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Doubly warped product submanifolds of
(κ, µ)-contact metric manifolds

by Sibel Sular and Cihan Özgür (Balikesir)

Abstract. We establish sharp inequalities for C-totally real doubly warped prod-
uct submanifolds in (κ, µ)-contact space forms and in non-Sasakian (κ, µ)-contact metric
manifolds.

1. Introduction. Let (M1, g1) and (M2, g2) be two Riemannian man-
ifolds and f1, f2 differentiable, positive-valued functions on M1 and M2,
respectively. The doubly warped product M = f2M1 × f1M2 is the product
manifold M1 ×M2 equipped with the metric

g = f2
2 g1 + f2

1 g2.

More explicitly, if π1 : M1×M2 →M1 and π2 : M1×M2 →M2 are canonical
projections, then the metric g is given by

g = (f2 ◦ π2)2π∗1g1 + (f1 ◦ π1)2π∗2g2.

The functions f1 and f2 are called warping functions. If either f1 ≡ 1 or
f2 ≡ 1, but not both, then we get a warped product. If both f1 ≡ 1 and
f2 ≡ 1, then we obtain a Riemannian product manifold. If neither f1 nor f2

is constant, then we have a non-trivial doubly warped product [Ün].
For a doubly warped product f2M1 × f1M2, let D1 and D2 denote the

distributions obtained from the vectors on M1 and M2, respectively.
Assume that

x : f2M1 × f1M2 → M̃

is an isometric immersion of a doubly warped product f2M1 × f1M2 into a
Riemannian manifold M̃ . We denote by σ the second fundamental form of
x and by Hi = (1/ni) traceσi the partial mean curvatures, where traceσi is
the trace of σ restricted to Mi and ni = dimMi (i = 1, 2). The immersion
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x is called mixed totally geodesic if σ(X,Z) = 0 for any vector fields X and
Z tangent to D1 and D2, respectively.

If f2M1 × f1M2 is a doubly warped product, we have

∇XY = ∇1
XY −

f2
2

f2
1

g1(X,Y )∇2(ln f2)

and
∇XZ = Z(ln f2)X +X(ln f1)Z,

for any vector fields X, Y tangent to M1, and Z tangent to M2, where ∇1

and ∇2 are the Levi-Civita connections of the Riemannian metrics g1 and
g2, respectively. Here, ∇2(ln f2) denotes the gradient of ln f2 with respect
to the metric g2.

If X and Z are unit vector fields, it follows that the sectional curvature
K(X ∧ Z) of the plane section spanned by X and Z is given by

K(X ∧ Z) =
1
f1
{(∇1

XX)f1 −X2f1}+
1
f2
{(∇2

ZZ)f2 − Z2f2}.

Consequently, we obtain

(1.1) n2
∆f1

f1
+ n1

∆f2

f2
=

∑
1≤j≤n1<s≤n

K(ej ∧ es),

for a local orthonormal frame {e1, . . . , en1 , en1+1, . . . , en} such that e1, . . . , en1

are tangent to M1 and en1+1, . . . , en are tangent to M2.
In [Ch-2002], B. Y. Chen proved the following result for a warped product

submanifold of a Riemannian manifold of constant sectional curvature:

Theorem 1.1. Let x : M1 ×f M2 → M̃(c) be an isometric immersion
of an n-dimensional warped product M1 ×f M2 into an m-dimensional Rie-
mannian manifold M̃(c) of constant sectional curvature c. Then

(1.2)
∆f

f
≤ n2

4n2
‖H‖2 + n1c,

where ni = dimMi, n = n1 + n2, and ∆ is the Laplacian operator of M .
Equality holds in (1.2) identically if and only if x is a mixed totally geodesic
immersion and n1H1 = n2H2, where Hi, i = 1, 2, are the partial mean
curvature vectors.

In [MM], K. Matsumoto and I. Mihai studied warped product submani-
folds in Sasakian space forms. In [Mi-2004] and [Mi-2005], A. Mihai consid-
ered warped product submanifolds in complex space forms and quaternion
space forms, respectively. Recently, in [MAEM], C. Murathan, K. Arslan,
R. Ezentaş and I. Mihai studied warped product submanifolds in Kenmotsu
space forms. Later, B. Y. Chen and F. Dillen extended inequality (1.2) to
multiply warped product submanifolds in arbitrary Riemannian manifolds
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[ChDi]. Recently, in [Tri], M. M. Tripathi established basic inequalities for
C-totally real warped product submanifolds of (κ, µ)-contact space forms
and non-Sasakian (κ, µ)-contact metric manifolds.

In [Ol], A. Olteanu established the following general inequality for arbi-
trary isometric immersions of doubly warped product manifolds in arbitrary
Riemannian manifolds:

Theorem 1.2. Let x be an isometric immersion of an n-dimensional
doubly warped product M = f2M1 × f1M2 into an arbitrary m-dimensional
Riemannian manifold M̃ . Then

(1.3) n2
∆1f1

f1
+ n1

∆2f2

f2
≤ n2

4
‖H‖2 + n1n2 max K̃,

where ni = dimMi, n = n1+n2, ∆i is the Laplacian operator of Mi, i = 1, 2,
and max K̃(p) denotes the maximum of the sectional curvature function of
M̃ restricted to 2-plane sections of the tangent space TpM of M at each
point p in M . Moreover, equality holds in (1.3) identically if and only if the
following two statements hold:

(1) x is a mixed totally geodesic immersion satisfying n1H1 = n2H2,
where Hi, i = 1, 2, are the partial mean curvature vectors of Mi,

(2) at each point p = (p1, p2) ∈M , the sectional curvature function K̃ of
M̃ satisfies K̃(u, v) = max K̃(p) for each unit vector u ∈ Tp1M1 and each
unit vector v ∈ Tp2M2.

Motivated by the studies of the above authors, we prove similar inequali-
ties for C-totally real doubly warped product submanifolds of (κ, µ)-contact
space forms and non-Sasakian (κ, µ)-contact metric manifolds.

The paper is organized as follows: In Section 2, we give a brief introduc-
tion to submanifolds, (κ, µ)-contact metric manifolds, (κ, µ)-contact space
forms and non-Sasakian (κ, µ)-contact metric manifolds. In Section 3, we
prove basic inequalities for (κ, µ)-contact space forms and non-Sasakian
(κ, µ)-contact metric manifolds. In Section 4, as applications we prove that
if the functions f1 and f2 are harmonic then M = f2M1 × f1M2 does not
admit minimal immersions under certain conditions.

2. Preliminaries. Let M be an m-dimensional Riemannian manifold
and p ∈ M. Denote by K(π) or K(u, v) the sectional curvature of M asso-
ciated with a plane section π ⊂ TpM , where {u, v} is an orthonormal basis
of π. For any n-dimensional subspace L ⊆ TpM , 2 ≤ n ≤ m, its scalar
curvature τ(L) is given by

τ(L) =
∑

1≤i<j≤n
K(ei ∧ ej),



226 S. Sular and C. Özgür

where {e1, . . . , en} is any orthonormal basis of L [Ch-2000]. If L = TpM ,
then τ(L) is just the scalar curvature τ(p) of M at p.

For an n-dimensional submanifold M in a Riemannian m-manifold M̃ ,
we denote by∇ and ∇̃ the Levi-Civita connections ofM and M̃ , respectively.
The Gauss and Weingarten formulas are

∇̃XY = ∇XY + σ(X,Y ) and ∇̃XN = −ANX +∇⊥XY,
respectively, for vector fields X,Y tangent to M , and N normal to M , where
σ denotes the second fundamental form, ∇⊥ the normal connection and A
the shape operator of M [Ch-1973].

Denote by R and R̃ the Riemannian curvature tensors of M and M̃ ,
respectively. Then the equation of Gauss is given by

R(X,Y, Z,W ) = R̃(X,Y, Z,W )
+ g(σ(Y, Z), σ(X,W ))− g(σ(X,Z), σ(Y,W )),

for all vector fields X,Y, Z,W tangent to M [Ch-1973].
For any orthonormal basis {e1, . . . , en} of TpM , the mean curvature vec-

tor is given by

H(p) =
1
n

n∑
i=1

σ(ei, ei),

where n = dimM . The submanifold M is totally geodesic in M̃ if σ = 0,
and minimal if H = 0.

We write

σrij = g(σ(ei, ej), er), i, j ∈ {1, . . . , n}, r ∈ {n+ 1, . . . ,m},
for the coefficients of the second fundamental formσwith respect to e1, . . . , en,
en+1, . . . , em, and set

‖σ‖2 =
n∑

i,j=1

g(σ(ei, ej), σ(ei, ej)).

Let M be a local n-dimensional Riemannian manifold and {e1, . . . , en}
be a local orthonormal frame on M . For a differentiable function f on M,
the Laplacian ∆f of f is given by

∆f =
n∑
j=1

{(∇ejej)f − ejejf}.

We will need the following Chen’s Lemma:

Lemma 2.1 ([Ch-1993]). Let n ≥ 2 and a1, . . . , an, b be real numbers
such that ( n∑

i=1

ai

)2
= (n− 1)

( n∑
i=1

a2
i + b

)
.
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Then 2a1a2 ≥ b, with equality holding if and only if

a1 + a2 = a3 = · · · = an.

A (2m+ 1)-dimensional Riemannian manifold M̃ is said to be an almost
contact metric manifold [Bl-2002] if there exist on M̃ a (1, 1)-tensor field ϕ,
a vector field ξ, a 1-form η and a Riemannian metric g satisfying

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0,
g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ),

for any vector fields X,Y on M̃ . An almost contact metric manifold is a
contact metric manifold if

g(X,ϕY ) = dη(X,Y ),

for all X,Y on M̃ .
A contact metric manifold is a Sasakian manifold if the Riemannian

curvature tensor R̃ of M̃ satisfies

R̃(X,Y )ξ = η(Y )X − η(X)Y,

for all vector fields X,Y on M̃ .
In a contact metric manifold M̃ , a (1, 1)-tensor field h is given by

h =
1
2
Lξϕ,

where Lξ is the Lie derivative in the characteristic direction ξ. Moreover h
is symmetric and satisfies

hξ = 0, hϕ+ ϕh = 0,

∇̃ξ = −ϕ− ϕh, trace(h) = trace(ϕh) = 0,

where ∇̃ is the Levi-Civita connection.
The tangent sphere bundle of a flat Riemannian manifold admits a con-

tact metric structure satisfying R(X,Y )ξ = 0 [Bl-2002]. The (κ, µ)-nullity
condition on a contact metric manifold is considered as a generalization of
both R(X,Y )ξ = 0 and the Sasakian case. The (κ, µ)-nullity distribution
N(κ, µ) [BKP] of a contact metric manifold M̃ is defined by

N(κ, µ) : p 7→ Np(κ, µ) = {Z ∈ TpM | R(X,Y )Z
= (κI + µh)(g(Y,Z)X − g(X,Z)Y )},

for all X,Y ∈ TM where (κ, µ) ∈ R2 and I is the identity map. If ξ belongs
to the (κ, µ)-nullity distribution N(κ, µ) then the contact metric manifold
M̃ is called a (κ, µ)-contact metric manifold. In particular the condition

R(X,Y )ξ = κ(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY )

holds on a (κ, µ)-contact metric manifold.
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On a (κ, µ)-contact metric manifold we have

h2 = (κ− 1)ϕ2 and κ ≤ 1.

For a (κ, µ)-contact metric manifold, the conditions to be a Sasakian mani-
fold, κ = 1, and h = 0 are all equivalent. When κ < 1, the non-zero eigenval-
ues of h are λ = ∓

√
1− κ each with multiplicity m. The eigenspace relative

to the eigenvalue 0 is span{ξ}. Also, for κ 6= 1, the subbundle D = ker(η)
can be decomposed into the eigenspace distributions D+ and D− relative to
the eigenvalues λ and −λ, respectively. These distributions are orthogonal
to each other and have dimension m [Bl-2002].

For a unit vector field X orthogonal to ξ in an almost contact metric
manifold, the sectional curvature K̃(X,ϕX) is called a ϕ-sectional curvature.
On a (2m+1)-dimensional (m > 3), (κ, µ)-contact metric manifold M̃ , if the
ϕ-sectional curvature at p ∈ M̃ is independent of the ϕ-section at p, then
it is constant [Kou]. If the (κ, µ)-contact metric manifold M̃ has constant
ϕ-sectional curvature c, then it is said to be a (κ, µ)-contact space form
and denoted by M̃(c). The Riemannian curvature tensor of a (κ, µ)-contact
space form M̃(c) is given by

(2.1) R̃(X,Y, Z,W ) =
c+ 3

4
{g(Y, Z)g(X,W )− g(X,Z)g(Y,W )}

+
c− 1

4
{2g(X,ϕY )g(ϕZ,W ) + g(X,ϕZ)g(ϕY,W )− g(Y, ϕZ)g(ϕX,W )}

+
c+ 3− 4κ

4
{η(X)η(Z)g(Y,W )− η(Y )η(Z)g(X,W )

+ g(X,Z)η(Y )η(W )− g(Y,Z)η(X)η(W )}

+
1
2
{g(hY,Z)g(hX,W )− g(hX,Z)g(hY,W )

+ g(ϕhX,Z)g(ϕhY,W )− g(ϕhY,Z)g(ϕhX,W )}
+ g(ϕY, ϕZ)g(hX,W )− g(ϕX,ϕZ)g(hY,W )

+ g(hX,Z)g(ϕ2Y,W )− g(hY, Z)g(ϕ2X,W )
+ µ{η(Y )η(Z)g(hX,W )− η(X)η(Z)g(hY,W )
+ g(hY, Z)η(X)η(W )− g(hX,Z)η(Y )η(W )},

for all vector fields X,Y, Z,W on M̃(c) [Kou]. If κ = 1 then a (κ, µ)-contact
space form M̃(c) becomes a Sasakian space form and the equation (2.1)
reduces to

R̃(X,Y, Z,W ) =
c+ 3

4
{g(Y,Z)g(X,W )− g(X,Z)g(Y,W )}

+
c− 1

4
{2g(X,ϕY )g(ϕZ,W )
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+ g(X,ϕZ)g(ϕY,W )− g(Y, ϕZ)g(ϕX,W )
+ η(X)η(Z)g(Y,W )− η(Y )η(Z)g(X,W )
+ g(X,Z)η(Y )η(W )− g(Y, Z)η(X)η(W )}.

The Riemannian curvature tensor R̃ of a non-Sasakian (κ, µ)-contact metric
manifold M̃ is given by

(2.2) R̃(X,Y, Z,W ) =
(

1− µ

2

)
{g(Y, Z)g(X,W )− g(X,Z)g(Y,W )}

− µ

2
{2g(X,ϕY )g(ϕZ,W ) + g(X,ϕZ)g(ϕY,W )− g(Y, ϕZ)g(ϕX,W )}

+ g(Y, Z)g(hX,W )− g(X,Z)g(hY,W )

− g(Y,W )g(hX,Z) + g(X,W )g(hY, Z)

+
1− µ/2
1− κ

{g(hY, Z)g(hX,W )− g(hX,Z)g(hY,W )}

+
κ− µ/2
1− κ

{g(ϕhY,Z)g(ϕhX,W )− g(ϕhX,Z)g(ϕhY,W )}

+ η(X)η(W ){(κ− 1 + µ/2)g(Y,Z)− (µ− 1)g(hY, Z)}
− η(X)η(Z){(κ− 1 + µ/2)g(Y,W )− (µ− 1)g(hY,W )}
+ η(Y )η(Z){(κ− 1 + µ/2)g(X,W )− (µ− 1)g(hX,W )}
− η(Y )η(W ){(κ− 1 + µ/2)g(X,Z)− (µ− 1)g(hX,Z)},

for all vector fields X,Y, Z,W on M̃ ([Bo-1999], [Bo-2000]). A 3-dimensional
non-Sasakian (κ, µ)-contact metric manifold has constant ϕ-sectional cur-
vature, but this is not true for higher dimensions. A non-Sasakian (κ, µ)-
contact metric manifold has constant ϕ-sectional curvature c if and only if
µ = κ+ 1 [Kou].

3. Main results. A submanifold M normal to ξ in a contact metric
manifold M̃ is said to be a C-totally real submanifold [YK]. It follows that
ϕ maps any tangent space of M into the normal space, that is, ϕ(TpM) ⊂
T⊥p M for any p ∈M .

For a C-totally real submanifold in a contact metric manifold, it is easy
to see that

g(AξX,Y ) = −g(∇̃Xξ, Y ) = g(ϕX + ϕhX, Y ),

which means that Aξ = (ϕh)T , the tangent component of ϕh.
In this section, we consider inequalities for C-totally real doubly warped

product submanifolds of (κ, µ)-contact space forms and non-Sasakian (κ, µ)-
contact metric manifolds.
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Now, we begin with the following theorem:

Theorem 3.1. Let M = f2M1×f1M2 be an n-dimensional C-totally real
doubly warped product submanifold of a (2m+ 1)-dimensional (κ, µ)-contact
space form M̃(c). Then

(3.1) n2
∆1f1

f1
+ n1

∆2f2

f2

≤ n2

4
‖H‖2 +

n1n2

4
(c+ 3) + n2 trace(hT|M1

) + n1 trace(hT|M2
)

+
1
4
{(trace(hT ))2 − (trace(hT|M1

))2 − (trace(hT|M2
))2

− (trace(Aξ))2 + (trace(Aξ|M1
))2 + (trace(Aξ|M2

))2

− ‖hT ‖2 + ‖hT|M1
‖2 + ‖hT|M2

‖2

+ ‖Aξ‖2 − ‖Aξ|M1
‖2 − ‖Aξ|M2

‖2},

where ni = dimMi, n = n1 + n2 and ∆i is the Laplacian of Mi, i = 1, 2.
Equality holds in (3.1) identically if and only if M is mixed totally geodesic
and n1H1 = n2H2, where Hi, i = 1, 2, are the partial mean curvature vec-
tors.

Proof. We choose a local orthonormal frame {e1, . . . , en1 , en1+1, . . . , en}
such that e1, . . . , en1 are tangent to M1, en1+1, . . . , en are tangent to M2 and
en+1 is parallel to the mean curvature vector H.

From the equation of Gauss, we have

2τ(p) = n2‖H‖2(p)− ‖σ‖2(p) + 2τ̃(TpM), p ∈M,

where ‖σ‖2 is the squared norm of the second fundamental form σ of M in
M̃ and τ̃(TpM) is the scalar curvature of the subspace TpM in M̃.

We set

(3.2) δ = 2τ − n2

2
‖H‖2 − 2τ̃(TpM).

The equation (3.2) can be written as follows:

(3.3) n2‖H‖2 = 2(δ + ‖σ‖2).

For the chosen local orthonormal frame, the relation (3.3) takes the form( n∑
i=1

σn+1
ii

)2
= 2
[
δ +

n∑
i=1

(σn+1
ii )2 +

∑
i 6=j

(σn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(σrij)
2
]
.

If we put a1 = σn+1
11 , a2 =

∑n1
i=2 σ

n+1
11 and a3 =

∑n
t=n1+1 σ

n+1
tt , then the

above equation reduces to



Doubly warped product submanifolds 231

( 3∑
i=1

ai

)2
= 2
[
δ +

3∑
i=1

a2
i +

∑
1≤i 6=j≤n

(σn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(σrij)
2

−
∑

2≤j 6=k≤n1

σn+1
jj σn+1

kk −
∑

n1+1≤s 6=t≤n
σn+1
ss σn+1

tt

]
.

Hence, a1, a2 and a3 satisfy the assumption of Chen’s Lemma (for n = 3),
which implies that ( 3∑

i=1

ai

)2
= 2
(
b+

3∑
i=1

a2
i

)
with

b = δ +
3∑
i=1

a2
i +

∑
1≤i 6=j≤n

(σn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(σrij)
2

−
∑

2≤j 6=k≤n1

σn+1
jj σn+1

kk −
∑

n1+1≤s 6=t≤n
σn+1
ss σn+1

tt .

Then we get 2a1a2 ≥ b, with equality holding a1 + a2 = a3. Equivalently

(3.4)
∑

1≤j<k≤n1

σn+1
jj σn+1

kk +
∑

n1+1≤s<t≤n
σn+1
ss σn+1

tt

≥ δ

2
+

∑
1≤α<β≤n

(σn+1
αβ )2 +

1
2

2m+1∑
r=n+2

n∑
α,β=1

(σrαβ)2.

Equality holds if and only if
n1∑
i=1

σn+1
ii =

n∑
t=n1+1

σn+1
tt .

By making use of the Gauss equation again, we have

(3.5) n2
∆1f1

f1
+ n1

∆2f2

f2

= τ −
∑

1≤j<k≤n1

K(ej ∧ ek)−
∑

n1+1≤s<t≤n
K(es ∧ et)

= τ − τ̃(D1)−
2m+1∑
r=n+1

∑
1≤j<k≤n1

(σrjjσ
r
kk − (σrjk)

2)

− τ̃(D2)−
2m+1∑
r=n+1

∑
n1+1≤s<t≤n

(σrssσ
r
tt − (σrst)

2).

In view of the equations (1.1), (3.4) and (3.5) we obtain
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(3.6) n2
∆1f1

f1
+ n1

∆2f2

f2

≤ τ − τ̃(TM) +
∑

1≤s≤n1

∑
n1+1≤t≤n

K̃(es ∧ et)

− δ

2
−

∑
1≤j<t≤n

(σn+1
jt )2 − 1

2

2m+1∑
r=n+2

n∑
α,β=1

(σrαβ)2

+
2m+1∑
r=n+2

∑
1≤j<k≤n1

((σrjk)
2 − σrjjσrkk) +

2m+1∑
r=n+2

∑
n1+1≤s<t≤n

((σrst)
2 − σrssσrtt)

= τ − τ̃(TM) +
∑

1≤s≤n1

∑
n1+1≤t≤n

K̃(esΛet)−
δ

2
−

2m+1∑
r=n+1

n1∑
j=1

n∑
t=n1+1

(σrjt)
2

− 1
2

2m+1∑
r=n+2

( n1∑
j=1

σrjj

)2
− 1

2

2m+1∑
r=n+2

( n∑
t=n1+1

σrtt

)2
.

Applying (3.2) in (3.6) we get

(3.7) n2
∆1f1

f1
+ n1

∆2f2

f2

≤ n2

4
‖H‖2 − τ̃(TM) +

∑
1≤s≤n1

∑
n1+1≤t≤n

K̃(es ∧ et)

−
2m+1∑
r=n+1

n1∑
j=1

n∑
t=n1+1

(σrjt)
2 − 1

2

2m+1∑
r=n+2

( n1∑
j=1

σrjj

)2
− 1

2

2m+1∑
r=n+2

( n∑
t=n1+1

σrtt

)2
.

On the other hand, from (2.1) we can write the sectional curvature of M̃(c)
as follows:

K̃(ei ∧ ej) =
c+ 3

4
+ g(hT ei, ei) + g(hT ej , ej)(3.8)

+
1
2
{g(hT ei, ei)g(hT ej , ej)− g(hT ei, ej)2

− g(Aξei, ei)g(Aξej , ej) + g(Aξei, ej)2}

(see equation (4.3) in [Tri]). Then, using (3.8) in (3.7), we obtain the in-
equality (3.1).

Taking h = 0 in (3.1), we obtain the following corollary:

Corollary 3.2 ([Ol]). Let M = f2M1 × f1M2 be an n-dimensional
C-totally real doubly warped product submanifold of a Sasakian space form
M̃(c). Then
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(3.9) n2
∆1f1

f1
+ n1

∆2f2

f2
≤ n2

4
‖H‖2 +

n1n2

4
(c+ 3),

where ni = dimMi, n = n1 + n2 and ∆i is the Laplacian of Mi, i = 1, 2.
Equality holds in (3.9) identically if and only if M is mixed totally geodesic
and n1H1 = n2H2, where Hi, i = 1, 2, are the partial mean curvature vec-
tors.

Similarly, we establish a sharp inequality for C-totally real doubly warped
product submanifolds of non-Sasakian (κ, µ)-contact metric manifolds in the
following theorem:

Theorem 3.3. Let M = f2M1×f1M2 be an n-dimensional C-totally real
doubly warped product submanifold of a (2m+ 1)-dimensional non-Sasakian
(κ, µ)-contact metric manifold M̃ . Then

(3.10) n2
∆1f1

f1
+ n1

∆2f2

f2

≤ n2

4
‖H‖2 +

n1n2

4

(
1− µ

2

)
+ n2 trace(hT|M1

) + n1 trace(hT|M2
)

+
1
2

1− µ/2
1− κ

{(trace(hT ))2 − (trace(hT|M1
))2 − (trace(hT|M2

))2}

− 1
2
κ− µ/2
1− κ

{(trace(Aξ))2 − (trace(Aξ|M1
))2 − (trace(Aξ|M2

))2}

− 1
2

1− µ/2
1− κ

{‖hT ‖2 − ‖hT|M1
‖2 − ‖hT|M2

‖2}

+
1
2
κ− µ/2
1− κ

{‖Aξ‖2 − ‖Aξ|M1
‖2 − ‖Aξ|M2

‖2},

where ni = dimMi, n = n1 + n2 and ∆i is the Laplacian of Mi, i = 1, 2.
Equality holds in (3.10) identically if and only if M = f2M1× f1M2 is mixed
totally geodesic and n1H1 = n2H2, where Hi, i = 1, 2, are the partial mean
curvature vectors.

Proof. We choose a local orthonormal frame {e1, . . . , en1 , en1+1, . . . , en}
such that e1, . . . , en1 are tangent to M1, en1+1, . . . , en are tangent to M2 and
en+1 is parallel to the mean curvature vector H. Then from equation (2.2)
we have

K̃(ei ∧ ej) = (1− µ/2) + g(hT ei, ei) + g(hT ej , ej)(3.11)

+
1− µ/2
1− κ

{g(hT ei, ei)g(hT ej , ej)− g(hT ei, ej)2}

+
κ− µ/2
1− κ

{g(Aξei, ei)g(Aξej , ej)− g(Aξei, ej)2}
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(see equation (4.9) in [Tri]). Similar to the proof of Theorem 3.1 we obtain
(3.7). Then making use of (3.11) in (3.7) we obtain (3.10).

4. Applications. As applications, we derive certain obstructions to the
existence of minimal C-totally real doubly warped product submanifolds in
(κ, µ)-contact space forms, in non-Sasakian (κ, µ)-contact metric manifolds
and in Sasakian space forms.

Corollary 4.1. Let M = f2M1×f1M2 be a C-totally real doubly warped
product manifold. If the warping functions f1 and f2 are harmonic, then M
admits no minimal immersion into a (κ, µ)-contact space form M̃(c) with

0 >
n1n2

4
(c+ 3) + n2 trace(hT|M1

) + n1 trace(hT|M2
)(4.1)

+
1
4
{(trace(hT ))2 − (trace(hT|M1

))2 − (trace(hT|M2
))2

− (trace(Aξ))2 + trace((Aξ|M1
))2 + trace((Aξ|M2

))2

− ‖hT ‖2 + ‖hT|M1
‖2 + ‖hT|M2

‖2 + ‖Aξ‖2 − ‖Aξ|M1
‖2 − ‖Aξ|M2

‖2}.

Proof. Suppose that f1 and f2 are harmonic, and M admits a minimal
C-totally real immersion into a (κ, µ)-contact space form M̃(c). Then the
inequality (3.1) turns into

0 ≤ n1n2

4
(c+ 3) + n2 trace(hT|M1

) + n1 trace(hT|M2
)

+
1
4
{(trace(hT ))2 − (trace(hT|M1

))2 − (trace(hT|M2
))2

− (trace(Aξ))2 + (trace(Aξ|M1
))2 + (trace(Aξ|M2

))2

− ‖hT ‖2 + ‖hT|M1
‖2 + ‖hT|M2

‖2

+ ‖Aξ‖2 − ‖Aξ|M1
‖2 − ‖Aξ|M2

‖2}.

Thus we obtain the inequality (4.1).

Similar to Corollary 4.1, we can give the following corollary:

Corollary 4.2. Let M = f2M1×f1M2 be a C-totally real doubly warped
product manifold. If the warping functions f1 and f2 are harmonic, then
f2M1 × f1M2 admits no minimal immersion into a (κ, µ)-contact metric
manifold M̃ with

0 <
n1n2

4

(
1− µ

2

)
+ n2 trace(hT|M1

) + n1 trace(hT|M2
)

+
1
2

1− µ/2
1− κ

{(trace(hT ))2 − (trace(hT|M1
))2 − (trace(hT|M2

))2}

− 1
2
κ− µ/2
1− κ

{(trace(Aξ))2 − (trace(Aξ|M1
))2 − (trace(Aξ|M2

))2}
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− 1
2

1− µ/2
1− κ

{‖hT ‖2 − ‖hT|M1
‖2 − ‖hT|M2

‖2}

+
1
2
κ− µ/2
1− κ

{‖Aξ‖2 − ‖Aξ|M1
‖2 − ‖Aξ|M2

‖2}.

If h = 0 in Corollary 4.1, we have the following corollaries:

Corollary 4.3 ([Ol]). If the warping functions f1 and f2 are har-
monic, then f2M1 × f1M2 admits no minimal C-totally real immersion into
a Sasakian space form M̃(c) with c < −3.

Corollary 4.4 ([Ol]). If the warping functions f1 and f2 are eigen-
functions of the Laplacian on M1 and M2, respectively, with positive eigen-
values, then f2M1 × f1M2 admits no minimal C-totally real immersion into
a Sasakian space form M̃(c) with c ≤ −3.

Corollary 4.5 ([Ol]). If one of the warping functions f1 and f2 is har-
monic and the other one is an eigenfunction of the Laplacian with a positive
eigenvalue, then f2M1 × f1M2 admits no minimal C-totally real immersion
into a Sasakian space form M̃(c) with c ≤ −3.
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