbb{R} and the classical actions of G_m^1 on \mathbb{R}^{m*} . By iteration theory, the Weil algebra of $\tilde{J}^s \tilde{J}^r$ is $\tilde{\mathbb{D}}_m^s \otimes \tilde{\mathbb{D}}_m^r$ and the corresponding action of $\iota_{r+s}(G_m^1)$ is of the same type. Hence the exchange map e: $\tilde{\mathbb{D}}_m^s \otimes \tilde{\mathbb{D}}_m^r \to \tilde{\mathbb{D}}_m^r \otimes \tilde{\mathbb{D}}_m^s$ is $\iota_{r+s}(G_m^1)$ -equivariant. Using the exponential map of Λ , we construct ex_{Λ}.

88

REMARK. We underline that for r > 1 or s > 1 there is no hope for the uniqueness result as in the case r = s = 1 mentioned in the introduction. By Lemma 1, instead of \exp_A^{r+s-1} we can use any natural operator transforming Λ into a torsion-free connection on $P^{r+s}M$. All those operators were characterized by Mikulski [10], with an addendum concerning the torsion-free case in [5].

This approach works even if we replace \tilde{J}^r by a general *r*-jet category *C* introduced in [6]. This is a rule transforming every pair (M, N) of manifolds into a fibered submanifold $C(M, N) \subset \tilde{J}^r(M, N)$ such that

- (i) $J^r(M, N) \subset C(M, N)$ is a fibered submanifold,
- (ii) if $X \in C_x(M, N)_y$ and $Z \in C_y(N, Q)_z$, then $Z \circ X \in C_x(M, Q)_z$,
- (iii) if $X \in C_x(M, N)_y$ is regular, i.e. there exists $W \in \tilde{J}_y^r(N, M)_x$ such that $W \circ X = j_x^r \operatorname{id}_M$, then there exists $Z \in C_y(M, N)_x$ with this property,
- (iv) $C(M, N \times Q) = C(M, N) \times_M C(M, Q).$

For every fibered manifold $p: Y \to M$, we define its horizontal C-prolongation

$$C_h Y = \{ X \in C(M, Y), (j_{\beta X}^r p) \circ X = j_{\alpha X}^r \operatorname{id}_M \},\$$

 αX or βX being the source or target of X, and its vertical C-prolongation

$$C_v Y = \bigcup_{x \in M} C_x(M, Y_x) \subset C(M, Y).$$

Clearly, $\tilde{J}_h^r Y = \tilde{J}^r Y$. If we restrict $C_h Y$ or $C_v Y$ to fibered manifolds with *m*-dimensional bases, we obtain a f.p.p.b. functor $C_{h,m}$ or $C_{v,m}$ on \mathcal{FM}_m , provided the values of $C_{h,m}$ or $C_{v,m}$ on \mathcal{FM}_m -morphisms are defined by means of the jet composition.

If we consider another general s-jet category C', then the proof of Proposition 3 works for every pair from $C_{h,m}$, $C_{v,m}$, $C'_{h,m}$, $C'_{v,m}$.

Acknowledgments. The author was supported by the Ministry of Education of Czech Republic under the project MSM 0021622409 and by GACR under the grant 201/09/0981.

References

- M. Doupovec and I. Kolář, Iteration of fiber product preserving bundle functors, Monatsh. Math. 134 (2001), 39–50.
- M. Doupovec and W. M. Mikulski, *Higher order jet involution*, Czechoslovak Math. J. 57 (2007), 933–945.
- [3] I. Kolář, Torsion-free connections on higher order frame bundles, in: New Developments in Differential Geometry, Kluwer, 1996, 233–241.

I. Kolář

- I. Kolář, Weil bundles as generalized jet spaces, in: Handbook of Global Analysis, Elsevier, 2008, 625–665.
- [5] —, Connections on higher order frame bundles and their gauge analogies, in: Variations, Geometry and Physics, Nova Science Publ., 2008, 199–223.
- [6] —, On special types of nonholonomic contact elements, to appear.
- [7] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, 1993.
- [8] I. Kolář and W. M. Mikulski, On the fiber product preserving bundle functors, Differential Geom. Appl. 11 (1999), 105–115.
- I. Kolář and M. Modugno, Natural maps on the iterated jet prolongation of a fibered manifold, Ann. Mat. Pura Appl. 158 (1991), 151–165.
- W. M. Mikulski, *Higher order linear connections from first order ones*, Arch. Math. (Brno) 43 (2007), 285–288.
- [11] —, On symmetrization of jets, Czechoslovak Math. J., to appear.
- [12] M. Modugno, Jet involution and prolongation of connections, Cas. Pest. Mat. 14 (1989), 356–365.

Ivan Kolář Institute of Mathematics and Statistics Masaryk University Kotlářská 2 CZ 611 37 Brno, Czech Republic E-mail: kolar@math.muni.cz

> Received 10.11.2010 and in final form 9.2.2011

(2317)