Doubly warped product submanifolds of (κ, μ)-contact metric manifolds

by Sibel Sular and Cihan Özgür (Balikesir)

Abstract

We establish sharp inequalities for C-totally real doubly warped product submanifolds in (κ, μ)-contact space forms and in non-Sasakian (κ, μ)-contact metric manifolds.

1. Introduction. Let $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ be two Riemannian manifolds and f_{1}, f_{2} differentiable, positive-valued functions on M_{1} and M_{2}, respectively. The doubly warped product $M={ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ is the product manifold $M_{1} \times M_{2}$ equipped with the metric

$$
g=f_{2}^{2} g_{1}+f_{1}^{2} g_{2}
$$

More explicitly, if $\pi_{1}: M_{1} \times M_{2} \rightarrow M_{1}$ and $\pi_{2}: M_{1} \times M_{2} \rightarrow M_{2}$ are canonical projections, then the metric g is given by

$$
g=\left(f_{2} \circ \pi_{2}\right)^{2} \pi_{1}^{*} g_{1}+\left(f_{1} \circ \pi_{1}\right)^{2} \pi_{2}^{*} g_{2}
$$

The functions f_{1} and f_{2} are called warping functions. If either $f_{1} \equiv 1$ or $f_{2} \equiv 1$, but not both, then we get a warped product. If both $f_{1} \equiv 1$ and $f_{2} \equiv 1$, then we obtain a Riemannian product manifold. If neither f_{1} nor f_{2} is constant, then we have a non-trivial doubly warped product [Ün].

For a doubly warped product ${ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$, let D_{1} and D_{2} denote the distributions obtained from the vectors on M_{1} and M_{2}, respectively.

Assume that

$$
x:{ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2} \rightarrow \widetilde{M}
$$

is an isometric immersion of a doubly warped product ${ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ into a Riemannian manifold \widetilde{M}. We denote by σ the second fundamental form of x and by $H_{i}=\left(1 / n_{i}\right)$ trace σ_{i} the partial mean curvatures, where trace σ_{i} is the trace of σ restricted to M_{i} and $n_{i}=\operatorname{dim} M_{i}(i=1,2)$. The immersion

[^0]x is called mixed totally geodesic if $\sigma(X, Z)=0$ for any vector fields X and Z tangent to D_{1} and D_{2}, respectively.

If $f_{2} M_{1} \times{ }_{f_{1}} M_{2}$ is a doubly warped product, we have

$$
\nabla_{X} Y=\nabla_{X}^{1} Y-\frac{f_{2}^{2}}{f_{1}^{2}} g_{1}(X, Y) \nabla^{2}\left(\ln f_{2}\right)
$$

and

$$
\nabla_{X} Z=Z\left(\ln f_{2}\right) X+X\left(\ln f_{1}\right) Z
$$

for any vector fields X, Y tangent to M_{1}, and Z tangent to M_{2}, where ∇^{1} and ∇^{2} are the Levi-Civita connections of the Riemannian metrics g_{1} and g_{2}, respectively. Here, $\nabla^{2}\left(\ln f_{2}\right)$ denotes the gradient of $\ln f_{2}$ with respect to the metric g_{2}.

If X and Z are unit vector fields, it follows that the sectional curvature $K(X \wedge Z)$ of the plane section spanned by X and Z is given by

$$
K(X \wedge Z)=\frac{1}{f_{1}}\left\{\left(\nabla_{X}^{1} X\right) f_{1}-X^{2} f_{1}\right\}+\frac{1}{f_{2}}\left\{\left(\nabla_{Z}^{2} Z\right) f_{2}-Z^{2} f_{2}\right\} .
$$

Consequently, we obtain

$$
\begin{equation*}
n_{2} \frac{\Delta f_{1}}{f_{1}}+n_{1} \frac{\Delta f_{2}}{f_{2}}=\sum_{1 \leq j \leq n_{1}<s \leq n} K\left(e_{j} \wedge e_{s}\right), \tag{1.1}
\end{equation*}
$$

for a local orthonormal frame $\left\{e_{1}, \ldots, e_{n_{1}}, e_{n_{1}+1}, \ldots, e_{n}\right\}$ such that $e_{1}, \ldots, e_{n_{1}}$ are tangent to M_{1} and $e_{n_{1}+1}, \ldots, e_{n}$ are tangent to M_{2}.

In Ch-2002, B. Y. Chen proved the following result for a warped product submanifold of a Riemannian manifold of constant sectional curvature:

Theorem 1.1. Let $x: M_{1} \times_{f} M_{2} \rightarrow \widetilde{M}(c)$ be an isometric immersion of an n-dimensional warped product $M_{1} \times_{f} M_{2}$ into an m-dimensional Riemannian manifold $\widetilde{M}(c)$ of constant sectional curvature c. Then

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{n^{2}}{4 n_{2}}\|H\|^{2}+n_{1} c \tag{1.2}
\end{equation*}
$$

where $n_{i}=\operatorname{dim} M_{i}, n=n_{1}+n_{2}$, and Δ is the Laplacian operator of M. Equality holds in (1.2) identically if and only if x is a mixed totally geodesic immersion and $n_{1} H_{1}=n_{2} H_{2}$, where $H_{i}, i=1,2$, are the partial mean curvature vectors.

In (MM, K. Matsumoto and I. Mihai studied warped product submanifolds in Sasakian space forms. In Mi-2004] and Mi-2005], A. Mihai considered warped product submanifolds in complex space forms and quaternion space forms, respectively. Recently, in MAEM, C. Murathan, K. Arslan, R. Ezentaş and I. Mihai studied warped product submanifolds in Kenmotsu space forms. Later, B. Y. Chen and F. Dillen extended inequality (1.2) to multiply warped product submanifolds in arbitrary Riemannian manifolds

ChDi]. Recently, in Tri], M. M. Tripathi established basic inequalities for C-totally real warped product submanifolds of (κ, μ)-contact space forms and non-Sasakian (κ, μ)-contact metric manifolds.

In Ol, A. Olteanu established the following general inequality for arbitrary isometric immersions of doubly warped product manifolds in arbitrary Riemannian manifolds:

Theorem 1.2. Let x be an isometric immersion of an n-dimensional doubly warped product $M={ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ into an arbitrary m-dimensional Riemannian manifold \widetilde{M}. Then

$$
\begin{equation*}
n_{2} \frac{\Delta_{1} f_{1}}{f_{1}}+n_{1} \frac{\Delta_{2} f_{2}}{f_{2}} \leq \frac{n^{2}}{4}\|H\|^{2}+n_{1} n_{2} \max \widetilde{K}, \tag{1.3}
\end{equation*}
$$

where $n_{i}=\operatorname{dim} M_{i}, n=n_{1}+n_{2}, \Delta_{i}$ is the Laplacian operator of $M_{i}, i=1,2$, and $\max \widetilde{K}(p)$ denotes the maximum of the sectional curvature function of \widetilde{M} restricted to 2-plane sections of the tangent space $T_{p} M$ of M at each point p in M. Moreover, equality holds in (1.3) identically if and only if the following two statements hold:
(1) x is a mixed totally geodesic immersion satisfying $n_{1} H_{1}=n_{2} H_{2}$, where $H_{i}, i=1,2$, are the partial mean curvature vectors of M_{i},
(2) at each point $p=\left(p_{1}, p_{2}\right) \in M$, the sectional curvature function \widetilde{K} of \widetilde{M} satisfies $\widetilde{K}(u, v)=\max \widetilde{K}(p)$ for each unit vector $u \in T_{p_{1}} M_{1}$ and each unit vector $v \in T_{p_{2}} M_{2}$.

Motivated by the studies of the above authors, we prove similar inequalities for C-totally real doubly warped product submanifolds of (κ, μ)-contact space forms and non-Sasakian (κ, μ)-contact metric manifolds.

The paper is organized as follows: In Section 2 , we give a brief introduction to submanifolds, (κ, μ)-contact metric manifolds, (κ, μ)-contact space forms and non-Sasakian (κ, μ)-contact metric manifolds. In Section 3, we prove basic inequalities for (κ, μ)-contact space forms and non-Sasakian (κ, μ)-contact metric manifolds. In Section 4, as applications we prove that if the functions f_{1} and f_{2} are harmonic then $M={ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ does not admit minimal immersions under certain conditions.
2. Preliminaries. Let M be an m-dimensional Riemannian manifold and $p \in M$. Denote by $K(\pi)$ or $K(u, v)$ the sectional curvature of M associated with a plane section $\pi \subset T_{p} M$, where $\{u, v\}$ is an orthonormal basis of π. For any n-dimensional subspace $L \subseteq T_{p} M, 2 \leq n \leq m$, its scalar curvature $\tau(L)$ is given by

$$
\tau(L)=\sum_{1 \leq i<j \leq n} K\left(e_{i} \wedge e_{j}\right),
$$

where $\left\{e_{1}, \ldots, e_{n}\right\}$ is any orthonormal basis of L Ch-2000. If $L=T_{p} M$, then $\tau(L)$ is just the scalar curvature $\tau(p)$ of M at p.

For an n-dimensional submanifold M in a Riemannian m-manifold \widetilde{M}, we denote by ∇ and $\widetilde{\nabla}$ the Levi-Civita connections of M and \widetilde{M}, respectively. The Gauss and Weingarten formulas are

$$
\widetilde{\nabla}_{X} Y=\nabla_{X} Y+\sigma(X, Y) \quad \text { and } \quad \tilde{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\perp} Y
$$

respectively, for vector fields X, Y tangent to M, and N normal to M, where σ denotes the second fundamental form, ∇^{\perp} the normal connection and A the shape operator of M Ch-1973.

Denote by R and \widetilde{R} the Riemannian curvature tensors of M and \widetilde{M}, respectively. Then the equation of Gauss is given by

$$
\begin{aligned}
R(X, Y, Z, W)= & \widetilde{R}(X, Y, Z, W) \\
& +g(\sigma(Y, Z), \sigma(X, W))-g(\sigma(X, Z), \sigma(Y, W))
\end{aligned}
$$

for all vector fields X, Y, Z, W tangent to M Ch-1973].
For any orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of $T_{p} M$, the mean curvature vector is given by

$$
H(p)=\frac{1}{n} \sum_{i=1}^{n} \sigma\left(e_{i}, e_{i}\right)
$$

where $n=\operatorname{dim} M$. The submanifold M is totally geodesic in \widetilde{M} if $\sigma=0$, and minimal if $H=0$.

We write

$$
\sigma_{i j}^{r}=g\left(\sigma\left(e_{i}, e_{j}\right), e_{r}\right), \quad i, j \in\{1, \ldots, n\}, r \in\{n+1, \ldots, m\}
$$

for the coefficients of the second fundamental form σ with respect to e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{m}, and set

$$
\|\sigma\|^{2}=\sum_{i, j=1}^{n} g\left(\sigma\left(e_{i}, e_{j}\right), \sigma\left(e_{i}, e_{j}\right)\right)
$$

Let M be a local n-dimensional Riemannian manifold and $\left\{e_{1}, \ldots, e_{n}\right\}$ be a local orthonormal frame on M. For a differentiable function f on M, the Laplacian Δf of f is given by

$$
\Delta f=\sum_{j=1}^{n}\left\{\left(\nabla_{e_{j}} e_{j}\right) f-e_{j} e_{j} f\right\}
$$

We will need the following Chen's Lemma:
Lemma 2.1 (Ch-1993). Let $n \geq 2$ and a_{1}, \ldots, a_{n}, b be real numbers such that

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{2}=(n-1)\left(\sum_{i=1}^{n} a_{i}^{2}+b\right)
$$

Then $2 a_{1} a_{2} \geq b$, with equality holding if and only if

$$
a_{1}+a_{2}=a_{3}=\cdots=a_{n} .
$$

A $(2 m+1)$-dimensional Riemannian manifold \widetilde{M} is said to be an almost contact metric manifold [Bl-2002] if there exist on \widetilde{M} a (1,1)-tensor field φ, a vector field ξ, a 1-form η and a Riemannian metric g satisfying

$$
\begin{aligned}
& \varphi^{2}=-I+\eta \otimes \xi, \quad \eta(\xi)=1, \quad \varphi \xi=0, \quad \eta \circ \varphi=0 \\
& g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y), \quad \eta(X)=g(X, \xi)
\end{aligned}
$$

for any vector fields X, Y on \widetilde{M}. An almost contact metric manifold is a contact metric manifold if

$$
g(X, \varphi Y)=d \eta(X, Y)
$$

for all X, Y on \widetilde{M}.
A contact metric manifold is a Sasakian manifold if the Riemannian curvature tensor \widetilde{R} of \widetilde{M} satisfies

$$
\widetilde{R}(X, Y) \xi=\eta(Y) X-\eta(X) Y
$$

for all vector fields X, Y on \widetilde{M}.
In a contact metric manifold \widetilde{M}, a $(1,1)$-tensor field h is given by

$$
h=\frac{1}{2} L_{\xi} \varphi,
$$

where L_{ξ} is the Lie derivative in the characteristic direction ξ. Moreover h is symmetric and satisfies

$$
\begin{gathered}
h \xi=0, \quad h \varphi+\varphi h=0 \\
\widetilde{\nabla} \xi=-\varphi-\varphi h, \quad \operatorname{trace}(h)=\operatorname{trace}(\varphi h)=0,
\end{gathered}
$$

where $\widetilde{\nabla}$ is the Levi-Civita connection.
The tangent sphere bundle of a flat Riemannian manifold admits a contact metric structure satisfying $R(X, Y) \xi=0$ [Bl-2002]. The (κ, μ)-nullity condition on a contact metric manifold is considered as a generalization of both $R(X, Y) \xi=0$ and the Sasakian case. The (κ, μ)-nullity distribution $N(\kappa, \mu)$ BKP] of a contact metric manifold \widetilde{M} is defined by

$$
\begin{aligned}
N(\kappa, \mu): p \mapsto N_{p}(\kappa, \mu)=\{Z & \in T_{p} M \mid R(X, Y) Z \\
& =(\kappa I+\mu h)(g(Y, Z) X-g(X, Z) Y)\},
\end{aligned}
$$

for all $X, Y \in T M$ where $(\kappa, \mu) \in \mathbb{R}^{2}$ and I is the identity map. If ξ belongs to the (κ, μ)-nullity distribution $N(\kappa, \mu)$ then the contact metric manifold \widetilde{M} is called a (κ, μ)-contact metric manifold. In particular the condition

$$
R(X, Y) \xi=\kappa(\eta(Y) X-\eta(X) Y)+\mu(\eta(Y) h X-\eta(X) h Y)
$$

holds on a (κ, μ)-contact metric manifold.

On a (κ, μ)-contact metric manifold we have

$$
h^{2}=(\kappa-1) \varphi^{2} \quad \text { and } \quad \kappa \leq 1
$$

For a (κ, μ)-contact metric manifold, the conditions to be a Sasakian manifold, $\kappa=1$, and $h=0$ are all equivalent. When $\kappa<1$, the non-zero eigenvalues of h are $\lambda=\mp \sqrt{1-\kappa}$ each with multiplicity m. The eigenspace relative to the eigenvalue 0 is $\operatorname{span}\{\xi\}$. Also, for $\kappa \neq 1$, the subbundle $D=\operatorname{ker}(\eta)$ can be decomposed into the eigenspace distributions D_{+}and D_{-}relative to the eigenvalues λ and $-\lambda$, respectively. These distributions are orthogonal to each other and have dimension m [Bl-2002].

For a unit vector field X orthogonal to ξ in an almost contact metric manifold, the sectional curvature $\widetilde{K}(X, \varphi X)$ is called a φ-sectional curvature. On a $(2 m+1)$-dimensional $(m \geq 3),(\kappa, \mu)$-contact metric manifold \widetilde{M}, if the φ-sectional curvature at $p \in \widetilde{M}$ is independent of the φ-section at p, then it is constant Kou . If the (κ, μ)-contact metric manifold \widetilde{M} has constant φ-sectional curvature c, then it is said to be a (κ, μ)-contact space form and denoted by $\widetilde{M}(c)$. The Riemannian curvature tensor of a (κ, μ)-contact space form $\widetilde{M}(c)$ is given by

$$
\begin{align*}
& \widetilde{R}(X, Y, Z, W) \tag{2.1}\\
& \text { +1) } \begin{aligned}
\frac{c-1}{4}\{2 g(X, \varphi Y) & g(\varphi Z, W)+g(X, \varphi Z) g(\varphi Y, W)-g(Y, \varphi Z) g(\varphi X, W)\} \\
& +\frac{c+3-4 \kappa}{4}\{\eta(X) \eta(Z) g(Y, W)-\eta(Y) \eta(Z) g(X, W) \\
& +g(X, Z) \eta(Y) \eta(W)-g(Y, Z) \eta(X) \eta(W)\} \\
& +\frac{1}{2}\{g(h Y, Z) g(h X, W)-g(h X, Z) g(h Y, W) \\
& +g(\varphi h X, Z) g(\varphi h Y, W)-g(\varphi h Y, Z) g(\varphi h X, W)\} \\
& +g(\varphi Y, \varphi Z) g(h X, W)-g(\varphi X, \varphi Z) g(h Y, W) \\
& +g(h X, Z) g\left(\varphi^{2} Y, W\right)-g(h Y, Z) g\left(\varphi^{2} X, W\right) \\
& +\mu\{\eta(Y) \eta(Z) g(h X, W)-\eta(X) \eta(Z) g(h Y, W) \\
& +g(h Y, Z) \eta(X) \eta(W)-g(h X, Z) \eta(Y) \eta(W)\}
\end{aligned}
\end{align*}
$$

for all vector fields X, Y, Z, W on $\widetilde{M}(c)$ Kou]. If $\kappa=1$ then a (κ, μ)-contact space form $\widetilde{M}(c)$ becomes a Sasakian space form and the equation 2.1) reduces to

$$
\begin{array}{r}
\widetilde{R}(X, Y, Z, W)=\frac{c+3}{4}\{g(Y, Z) \\
g(X, W)-g(X, Z) g(Y, W)\} \\
+\frac{c-1}{4}\{2 g(X, \varphi Y) g(\varphi Z, W)
\end{array}
$$

$$
\begin{aligned}
& +g(X, \varphi Z) g(\varphi Y, W)-g(Y, \varphi Z) g(\varphi X, W) \\
& +\eta(X) \eta(Z) g(Y, W)-\eta(Y) \eta(Z) g(X, W) \\
& +g(X, Z) \eta(Y) \eta(W)-g(Y, Z) \eta(X) \eta(W)\}
\end{aligned}
$$

The Riemannian curvature tensor \widetilde{R} of a non-Sasakian (κ, μ)-contact metric manifold \widetilde{M} is given by

$$
\begin{align*}
& \text { 2) } \begin{array}{c}
\widetilde{R}(X, Y, Z, W)=\left(1-\frac{\mu}{2}\right)\{g(Y, Z) g(X, W)-g(X, Z) g(Y, W)\} \\
-\frac{\mu}{2}\{2 g(X, \varphi Y) g(\varphi Z, W)+g(X, \varphi Z) g(\varphi Y, W)-g(Y, \varphi Z) g(\varphi X, W)\} \\
+ \\
-g(Y, Z) g(h X, W)-g(X, Z) g(h Y, W) \\
\\
+ \\
+\frac{1-\mu / 2}{1-\kappa}\{g(h Y, Z) g(h X, W)-g(h X, Z) g(h Y, W)\} \\
\\
+\frac{\kappa-\mu / 2}{1-\kappa}\{g(\varphi h Y, Z) g(\varphi h X, W)-g(\varphi h X, Z) g(\varphi h Y, W)\} \\
\\
+\eta(X) \eta(W)\{(\kappa-1+\mu / 2) g(Y, Z)-(\mu-1) g(h Y, Z)\} \\
\\
-\eta(X) \eta(Z)\{(\kappa-1+\mu / 2) g(Y, W)-(\mu-1) g(h Y, W)\} \\
+\eta(Y) \eta(Z)\{(\kappa-1+\mu / 2) g(X, W)-(\mu-1) g(h X, W)\} \\
\\
-\eta(Y) \eta(W)\{(\kappa-1+\mu / 2) g(X, Z)-(\mu-1) g(h X, Z)\}
\end{array} \tag{2.2}
\end{align*}
$$

for all vector fields X, Y, Z, W on \widetilde{M} (Bo-1999], Bo-2000]). A 3-dimensional non-Sasakian (κ, μ)-contact metric manifold has constant φ-sectional curvature, but this is not true for higher dimensions. A non-Sasakian (κ, μ) contact metric manifold has constant φ-sectional curvature c if and only if $\mu=\kappa+1$ Kou].
3. Main results. A submanifold M normal to ξ in a contact metric manifold \widetilde{M} is said to be a C-totally real submanifold [YK]. It follows that φ maps any tangent space of M into the normal space, that is, $\varphi\left(T_{p} M\right) \subset$ $T_{p}^{\perp} M$ for any $p \in M$.

For a C-totally real submanifold in a contact metric manifold, it is easy to see that

$$
g\left(A_{\xi} X, Y\right)=-g\left(\widetilde{\nabla}_{X} \xi, Y\right)=g(\varphi X+\varphi h X, Y)
$$

which means that $A_{\xi}=(\varphi h)^{T}$, the tangent component of φh.
In this section, we consider inequalities for C-totally real doubly warped product submanifolds of (κ, μ)-contact space forms and non-Sasakian (κ, μ) contact metric manifolds.

Now, we begin with the following theorem:
ThEOREM 3.1. Let $M={ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ be an n-dimensional C-totally real doubly warped product submanifold of a $(2 m+1)$-dimensional (κ, μ)-contact space form $\widetilde{M}(c)$. Then

$$
\begin{align*}
n_{2} \frac{\Delta_{1} f_{1}}{f_{1}}+ & n_{1} \frac{\Delta_{2} f_{2}}{f_{2}} \tag{3.1}\\
\leq & \frac{n^{2}}{4}\|H\|^{2}+\frac{n_{1} n_{2}}{4}(c+3)+n_{2} \operatorname{trace}\left(h_{\left.\right|_{M_{1}}}^{T}\right)+n_{1} \operatorname{trace}\left(h_{\left.\right|_{M_{2}}}^{T}\right) \\
& +\frac{1}{4}\left\{\left(\operatorname{trace}\left(h^{T}\right)\right)^{2}-\left(\operatorname{trace}\left(h_{\left.\right|_{M_{1}}}^{T}\right)\right)^{2}-\left(\operatorname{trace}\left(h_{\left.\right|_{M_{2}}}^{T}\right)\right)^{2}\right. \\
& -\left(\operatorname{trace}\left(A_{\xi}\right)\right)^{2}+\left(\operatorname{trace}\left(A_{\left.\xi\right|_{M_{1}}}\right)\right)^{2}+\left(\operatorname{trace}\left(A_{\left.\xi\right|_{M_{2}}}\right)\right)^{2} \\
& -\left\|h^{T}\right\|^{2}+\left\|h_{\left.\right|_{M_{1}}}^{T}\right\|^{2}+\left\|h_{\left.\right|_{M_{2}}}^{T}\right\|^{2} \\
& \left.+\left\|A_{\xi}\right\|^{2}-\left\|A_{\left.\xi\right|_{M_{1}}}\right\|^{2}-\left\|A_{\left.\xi\right|_{M_{2}}}\right\|^{2}\right\}
\end{align*}
$$

where $n_{i}=\operatorname{dim} M_{i}, n=n_{1}+n_{2}$ and Δ_{i} is the Laplacian of $M_{i}, i=1,2$. Equality holds in (3.1) identically if and only if M is mixed totally geodesic and $n_{1} H_{1}=n_{2} H_{2}$, where $H_{i}, i=1,2$, are the partial mean curvature vectors.

Proof. We choose a local orthonormal frame $\left\{e_{1}, \ldots, e_{n_{1}}, e_{n_{1}+1}, \ldots, e_{n}\right\}$ such that $e_{1}, \ldots, e_{n_{1}}$ are tangent to $M_{1}, e_{n_{1}+1}, \ldots, e_{n}$ are tangent to M_{2} and e_{n+1} is parallel to the mean curvature vector H.

From the equation of Gauss, we have

$$
2 \tau(p)=n^{2}\|H\|^{2}(p)-\|\sigma\|^{2}(p)+2 \widetilde{\tau}\left(T_{p} M\right), \quad p \in M
$$

where $\|\sigma\|^{2}$ is the squared norm of the second fundamental form σ of M in \widetilde{M} and $\widetilde{\tau}\left(T_{p} M\right)$ is the scalar curvature of the subspace $T_{p} M$ in \widetilde{M}.

We set

$$
\begin{equation*}
\delta=2 \tau-\frac{n^{2}}{2}\|H\|^{2}-2 \widetilde{\tau}\left(T_{p} M\right) \tag{3.2}
\end{equation*}
$$

The equation (3.2) can be written as follows:

$$
\begin{equation*}
n^{2}\|H\|^{2}=2\left(\delta+\|\sigma\|^{2}\right) \tag{3.3}
\end{equation*}
$$

For the chosen local orthonormal frame, the relation (3.3) takes the form

$$
\left(\sum_{i=1}^{n} \sigma_{i i}^{n+1}\right)^{2}=2\left[\delta+\sum_{i=1}^{n}\left(\sigma_{i i}^{n+1}\right)^{2}+\sum_{i \neq j}\left(\sigma_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(\sigma_{i j}^{r}\right)^{2}\right]
$$

If we put $a_{1}=\sigma_{11}^{n+1}, a_{2}=\sum_{i=2}^{n_{1}} \sigma_{11}^{n+1}$ and $a_{3}=\sum_{t=n_{1}+1}^{n} \sigma_{t t}^{n+1}$, then the above equation reduces to

$$
\begin{aligned}
\left(\sum_{i=1}^{3} a_{i}\right)^{2}= & 2\left[\delta+\sum_{i=1}^{3} a_{i}^{2}+\sum_{1 \leq i \neq j \leq n}\left(\sigma_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(\sigma_{i j}^{r}\right)^{2}\right. \\
& \left.-\sum_{2 \leq j \neq k \leq n_{1}} \sigma_{j j}^{n+1} \sigma_{k k}^{n+1}-\sum_{n_{1}+1 \leq s \neq t \leq n} \sigma_{s s}^{n+1} \sigma_{t t}^{n+1}\right]
\end{aligned}
$$

Hence, a_{1}, a_{2} and a_{3} satisfy the assumption of Chen's Lemma (for $n=3$), which implies that

$$
\left(\sum_{i=1}^{3} a_{i}\right)^{2}=2\left(b+\sum_{i=1}^{3} a_{i}^{2}\right)
$$

with

$$
\begin{aligned}
b=\delta & +\sum_{i=1}^{3} a_{i}^{2}+\sum_{1 \leq i \neq j \leq n}\left(\sigma_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(\sigma_{i j}^{r}\right)^{2} \\
& -\sum_{2 \leq j \neq k \leq n_{1}} \sigma_{j j}^{n+1} \sigma_{k k}^{n+1}-\sum_{n_{1}+1 \leq s \neq t \leq n} \sigma_{s s}^{n+1} \sigma_{t t}^{n+1} .
\end{aligned}
$$

Then we get $2 a_{1} a_{2} \geq b$, with equality holding $a_{1}+a_{2}=a_{3}$. Equivalently

$$
\begin{align*}
\sum_{1 \leq j<k \leq n_{1}} \sigma_{j j}^{n+1} \sigma_{k k}^{n+1} & +\sum_{n_{1}+1 \leq s<t \leq n} \sigma_{s s}^{n+1} \sigma_{t t}^{n+1} \tag{3.4}\\
& \geq \frac{\delta}{2}+\sum_{1 \leq \alpha<\beta \leq n}\left(\sigma_{\alpha \beta}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m+1} \sum_{\alpha, \beta=1}^{n}\left(\sigma_{\alpha \beta}^{r}\right)^{2}
\end{align*}
$$

Equality holds if and only if

$$
\sum_{i=1}^{n_{1}} \sigma_{i i}^{n+1}=\sum_{t=n_{1}+1}^{n} \sigma_{t t}^{n+1}
$$

By making use of the Gauss equation again, we have

$$
\begin{align*}
& n_{2} \frac{\Delta_{1} f_{1}}{f_{1}}+n_{1} \frac{\Delta_{2} f_{2}}{f_{2}} \tag{3.5}\\
&=\tau-\sum_{1 \leq j<k \leq n_{1}} K\left(e_{j} \wedge e_{k}\right)-\sum_{n_{1}+1 \leq s<t \leq n} K\left(e_{s} \wedge e_{t}\right) \\
&= \tau-\widetilde{\tau}\left(D_{1}\right)-\sum_{r=n+1}^{2 m+1} \sum_{1 \leq j<k \leq n_{1}}\left(\sigma_{j j}^{r} \sigma_{k k}^{r}-\left(\sigma_{j k}^{r}\right)^{2}\right) \\
&-\widetilde{\tau}\left(D_{2}\right)-\sum_{r=n+1}^{2 m+1} \sum_{n_{1}+1 \leq s<t \leq n}\left(\sigma_{s s}^{r} \sigma_{t t}^{r}-\left(\sigma_{s t}^{r}\right)^{2}\right)
\end{align*}
$$

In view of the equations (1.1), (3.4) and (3.5) we obtain

$$
\begin{equation*}
n_{2} \frac{\Delta_{1} f_{1}}{f_{1}}+n_{1} \frac{\Delta_{2} f_{2}}{f_{2}} \tag{3.6}
\end{equation*}
$$

$$
\begin{aligned}
\leq & \tau-\widetilde{\tau}(T M)+\sum_{1 \leq s \leq n_{1}} \sum_{n_{1}+1 \leq t \leq n} \tilde{K}\left(e_{s} \wedge e_{t}\right) \\
& -\frac{\delta}{2}-\sum_{1 \leq j<t \leq n}\left(\sigma_{j t}^{n+1}\right)^{2}-\frac{1}{2} \sum_{r=n+2}^{2 m+1} \sum_{\alpha, \beta=1}^{n}\left(\sigma_{\alpha \beta}^{r}\right)^{2} \\
& +\sum_{r=n+2}^{2 m+1} \sum_{1 \leq j<k \leq n_{1}}\left(\left(\sigma_{j k}^{r}\right)^{2}-\sigma_{j j}^{r} \sigma_{k k}^{r}\right)+\sum_{r=n+2}^{2 m+1} \sum_{n_{1}+1 \leq s<t \leq n}\left(\left(\sigma_{s t}^{r}\right)^{2}-\sigma_{s s}^{r} \sigma_{t t}^{r}\right) \\
= & \tau-\widetilde{\tau}(T M)+\sum_{1 \leq s \leq n_{1}} \sum_{n_{1}+1 \leq t \leq n} \widetilde{K}\left(e_{s} \Lambda e_{t}\right)-\frac{\delta}{2}-\sum_{r=n+1}^{2 m+1} \sum_{j=1}^{n_{1}} \sum_{t=n_{1}+1}^{n}\left(\sigma_{j t}^{r}\right)^{2} \\
& -\frac{1}{2} \sum_{r=n+2}^{2 m+1}\left(\sum_{j=1}^{n_{1}} \sigma_{j j}^{r}\right)^{2}-\frac{1}{2} \sum_{r=n+2}^{2 m+1}\left(\sum_{t=n_{1}+1}^{n} \sigma_{t t}^{r}\right)^{2} .
\end{aligned}
$$

Applying (3.2) in (3.6) we get

$$
\begin{align*}
& n_{2} \frac{\Delta_{1} f_{1}}{f_{1}}+n_{1} \frac{\Delta_{2} f_{2}}{f_{2}} \tag{3.7}\\
\leq & \frac{n^{2}}{4}\|H\|^{2}-\widetilde{\tau}(T M)+\sum_{1 \leq s \leq n_{1}} \sum_{n_{1}+1 \leq t \leq n} \widetilde{K}\left(e_{s} \wedge e_{t}\right) \\
& -\sum_{r=n+1}^{2 m+1} \sum_{j=1}^{n_{1}} \sum_{t=n_{1}+1}^{n}\left(\sigma_{j t}^{r}\right)^{2}-\frac{1}{2} \sum_{r=n+2}^{2 m+1}\left(\sum_{j=1}^{n_{1}} \sigma_{j j}^{r}\right)^{2}-\frac{1}{2} \sum_{r=n+2}^{2 m+1}\left(\sum_{t=n_{1}+1}^{n} \sigma_{t t}^{r}\right)^{2} .
\end{align*}
$$

On the other hand, from 2.1 we can write the sectional curvature of $\widetilde{M}(c)$ as follows:

$$
\begin{align*}
\widetilde{K}\left(e_{i} \wedge e_{j}\right)= & \frac{c+3}{4}+g\left(h^{T} e_{i}, e_{i}\right)+g\left(h^{T} e_{j}, e_{j}\right) \tag{3.8}\\
& +\frac{1}{2}\left\{g\left(h^{T} e_{i}, e_{i}\right) g\left(h^{T} e_{j}, e_{j}\right)-g\left(h^{T} e_{i}, e_{j}\right)^{2}\right. \\
& \left.-g\left(A_{\xi} e_{i}, e_{i}\right) g\left(A_{\xi} e_{j}, e_{j}\right)+g\left(A_{\xi} e_{i}, e_{j}\right)^{2}\right\}
\end{align*}
$$

(see equation (4.3) in [Tri]). Then, using (3.8) in (3.7), we obtain the inequality (3.1).

Taking $h=0$ in (3.1), we obtain the following corollary:
Corollary 3.2 ([О] $)$. Let $M={ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ be an n-dimensional C-totally real doubly warped product submanifold of a Sasakian space form $\widetilde{M}(c)$. Then

$$
\begin{equation*}
n_{2} \frac{\Delta_{1} f_{1}}{f_{1}}+n_{1} \frac{\Delta_{2} f_{2}}{f_{2}} \leq \frac{n^{2}}{4}\|H\|^{2}+\frac{n_{1} n_{2}}{4}(c+3), \tag{3.9}
\end{equation*}
$$

where $n_{i}=\operatorname{dim} M_{i}, n=n_{1}+n_{2}$ and Δ_{i} is the Laplacian of $M_{i}, i=1,2$. Equality holds in (3.9) identically if and only if M is mixed totally geodesic and $n_{1} H_{1}=n_{2} H_{2}$, where $H_{i}, i=1,2$, are the partial mean curvature vectors.

Similarly, we establish a sharp inequality for C-totally real doubly warped product submanifolds of non-Sasakian (κ, μ)-contact metric manifolds in the following theorem:

TheOrem 3.3. Let $M={ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ be an n-dimensional C-totally real doubly warped product submanifold of a $(2 m+1)$-dimensional non-Sasakian (κ, μ)-contact metric manifold \widetilde{M}. Then

$$
\begin{align*}
n_{2} & \frac{\Delta_{1} f_{1}}{f_{1}}+n_{1} \frac{\Delta_{2} f_{2}}{f_{2}} \tag{3.10}\\
\leq & \frac{n^{2}}{4}\|H\|^{2}+\frac{n_{1} n_{2}}{4}\left(1-\frac{\mu}{2}\right) \\
& +n_{2} \operatorname{trace}\left(h_{\left.\right|_{M_{1}}}^{T}\right)+n_{1} \operatorname{trace}\left(h_{\left.\right|_{M_{2}}}^{T}\right) \\
& +\frac{1}{2} \frac{1-\mu / 2}{1-\kappa}\left\{\left(\operatorname{trace}\left(h^{T}\right)\right)^{2}-\left(\operatorname{trace}\left(h_{\left.\right|_{M_{1}}}^{T}\right)\right)^{2}-\left(\operatorname{trace}\left(h_{\left.\right|_{M_{2}}}^{T}\right)\right)^{2}\right\} \\
& -\frac{1}{2} \frac{\kappa-\mu / 2}{1-\kappa}\left\{\left(\operatorname{trace}\left(A_{\xi}\right)\right)^{2}-\left(\operatorname{trace}\left(A_{\left.\xi\right|_{M_{1}}}\right)\right)^{2}-\left(\operatorname{trace}\left(A_{\left.\xi\right|_{M_{2}}}\right)\right)^{2}\right\} \\
& -\frac{1}{2} \frac{1-\mu / 2}{1-\kappa}\left\{\left\|h^{T}\right\|^{2}-\left\|h_{\left.\right|_{M_{1}}}^{T}\right\|^{2}-\left\|h_{\left.\right|_{M_{2}}}^{T}\right\|^{2}\right\} \\
& +\frac{1}{2} \frac{\kappa-\mu / 2}{1-\kappa}\left\{\left\|A_{\xi}\right\|^{2}-\left\|A_{\left.\xi\right|_{M_{1}}}\right\|^{2}-\left\|A_{\left.\xi\right|_{M_{2}}}\right\|^{2}\right\}
\end{align*}
$$

where $n_{i}=\operatorname{dim} M_{i}, n=n_{1}+n_{2}$ and Δ_{i} is the Laplacian of $M_{i}, i=1,2$. Equality holds in 3.10 identically if and only if $M={ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ is mixed totally geodesic and $n_{1} H_{1}=n_{2} H_{2}$, where $H_{i}, i=1,2$, are the partial mean curvature vectors.

Proof. We choose a local orthonormal frame $\left\{e_{1}, \ldots, e_{n_{1}}, e_{n_{1}+1}, \ldots, e_{n}\right\}$ such that $e_{1}, \ldots, e_{n_{1}}$ are tangent to $M_{1}, e_{n_{1}+1}, \ldots, e_{n}$ are tangent to M_{2} and e_{n+1} is parallel to the mean curvature vector H. Then from equation (2.2) we have

$$
\begin{align*}
\widetilde{K}\left(e_{i} \wedge e_{j}\right)= & (1-\mu / 2)+g\left(h^{T} e_{i}, e_{i}\right)+g\left(h^{T} e_{j}, e_{j}\right) \tag{3.11}\\
& +\frac{1-\mu / 2}{1-\kappa}\left\{g\left(h^{T} e_{i}, e_{i}\right) g\left(h^{T} e_{j}, e_{j}\right)-g\left(h^{T} e_{i}, e_{j}\right)^{2}\right\} \\
& +\frac{\kappa-\mu / 2}{1-\kappa}\left\{g\left(A_{\xi} e_{i}, e_{i}\right) g\left(A_{\xi} e_{j}, e_{j}\right)-g\left(A_{\xi} e_{i}, e_{j}\right)^{2}\right\}
\end{align*}
$$

(see equation (4.9) in [Tri]). Similar to the proof of Theorem 3.1 we obtain (3.7). Then making use of (3.11) in (3.7) we obtain (3.10).
4. Applications. As applications, we derive certain obstructions to the existence of minimal C-totally real doubly warped product submanifolds in (κ, μ)-contact space forms, in non-Sasakian (κ, μ)-contact metric manifolds and in Sasakian space forms.

Corollary 4.1. Let $M={ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ be a C-totally real doubly warped product manifold. If the warping functions f_{1} and f_{2} are harmonic, then M admits no minimal immersion into a (κ, μ)-contact space form $\widetilde{M}(c)$ with

$$
\begin{align*}
0> & \frac{n_{1} n_{2}}{4}(c+3)+n_{2} \operatorname{trace}\left(h_{\left.\right|_{M_{1}}}^{T}\right)+n_{1} \operatorname{trace}\left(h_{\left.\right|_{M_{2}}}^{T}\right) \tag{4.1}\\
& +\frac{1}{4}\left\{\left(\operatorname{trace}\left(h^{T}\right)\right)^{2}-\left(\operatorname{trace}\left(h_{\left.\right|_{M_{1}}}^{T}\right)\right)^{2}-\left(\operatorname{trace}\left(h_{\left.\right|_{M_{2}}}^{T}\right)\right)^{2}\right. \\
& -\left(\operatorname{trace}\left(A_{\xi}\right)\right)^{2}+\operatorname{trace}\left(\left(A_{\left.\xi\right|_{M_{1}}}\right)\right)^{2}+\operatorname{trace}\left(\left(A_{\left.\xi\right|_{M_{2}}}\right)\right)^{2} \\
& \left.-\left\|h^{T}\right\|^{2}+\left\|h_{\left.\right|_{M_{1}}}^{T}\right\|^{2}+\left\|h_{\left.\right|_{M_{2}}}^{T}\right\|^{2}+\left\|A_{\xi}\right\|^{2}-\left\|A_{\left.\xi\right|_{M_{1}}}\right\|^{2}-\left\|A_{\left.\xi\right|_{M_{2}}}\right\|^{2}\right\}
\end{align*}
$$

Proof. Suppose that f_{1} and f_{2} are harmonic, and M admits a minimal C-totally real immersion into a (κ, μ)-contact space form $\widetilde{M}(c)$. Then the inequality (3.1) turns into

$$
\begin{aligned}
0 \leq & \frac{n_{1} n_{2}}{4}(c+3)+n_{2} \operatorname{trace}\left(h_{\left.\right|_{M_{1}}}^{T}\right)+n_{1} \operatorname{trace}\left(h_{\left.\right|_{M_{2}}}^{T}\right) \\
& +\frac{1}{4}\left\{\left(\operatorname{trace}\left(h^{T}\right)\right)^{2}-\left(\operatorname{trace}\left(h_{\left.\right|_{M_{1}}}^{T}\right)\right)^{2}-\left(\operatorname{trace}\left(h_{\left.\right|_{M_{2}}}^{T}\right)\right)^{2}\right. \\
& -\left(\operatorname{trace}\left(A_{\xi}\right)\right)^{2}+\left(\operatorname{trace}\left(A_{\left.\xi\right|_{M_{1}}}\right)\right)^{2}+\left(\operatorname{trace}\left(A_{\left.\xi\right|_{M_{2}}}\right)\right)^{2} \\
& -\left\|h^{T}\right\|^{2}+\left\|h_{\left.\right|_{M_{1}}}^{T}\right\|^{2}+\left\|h_{\left.\right|_{M_{2}}}^{T}\right\|^{2} \\
& \left.+\left\|A_{\xi}\right\|^{2}-\left\|A_{\left.\xi\right|_{M_{1}}}\right\|^{2}-\left\|A_{\left.\xi\right|_{M_{2}}}\right\|^{2}\right\} .
\end{aligned}
$$

Thus we obtain the inequality 4.1.
Similar to Corollary 4.1, we can give the following corollary:
Corollary 4.2. Let $M={ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ be a C-totally real doubly warped product manifold. If the warping functions f_{1} and f_{2} are harmonic, then ${ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ admits no minimal immersion into a (κ, μ)-contact metric manifold \widetilde{M} with

$$
\begin{aligned}
0< & \frac{n_{1} n_{2}}{4}\left(1-\frac{\mu}{2}\right)+n_{2} \operatorname{trace}\left(h_{\left.\right|_{M_{1}}}^{T}\right)+n_{1} \operatorname{trace}\left(h_{\left.\right|_{M_{2}}}^{T}\right) \\
& +\frac{1}{2} \frac{1-\mu / 2}{1-\kappa}\left\{\left(\operatorname{trace}\left(h^{T}\right)\right)^{2}-\left(\operatorname{trace}\left(h_{\left.\right|_{M_{1}}}^{T}\right)\right)^{2}-\left(\operatorname{trace}\left(h_{\left.\right|_{M_{2}}}^{T}\right)\right)^{2}\right\} \\
& -\frac{1}{2} \frac{\kappa-\mu / 2}{1-\kappa}\left\{\left(\operatorname{trace}\left(A_{\xi}\right)\right)^{2}-\left(\operatorname{trace}\left(A_{\left.\xi\right|_{M_{1}}}\right)\right)^{2}-\left(\operatorname{trace}\left(A_{\left.\xi\right|_{M_{2}}}\right)\right)^{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{2} \frac{1-\mu / 2}{1-\kappa}\left\{\left\|h^{T}\right\|^{2}-\left\|h_{\left.\right|_{M_{1}}}^{T}\right\|^{2}-\left\|h_{\left.\right|_{M_{2}}}^{T}\right\|^{2}\right\} \\
& +\frac{1}{2} \frac{\kappa-\mu / 2}{1-\kappa}\left\{\left\|A_{\xi}\right\|^{2}-\left\|A_{\left.\xi\right|_{M_{1}}}\right\|^{2}-\left\|A_{\left.\xi\right|_{M_{2}}}\right\|^{2}\right\}
\end{aligned}
$$

If $h=0$ in Corollary 4.1, we have the following corollaries:
Corollary 4.3 ($\boxed{\mathrm{Ol}})$). If the warping functions f_{1} and f_{2} are harmonic, then ${ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ admits no minimal C-totally real immersion into a Sasakian space form $\widetilde{M}(c)$ with $c<-3$.

Corollary 4.4 ([0] $)$. If the warping functions f_{1} and f_{2} are eigenfunctions of the Laplacian on M_{1} and M_{2}, respectively, with positive eigenvalues, then ${ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ admits no minimal C-totally real immersion into a Sasakian space form $\widetilde{M}(c)$ with $c \leq-3$.

Corollary 4.5 ([О]). If one of the warping functions f_{1} and f_{2} is harmonic and the other one is an eigenfunction of the Laplacian with a positive eigenvalue, then ${ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ admits no minimal C-totally real immersion into a Sasakian space form $\widetilde{M}(c)$ with $c \leq-3$.

Acknowledgements. The authors are grateful to the referee for his valuable comments towards the improvement of the paper.

References

[Bl-2002] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progr. Math. 203, Birkhäuser Boston, Boston, MA, 2002.
[BKP] D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), 189-214.
[Bo-1999] E. Boeckx, A class of locally φ-symmetric contact metric spaces, Arch. Math. (Basel) 72 (1999), 466-472.
[Bo-2000] -, A full classification of contact metric (κ, μ)-spaces, Illinois J. Math. 44 (2000), 212-219.
[Ch-1973] B. Y. Chen, Geometry of Submanifolds, Pure Appl. Math. 22, Dekker, New York, 1973.
[Ch-1993] —, Some pinching and classification theorems for minimal submanifolds, Arch. Math. (Basel) 60 (1993), 568-578.
[Ch-2000] -, Some new obstructions to minimal and Lagrangian, isometric immersions, Japan J. Math. 26 (2000), 105-127.
[Ch-2002] -, On isometric minimal immersions from warped products into real space forms, Proc. Edinburgh Math. Soc. 45 (2002), 579-587.
[ChDi] B. Y. Chen and F. Dillen, Optimal inequalities for multiply warped product submanifolds, Int. Electron. J. Geom. 1 (2008), no. 1, 1-11.
[Kou] T. Koufogiorgos, Contact Riemannian manifolds with constant φ-sectional curvature, Tokyo J. Math. 20 (1997), 13-22.
[MM] K. Matsumoto and I. Mihai, Warped product submanifolds in Sasakian space forms, SUT J. Math. 38 (2002), 135-144.
[Mi-2004] A. Mihai, Warped product submanifolds in complex space forms, Acta Sci. Math. (Szeged) 70 (2004), 419-427.
[Mi-2005] —, Warped product submanifolds in quaternion space forms, Rev. Roumaine Math. Pures Appl. 50 (2005), 283-291.
[MAEM] C. Murathan, K. Arslan, R. Ezentas and I. Mihai, Warped product submanifolds in Kenmotsu space forms, Taiwanese J. Math. 10 (2006), 1431-1441.
[O1] A. Olteanu, A general inequality for doubly warped product submanifolds, Math. J. Okayama Univ. 52 (2010), 133-142.
[Tri] M. M. Tripathi, C-totally real warped product submanifolds, arXiv:0806.0201.
[Ün] B. Ünal, Doubly warped products, PhD Thesis, Univ. of Missouri-Columbia, 2000.
[YK] K. Yano and M. Kon, Anti-invariant Submanifolds, Lecture Notes in Pure Appl. Math. 21. Dekker, New York, 1976.

Sibel Sular, Cihan Özgür
Department of Mathematics
Balikesir University
10145, Çağış, Balikesir, Turkey
E-mail: csibel@balikesir.edu.tr
cozgur@balikesir.edu.tr

Received 2.2.2010
and in final form 9.12.2010

[^0]: 2010 Mathematics Subject Classification: Primary 53C40; Secondary 53C25.
 Key words and phrases: doubly warped product manifold, (κ, μ)-contact space form, nonSasakian (κ, μ)-contact metric manifold, C-totally real submanifold.

