
ANNALES

POLONICI MATHEMATICI

LXXIX.3 (2002)

Completeness of the inner kth Reiffen pseudometric

by Paweł Zapałowski (Kraków)

Abstract. We give an example of a Zalcman-type domain in C which is complete
with respect to the integrated form of the (k+1)st Reiffen pseudometric, but not complete
with respect to the kth one.

0. Introduction. In 1989 M. Klimek introduced for any domain in Cn
an extremal plurisubharmonic function that generalized Green’s function of
one complex variable. Using that function he defined a biholomorphically
invariant pseudodistance and studied its basic properties. For details we re-
fer the readers to [Kl]. Later, S. Kobayashi started to study the similar inner
pseudodistance

�
AD, which is the integrated form of the Azukawa pseudo-

metric AD (see [Ko] for details). It turns out that in some cases the Azukawa
pseudometric may be approximated by the kth Reiffen pseudometrics γ(k)

D .
In 1995 S. Nivoche (see [Ni]) showed that limk→∞ γ

(k)
D = AD outside some

pluripolar set for strictly hyperconvex domains D in Cn. It seems that the
study of properties of the integrated form

�
AD of the Azukawa pseudodis-

tance is more complicated than dealing with
�
γ

(k)
D ; one of the reasons is

that in the definition of AD we use a subfamily of plurisubharmonic func-
tions while when defining γ(k)

D we may use only a subfamily of holomorphic
functions. Therefore, in view of S. Nivoche’s result it is convenient to be-
gin with the study of

�
γ

(k)
D . For the definitions and basic properties of all

pseudometrics and pseudodistances mentioned above, we refer the readers
to [Ja-Pf].

The aim of the paper is to show that there exists a bounded domain D
in C which distinguishes completeness of the integrated forms of the kth
and (k+ 1)st Reiffen pseudometric, i.e. D is

�
γ

(k+1)
D -complete but not

�
γ

(k)
D -

complete. Our example is a Zalcman-type domain (see definitions below).
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We also show that for any Zalcman-type domain that distinguishes com-
pleteness as above, the relevant pseudometric γ(k)

D has to satisfy a special
growth condition.

1. Definitions and main results. Let E denote the unit disc in C
and let D ⊂ C be an arbitrary domain. For k ∈ N we define

γ
(k)
D (z;X) = sup

{∣∣∣∣
1
k!
f (k)(z)X

∣∣∣∣
1/k

: f ∈ O(D,E), ordz f ≥ k
}
,

where ordz f denotes the order of the zero of f at z. We call γ(k)
D the kth

Reiffen pseudometric.
For a piecewise C1-curve α : [0, 1]→ D (we write α ∈ C1

p([0, 1],D)) put

L
γ

(k)
D

(α) :=
1�

0

γ
(k)
D (α(t);α′(t)) dt.

Define
�
γ

(k)
D (z, w)

:= inf{L
γ

(k)
D

(α) : α ∈ C1
p([0, 1],D), α(0) = z, α(1) = w}, z, w ∈ D.

We call
�
γ

(k)
D the integrated form of γ(k)

D .
Now we recall some properties of pseudodistances we will use in what

follows (see [Ja-Pf] for details). Observe that

(1) cD ≤ ciD =
�
γ

(1)
D ≤

�
γ

(k)
D , k ∈ N,

where cD (resp. ciD) denotes the Carathéodory (resp. inner Carathéodory)
pseudodistance on D. We will also use the fact that if E∗ := E \ {0}, then

(2) cE∗ = cE|E∗×E∗ .
It should be pointed out that all pseudodistances we are interested in are
contractive, i.e.

dD(w, z) ≥ dG(f(w), f(z)), w, z ∈ D, f ∈ O(D,G),

where d = c or d =
�
γ(k).

It is well known that every domain D ⊂ C biholomorphic to a bounded
domain is c-hyperbolic (i.e. cD is a distance). Hence, using (1), we find that�
γ

(k)
D is also a distance for any bounded domain D.

We use a special notion of completeness. Let us recall the relevant defi-
nitions. Let D be a bounded domain in C.

We say thatD is
�
γ

(k)
D -complete if any

�
γ

(k)
D -Cauchy sequence (zn)n∈N⊂D

converges to a point z0 ∈ D with respect to the natural topology in D, i.e.
|zn − z0| → 0 as n→∞.
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We call a domain D
�
γ

(k)
D -finitely compact if all

�
γ

(k)
D -balls in D are

relatively compact (with respect to the natural topology in D).
Since

�
γ

(k)
D is an inner distance (cf. [Ja-Pf, Proposition 4.3.2]) for any

k ∈ N, it turns out that these different notions are equivalent (see [Ja-Pf,
Theorem 7.3.2]).

Before we present our main result we need the following definition. Let
B(a, r) := {z ∈ C : |z−a| < r}. For all sequences (an), (rn) ⊂ R>0 such that
an → 0, 2rn < an, B(an, rn) ⊂ E∗ for n ∈ N and B(an, rn)∩B(am, rm) = ∅
whenever n 6= m, we define

(3) D := E∗ \
∞⋃

n=1

B(an, rn).

We call such a domain a Zalcman-type domain.
Our main result is the following

Theorem 1. For any k ∈ N there exists a Zalcman-type domain Dk

which is
�
γ

(k+1)
Dk

-complete, but not
�
γ

(k)
Dk

-complete.

As we will see in the proof of Theorem 1, γ(k)
D satisfies some special

growth conditions. The following result shows how carefully we must choose
the appropriate domain.

Theorem 2. Let D ⊂ C be a bounded domain, dD(z) :=infw∈∂D |z − w|,
k, l ∈ N, and let 0 ≤ α < 1 be such that γ(k)

D (z; 1) ≤ c(dD(z))−α, z ∈ D, for
some positive constant c. Then

γ
(k+l)
D (z; 1) ≤ c′(dD(z))−α

′
, z ∈ D,

for some positive constants c′ and α′ < 1.

Since such growth gives us noncompleteness of the Zalcman-type do-
main D, we get

Corollary 3. If for a Zalcman-type domain D there exist positive con-
stants c and α < 1 such that

lim sup
0>z→0

γ
(k)
D (z; 1) < c|z|−α,

then D is
�
γ

(l)
D -noncomplete for any l ≥ k.

Therefore, to get Theorem 1 it is natural that we are interested in the
domains for which

�
γ

(k)
D has growth tempered as follows:

γ
(k)
D (z; 1) ≤ c

dD(z)(− log dD(z))α
, α > 1,

for z ∈ D such that dD(z) < 1.
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2. Proof of Theorem 1. In the proof of Theorem 1 we will use the
following lemmas. We present their proofs at the end of this section.

Lemma 4. If D is a Zalcman-type domain, then for every k ∈ N there
exists a positive constant c1 = c1(k) such that for every f ∈ O(D,E) we
have

|f (k)(z)| ≤ c1 + c1

∞∑

n=1

rn
(an − z)k+1 , z ∈ [−1/2, 0).

Lemma 5. For every k ∈ N there exists a Zalcman-type domain Dk such
that

lim sup
0>z→0

�
γ

(k)
Dk

(−1/2, z) <∞,(a)

lim
z→0

�
γ

(k+1)
Dk

(w, z) =∞, w ∈ Dk.(b)

Proof of Theorem 1. We fix k ∈ N and take Dk as in Lemma 5. The�
γ

(k)
Dk

-noncompleteness of Dk is a direct consequence of (a).

Now we will prove that Dk is
�
γ

(k+1)
Dk

-complete. To do this we show that

lim
z→z0

�
γ

(k+1)
Dk

(w, z) =∞, z0 ∈ ∂Dk, w ∈ Dk.

We fix w ∈ Dk. There are three possibilities.

1◦ If z0 = 0 then, using (b), we are done.
2◦ If |z0| = 1 then, using (1) and the contractivity of

�
γ(k+1), we get

lim
z→z0

�
γ

(k+1)
Dk

(w, z) ≥ lim
z→z0

�
γ

(k+1)
E (w, z) = lim

z→z0
cE(w, z) =∞.

3◦ If z0 ∈ ∂B(an, rn) then, using (1), contractivity of the Carathéodory
pseudodistance and (2), we get

lim
z→z0

�
γ

(k+1)
Dk

(w, z) ≥ lim
z→z0

cDk(w, z) ≥ lim
z→z0

cC\B(an,rn)(w, z)

= lim
z→z0

cE∗

(
rn

w − an
,

rn
z − an

)

= lim
z→z0

cE

(
rn

w − an
,

rn
z − an

)
=∞,

since |rn/(z − an)| → 1 as z → z0.

We are left with the proofs of Lemmas 4 and 5.

Proof of Lemma 4. Let D be as in (3). We define

D(s) := E \
(
B(a(s), r(s)) ∪

s⋃

n=1

B(an, rn)
)
, s ∈ N,



Completeness of the Reiffen pseudometric 281

where the numbers a(s), r(s) > 0 are chosen so that 0 ∈ B(a(s), r(s)),
B(an, rn) ⊂ B(a(s), r(s)) for n > s and B(a(s), r(s)) ∩ B(as, rs) = ∅. Ob-
viously, D(s) is an (s + 2)-connected domain and D(s) ⊂ D. Observe that
for ε > 0 small enough

D
(ε)
(s) := (1− ε)E \

(
B(a(s), r(s) + ε) ∪

s⋃

n=1

B(an, rn + ε)
)
⊂⊂ D(s)

is also an (s+ 2)-connected domain. Then the Cauchy integral formula for
D

(ε)
(s) gives us

f (k)(z) =
k!

2πi

�

|ζ|=1−ε

f(ζ)
(ζ − z)k+1 dζ −

k!
2πi

�

|ζ−a(s)|=r(s)+ε

f(ζ)
(ζ − z)k+1 dζ

−
s∑

n=1

k!
2πi

�

|ζ−an|=rn+ε

f(ζ)
(ζ − z)k+1 dζ, z ∈ D(ε)

(s),

for every f ∈ O(D,E). Then for z ∈ [−1/2, a(s) − r(s) − ε− 2(k+1)
√
r(s) + ε)

we have

|f (k)(z)| ≤ k!
2π

2π�

0

1− ε
|(1− ε)eit − z|k+1 dt

+
k!
2π

2π�

0

r(s) + ε

|(r(s) + ε)eit + a(s) − z|k+1 dt

+
s∑

n=1

k!
2π

2π�

0

rn + ε

|(rn + ε)eit + an − z|k+1 dt

≤ k!
1− ε

(1/2− ε)k+1 + k!
r(s) + ε

( 2(k+1)
√
r(s) + ε)k+1

+ k!
s∑

n=1

rn + ε
(

1
2 (an − z − ε)

)k+1 ,

since an − z − ε > an > 2rn. Letting ε→ 0 we get

|f (k)(z)| ≤ k!2k+1 + k!
√
r(s) + k!2k+1

s∑

n=1

rn
(an − z)k+1

for z ∈ [−1/2, a(s) − r(s) − 2(k+1)
√
r(s)).

Now, since s is an arbitrary natural number, we may let s→∞ to get

|f (k)(z)| ≤ k!2k+1 + k!2k+1
∞∑

n=1

rn
(an − z)k+1 , z ∈ [−1/2, 0),

since a(s) and r(s) tend to 0 as s→∞.
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Proof of Lemma 5. We fix k ∈ N and define

(4) Dk := E∗ \
∞⋃

n=4

B(an, rk,n),

where an := 2−n, rk,n := 2−nn−k−1. It is easy to check that (4) is a
Zalcman-type domain, since an+1 + rk,n+1 < an − rk,n and 2rk,n < an
for all k ∈ N, n ≥ 4.

(a) It is sufficient to show that

(5) γ
(k)
Dk

(z; 1) ≤ c2
−z(− log(−z))(k+1)/k

, z ∈ [−1/2, 0),

for some absolute constant c2 = c2(k) > 0. Indeed, using (5), it is easy to
get

lim sup
0>z→0

�
γ

(k)
Dk

(−1/2, z) ≤
0�

−1/2

γ
(k)
Dk

(z; 1) dz <∞,

and the proof of (a) is finished.
We will get (5) if we prove that

(6) |f (k)(z)| ≤ c3
(−z)k(− log(−z))k+1 , z ∈ [−1/2, 0), f ∈ O(Dk, E),

where c3 = c3(k) is a positive constant.
Now we will prove (6). Let z ∈ [−1/2, 0). Then there exist unique m ∈ N

and b ∈ (1, 2] such that z = −b/2m. Observe that
∞∑

n=4

rk,n
(an − z)k+1 ≤

m∑

n=4

rk,n

ak+1
n

+
∞∑

n=m

rk,n
(−z)k+1 .

Now we estimate both series. For the first one we have

(7)
m∑

n=4

rk,n

ak+1
n

=
m∑

n=4

2nk

nk+1 ≤
2mk

mk+1

∞∑

n=0

(
8
9

)n
= 9

2mk

mk+1 ,

while the second series is estimated as follows:

(8)
∞∑

n=m

rk,n
(−z)k+1 =

∞∑

n=m

2m(k+1)

2nnk+1bk+1 ≤
2m(k+1)

2mmk+1

∞∑

n=0

1
2n
≤ 2

2mk

mk+1 .

Using the estimates (7) and (8) we get
∞∑

n=4

rk,n
(an − z)k+1 ≤

11 · 2k(log 2)k+12mk

bk(log(2m/b))k+1 =
c4

(−z)k(− log(−z))k+1 ,

where c4 = c4(k) := 11 · 2k(log 2)k+1. Using Lemma 4, we obtain
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|f (k)(z)| ≤ c1
(

1 +
c4

(−z)k(− log(−z))k+1

)
≤ 2c1c4

(−z)k(− log(−z))k+1 ,

which gives us (6) with the constant c3 := 2c1c4.
(b) We show that

(9) γ
(k+1)
Dk

(z; 1) ≥ c5
|z| log(1/|z|) , |z| < 1/4,

for some absolute constant c5 = c5(k) > 0.
Assume for a while that (9) holds. We fix w ∈ Dk. Then for any |z| < 1/4

and for any curve α ∈ C1
p([0, 1],Dk) such that α(0) = z, α(1) = w we have

(10)
1�

0

γ
(k+1)
Dk

(α(t);α′(t)) dt ≥
tα�

0

c5|α′(t)| dt
|α(t)| log(1/|α(t)|) ,

where tα := min{t ∈ [0, 1] : |α(t)| = 1/4}; if |α(t)| < 1/4 for t ∈ [0, 1], then
tα := 1. Observe that, since

∂

∂t
|α(t)| = α′(t)α(t) + α′(t)α(t)

2|α(t)| =
Re(α′(t)α(t))
|α(t)| ≤ |α′(t)|,

the following estimate holds (if tα = 1 then, in what follows, instead of 1/4
we write |w|):

tα�

0

|α′(t)| dt
|α(t)| log(1/|α(t)|) ≥

1/4�

|z|

dx

x log(1/x)
= log log

1
|z| − log log 4.

Taking the infimum over all such curves α, using (10) and the estimate
above, we obtain

�
γ

(k+1)
Dk

(w, z) ≥ c5
(

log log
1
|z| − log log 4

)
.

Hence, if we let z → 0, we obtain (b).
It remains to prove (9). According to the definition of γ(k+1)

Dk
we will get

(9) if we prove that for every |z| < 1/4 there exists a function fz ∈ O(Dk, E)
such that fz(z) = f ′z(z) = . . . = f

(k)
z (z) = 0 and

(11) |f (k+1)
z (z)| ≥ c6

(|z| log(1/|z|))k+1 ,

with some absolute constant c6 = c6(k) > 0.
Now we will construct such a function. Let |z| < 1/4. Then there exist

unique m ∈ N, b ∈ (1, 2] and θ ∈ [0, 2π) such that z = beiθ/2m. Observe
that m ≥ 3. We define

f̃z(λ) :=
k∑

j=0

αjb,θ(2
−m−j−1 − λ)−1 + 2m+1βb,θ, λ ∈ Dk,
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where α0
b,θ := 1 and α1

b,θ, . . . , α
k
b,θ, βb,θ ∈ C are constants, depending only

on b and θ (and not on m), taken to satisfy the condition f̃z(z) = . . . =
f̃

(k)
z (z) = 0. Clearly, f̃z is a holomorphic function in Dk.

In Lemma 6 below we show that the definition of f̃z is correct (i.e. that
the numbers α1

b,θ, . . . , α
k
b,θ, βb,θ exist), but first observe that

(12)
[
(2−m−j−1 − λ)−1](l) = l!(2−m−j−1 − λ)−l−1.

Lemma 6. For every z = beiθ/2m, where b ∈ [1, 2], θ ∈ [0, 2π] and
m ≥ 3, the numbers α1

b,θ, . . . , α
k
b,θ, βb,θ as above exist and their moduli can

be estimated from above by a positive constant α which is independent of b
and θ. Moreover ,

Bk,b,θ :=
k∑

j=0

(
2j

1− 2j+1beiθ

)k+2

αjb,θ 6= 0.

In particular , Bk := min{|Bk,b,θ| : b ∈ [1, 2], θ ∈ [0, 2π]} > 0.

Later we will give the proof of Lemma 6. Using (12) we obtain

|f̃ (k+1)
z (z)| =

∣∣∣∣
k∑

j=0

αjb,θ(k + 1)!
(

1
2m+j+1 −

beiθ

2m

)−(k+2)∣∣∣∣

≥
∣∣∣∣
k∑

j=0

αjb,θ

(
2m+j+1

1− 2j+1beiθ

)k+2∣∣∣∣

= 2(m+1)(k+2)|Bk,b,θ| ≥ c72m(k+2),

where c7 is a positive constant depending only on k.
Now, with the help of Lemma 6, we estimate the supremum of the func-

tion f̃z on Dk:

‖f̃z‖Dk ≤
k∑

j=0

|αjb,θ|
rk,m+j+1

+ 2m+1|βb,θ|

≤ α(k + 2)
rk,m+k+1

= α(k + 2)2m+k+1(m+ k + 1)k+1

≤ c82m(m− 1)k+1,

where c8 > 0 depends only on k.
Observe that for fz := f̃z/‖f̃z‖Dk ∈ O(Dk, E) we obtain (11), because

|f (k+1)
z (z)| ≥ c72m(k+1)

c8(m− 1)k+1 ≥
c7(log 2)k+12m(k+1)

c8bk+1(log(2m/b))k+1 =
c6

(|z| log(1/|z|))k+1 .

Thus the proof of Lemma 5 is complete.
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We are left with the proof of Lemma 6.

Proof of Lemma 6. First we will construct α1
b,θ, . . . , α

k
b,θ. We show that

the system of k equations

(13) f̃ ′z(z) = . . . = f̃ (k)
z (z) = 0

in k unknowns α1
b,θ, . . . , α

k
b,θ always has a solution, i.e. its determinant is

not zero.
Observe that, by (12), the system (13) is equivalent to

(14)
k∑

j=0

l!
(

2m+j+1

1− 2j+1beiθ

)l+1

αjb,θ = 0, l = 1, . . . , k,

which is equivalent to

(15)
k∑

j=1

(
2j

1− 2j+1beiθ

)l+1

αjb,θ = −
(

1
1− 2beiθ

)l+1

, l = 1, . . . , k.

To simplify notation put

Ajb,θ :=
2j

1− 2j+1beiθ
, j = 0, . . . , k,

and observe that all |Ajb,θ| ∈ [1/8, 1] and that Aµb,θ 6= Aνb,θ whenever µ 6= ν.
Now (15) is equivalent to

(16)
k∑

j=1

(Ajb,θ)
l+1αjb,θ = −(A0

b,θ)
l+1, l = 1, . . . , k,

and it is easy to see that

(17) |det[(Ajb,θ)
l+1]kj,l=1| = |A1

b,θ . . . A
k
b,θ|2

∏

k≥µ>ν≥1

|Aµb,θ − Aνb,θ| ≥ ε > 0,

where ε is a constant independent of b and θ. Hence the choice of the numbers
α1
b,θ, . . . , α

k
b,θ is always possible; now we may take

βb,θ := −
k∑

j=0

Ajb,θα
j
b,θ.

Now we prove the existence of the constant α. Since

|βb,θ| ≤
k∑

j=0

|Ajb,θα
j
b,θ| ≤ (k + 1) max{|αjb,θ| : 0 ≤ j ≤ k},

it is enough to deal with the numbers αjb,θ.
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Observe that |Ajb,θ|l+1 ∈ [2−3(k+1), 1] for j = 0, . . . , k, l = 1, . . . , k, b ∈
[1, 2] and θ ∈ [0, 2π]. Since det is a continuous function, it is bounded on com-
pact sets. This observation and (17) give us global upper bounds α1, . . . , αk

of |α1
b,θ|, . . . , |αkb,θ|, independent of b and θ. Hence one may take

α := (k + 1) max{|αj | : 0 ≤ j ≤ k}.
It remains to prove that Bk,b,θ 6= 0. Observe that this is equivalent to

(18)
k∑

j=1

(Ajb,θ)
k+2αjb,θ 6= −(A0

b,θ)
k+2.

Suppose (18) does not hold. Then we obtain the system of k + 1 equations

(19)
k∑

j=1

(Ajb,θ)
l+1αjb,θ = −(A0

b,θ)
l+1, l = 1, . . . , k + 1,

which has the only solution αjb,θ, j = 1, . . . , k. Now, if we remove from (19)
the first equation, we obtain the system of k equations

(20)
k∑

j=1

(Ajb,θ)
l+1αjb,θ = −(A0

b,θ)
l+1, l = 2, . . . , k + 1,

which also has the same unique solution αjb,θ, j = 1, . . . , k. But if we compare
the solutions of (16) and (20) we get

A0
b,θ/A

j
b,θ = 1, j = 1, . . . , k,

which is impossible and, consequently, (18) holds.
Now, since |Bk,b,θ| is, with respect to variables (b, θ), a positive and

continuous function on the compact set [1, 2] × [0, 2π], we conclude that
Bk > 0 and the proof of Lemma 6 is finished.

3. Proof of Theorem 2. In the proof of Theorem 2 we will use the
following lemma.

Lemma 7. If D ⊂ C is a bounded domain, then

γ
(k)
D (z0; 1)

(dD(z0))l/k
≥ (γ(k+l)

D (z0; 1))(k+l)/k, z0 ∈ D, k, l ∈ N.

Proof of Lemma 7. Fix k, l ∈ N and z0 ∈ D. Then for f ∈ O(D,E) such
that f(z0) = f ′(z0) = . . . = f (k+l−1)(z0) = 0 we define

g(z) :=
{
f(z)/(z − z0)l, z 6= z0,
0, z = z0.
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Observe that g is a holomorphic function on D. Moreover, using the Taylor
expansion of f at z0 we obtain

g(z) =
∞∑

j=k+l

f (j)(z0)
j!

(z − z0)j−l, z ∈ D.

Then

(21) g(m)(z0) = 0, m = 0, 1, . . . , k − 1,

and

(22) g(k)(z0) =
k!

(k + l)!
f (k+l) (z0).

From the maximum principle we get ‖g‖D ≤ 1/(dD(z0))l. Therefore, by
(21), h := (dD(z0))lg ∈ O(D,E) satisfies the conditions in the definition of
the kth Reiffen pseudometric. Hence, using (22), we obtain

γ
(k)
D (z0; 1) ≥ sup

h

(
1
k!
|h(k)(z0)|

)1/k

=
(

(dD(z0))l

(k + l)!
sup
f
|f (k+l)(z0)|

)1/k

= ((dD(z0))l(γ(k+l)
D (z0; 1))k+l)1/k

= (dD(z0))l/k(γ(k+l)
D (z0; 1))(k+l)/k,

and the proof of Lemma 7 is complete.

Proof of Theorem 2. From Lemma 7 we get

γ
(k+l)
D (z; 1) ≤ (γ(k)

D (z; 1))k/(k+l)

(dD(z))l/(k+l)
, z ∈ D, k, l ∈ N.

Now, if γ(k)
D (z; 1) ≤ c(dD(z))−α then

γ
(k+l)
D (z; 1) ≤ ck/(k+l)

(dD(z))(αk+l)/(k+l)
=

c′

(dD(z))α′
, z ∈ D, k, l ∈ N,

where c′ := ck/(k+l) and α′ := (αk + l)/(k + l) < 1.
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