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On some noetherian rings of C∞ germs on a real closed field

by Abdelhafed Elkhadiri (Kénitra)

Abstract. Let R be a real closed field, and denote by ER,n the ring of germs, at the
origin of Rn, of C∞ functions in a neighborhood of 0 ∈ Rn. For each n ∈ N, we construct a
quasianalytic subring AR,n ⊂ ER,n with some natural properties. We prove that, for each
n ∈ N, AR,n is a noetherian ring and if R = R (the field of real numbers), then AR,n = Hn,
where Hn is the ring of germs, at the origin of Rn, of real analytic functions. Finally, we
prove the Real Nullstellensatz and solve Hilbert’s 17th Problem for the ring AR,n.

1. Introduction. As is well known, real algebraic geometry is the study
of sets of roots of polynomials and domains where they have a constant
sign. For example, Hilbert’s 17th Problem originally asked whether every
nonnegative polynomial could be represented as a sum of squares of rational
functions. Hilbert’s 17th Problem was solved in the affirmative by Artin; the
proof was based on the fact that a polynomial that is positive on Rn is also
positive on other fields which contain the field of fractions R(X1, . . . , Xn).
These fields have the same algebraic properties as R. They are real closed
(a real closed field is an ordered field in which every positive element is a
square, and every odd-degree polynomial in one variable has a zero). However
these fields can have infinitesimal points so they are not archimedean and
in general the interval topology is not complete. Many problems in real
algebraic geometry are solved by considering them over the elementary class
of the field of reals, which is the class of real closed fields.

The definition of a real algebraic and semi-algebraic set over R can be
extended to a general real closed field. Most of the properties can also be
extended. A more detailed exposition can be found in [3].

The notion of analytic functions on R cannot be extended to a general
real closed field. The main object of this paper is to introduce axiomatically
an analogue of the ring of germs of real analytic functions on Rn for an
arbitrary real closed field R.
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We let ER,n denote the ring of germs, at the origin of Rn, of C∞ functions
in a neighborhood of 0 ∈ Rn. A differential system is a sequence A = {AR,n |
n ≥ 1}, where AR,n ⊂ ER,n is a subring. We suppose that the system A has
some natural properties. First we prove that the Weierstrass division and
preparation theorems hold in A. We then deduce that AR,n is a noetherian
ring for each n ∈ N. We also prove that if R = R then, for each n ∈ N,
AR,n = Hn, where Hn is the ring of germs, at the origin of Rn, of real
analytic functions. Using this system we extend to a real closed field the
theory of semi-analytic sets developed by Łojasiewicz [7]. Finally, we give a
Real Nullstellensatz and solve Hilbert’s 17th Problem for the ring AR,n.

2. Preliminaries. LetR be a real closed field (possibly different from R).
For x = (x1, . . . , xn) ∈ Rn, put |x| = sup(|x1|, . . . , |xn|), where |r| =
max(r,−r) for r ∈ R. For each a ∈ R and r ∈ R, r > 0, we put Bn(a, r) =
{x ∈ Rn | |x − a| < r}. We consider on Rn the interval topology, that is, a
subset U ⊂ Rn is open if U = ∅ or for each a ∈ U there exists r ∈ R, r > 0,
such that Bn(a, r) ⊂ U .

Consider an open set U ⊂ Rn and a map f : U ⊂ Rn → R. We call f
differentiable at the point a ∈ U if there is an R-linear map T : Rn → R
such that for each ε > 0 in R we have |f(x+ a)− f(a)− T (x)| ≤ ε|x| for all
sufficiently small vectors x in Rn. (Such a linear map is necessarily unique.)
Clearly if f is differentiable at a, then f is continuous at a and the partial
derivatives ∂f

∂xi
(a), i = 1, . . . , n, exist. We call f a C0 map if f is continuous,

and inductively we define f to be a Ck+1 map (k ≥ 0) if f is differentiable at
each point a ∈ U and, for each i = 1, . . . , n, the map a 7→ ∂f

∂xi
(a) is a Ck map.

Note that if f is Ck+1, then it is Ck. Finally, we call f a C∞ map if it is a Ck
map for all k ∈ N; in that case all partial derivatives of f of all orders exist
and are continuous on U . We leave to the reader the statement and proofs
of the usual formal rules such as the chain rule for composition of C1 maps.

If U1, U2 ⊂ Rn are two open neighborhoods of a ∈ Rn, and f1 : U1 → R,
f2 : U2 → R are two C∞ maps, then (f1, U1) ∼ (f2, U2) means that there
exists some open neighborhood U of a with U ⊂ U1 ∩ U2 such that f1(x) =
f2(x) for all x ∈ U . This is clearly an equivalence relation. We let ER,n,a
denote the set of equivalence classes, or germs at a. Clearly ER,n,a is a ring.
If a is the origin of Rn, we write ER,n instead for ER,n,0.

3. Quasianalytic systems

3.1. Differentiable systems. Let R be a real closed field.

Definition 3.1. A differentiable system is a sequence AR = {AR,n |
n ∈ N} such that, for each n ∈ N, AR,n is a local subring of ER,n closed
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under taking derivatives and satisfying:

(A1) R[x1, . . . , xn] ⊂ AR,n ⊂ ER,n for each n ∈ N, where R[x1, . . . , xn] is
the ring of polynomials with coefficients in R.

(A2) AR is closed under composition: if g ∈ AR,k and f = (f1, . . . , fk) ∈
(AR,n)k with f(0) = 0, then g ◦ f ∈ AR,n.

(A3) For each n ∈ N, AR,n is closed under division by coordinates: if
f ∈ AR,n with f(x1, . . . , xi−1, ai, xi+1, . . . , xn) is identically zero
then f(x) = (xi − ai)g(x) with g ∈ AR,n.

(A4) The Implicit Function Theorem holds for AR: if f = (f1, . . . , fm) ∈
(AR,n+m)m with f(0, 0) = 0, and y = (y1, . . . , ym), and if

det
(
∂fi
∂yj

(0, 0)
)
i,j=1,...,m

6= 0,

then there is a (unique) g = (g1, . . . , gm) ∈ (AR,n)m with g(0) = 0
such that f(x, g(x)) = 0.

Let
·̂ : AR,n → R[[x1, . . . , xn]]

be the map which associates to each f ∈ AR,n its Taylor expansion at the
origin. We consider the following condition:

(A5) ·̂ is an injective homomorphism.

Definition 3.2. A differentiable system is called quasianalytic if the
condition (A5) holds.

Remark. In the following, for a differentiable quasianalytic system, we
will not distinguish notationally between the germ and its image under ·̂, i.e.
its Taylor expansion at the origin.

In particular these conditions on a quasianalytic system imply that the
maximal ideal of AR,n is m = {f ∈ AR,n | f(0) = 0} = (x1, . . . , xn)AR,n
and its completion in the m-adic topology is R[[x1, . . . , xn]].

Recall that a subset of Rn is called semi-algebraic if it can be represented
as a (finite) boolean combination of sets of the form {x ∈ Rn | P (x) = 0},
{x ∈ Rn | Q(x) > 0} where P (x), Q(x) are in R[x1, . . . , xn].

Example 3.3.

(i) Let U ⊂ Rn be an open semi-algebraic set and let f : U ⊂ Rn → R
be a C∞ map. We call f a Nash map if its graph Γf = {(x, f(x)) |
x ∈ U} is a semi-algebraic set. We denote by NR,n the set of all
germs f̄ ∈ ER,n such that f̄ can be represented by a couple (U, f)
where U is an open semi-algebraic set and f is a Nash map. Clearly
NR,n ⊂ ER,n is a subring [3, 8.1.8]. The system NR = {NR,n | n ∈ N}
is a differentiable system [3]. By [3, 8.1.5] it is a quasianalytic system.
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(ii) Suppose R = R and put HR = {HR,n | n ∈ N} where HR,n is the
ring of germs, at the origin of Rn, of real analytic functions. Clearly,
HR is a quasianalytic system!

3.2. Strongly quasianalytic systems. Fix a differentiable quasiana-
lytic system AR = {AR,n | n ∈ N}. Let ϕ = (ϕ1, . . . , ϕm) with ϕi ∈ AR,n,
i = 1, . . . ,m. We suppose that ϕ(0) = 0, and let x = (x1, . . . , xn), and
y = (y1, . . . , ym) be the coordinates in Rn and Rm respectively. The generic
rank of ϕ, rk(ϕ), is the rank of the Jacobian matrix

[∂ϕi

∂xj

]
i=1,...,m,j=1,...,n

, con-
sidered as a matrix over the quotient field of AR,n (recall that AR,n is a do-
main by (A5)). We consider the morphism φ : AR,m → AR,n defined by com-
position with ϕ, and its extension to the completion, φ̂ : R[[y1, . . . , ym]] →
R[[x1, . . . , xn]].

Definition 3.4. We say that the differentiable quasianalytic system AR
is strongly quasianalytic if for each ϕ as above with rk(ϕ) = m and for each
ψ ∈ R[[y1, . . . , ym]] such that φ̂(ψ) = ĝ with g ∈ AR,n, there exists β ∈ AR,m
such that β̂ = ψ.

Example 3.5.

(i) Suppose R = R, and consider the quasianalytic system HR as in Ex-
ample 3.3(ii). The main result of [5] says that this system is strongly
quasianalytic.

(ii) By [3, 8.2.9], the Weierstrass division theorem holds in the quasian-
alytic system NR. By going through the proof of the strong quasi-
analyticity of the system HR in [5], we see that the system NR is
strongly quasianalytic.

4. Newton’s theorem for a strongly quasianalytic system. In
this section, AR = {AR,n | n ∈ N} is a strongly quasianalytic system.
If λ = (λ1, . . . , λp) ∈ Rp, then P (xn, λ) = xpn +

∑p
i=1 λix

p−i
n is called a

generic polynomial in xn of degree p. If x = (x1, . . . , xn) ∈ Rn, we put
x′ = (x1, . . . , xn−1).

Let σ = (σ1, . . . , σp) : Rp → Rp be the polynomial map defined by
σi = (−1)−iσ̃i, where the σ̃i are the elementary symmetric functions in the
variables λ1, . . . , λp. Then we have P (xn, σ(λ)) = (xn − λ1) . . . (xn − λp).
The function ϕ(x, λ) = (x, σ(λ)) defines, by substitution, a morphism φ :
AR,n+p → AR,n+p. We can see that rk(ϕ) = n + p and φ is an injective
morphism.

Lemma 4.1. Let f(x, λ) ∈ AR,n+p be symmetric with respect to the vari-
ables λi, i = 1, . . . , p. Then there exists g ∈ AR,n+p such that g(x, σ(λ)) =
f(x, λ).
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Proof. By hypothesis f̂(x, λ) ∈ R[[x, λ]] is symmetric with respect to the
variables λi, i = 1, . . . , p. By Newton’s theorem (for formal series, see [4]),
there exists h ∈ R[[x, λ]] such that h(x, σ(λ)) = f̂(x, λ), i.e. φ̂(h) = f̂ . Since
rk(ϕ) = n+ p (ϕ(x, λ) = (x, σ(λ))) and the system AR is strongly quasian-
alytic, there exists g ∈ AR,n+p such that ĝ = h; hence, by quasianalyticity,
φ(g) = f , i.e. g(x, σ(λ)) = f(x, λ).

5. Generic division

Lemma 5.1. Let P (xn, λ) be a generic polynomial in xn of degree p. If
f ∈ AR,n then there exist unique q ∈ AR,n+p and ri ∈ AR,n−1+p, 1 ≤ i ≤ p,
such that

f(x) = P (xn, λ)q(x, λ) +
p∑
i=1

ri(x′, λ)xp−in .

Proof. We consider f(x′, xn) and f(x′, λ1) as elements of AR,n+p. Since
AR,n+p is closed under division by coordinates,

f(x′, xn)− f(x′, λ1) = (xn − λ1)f1(x, λ)

with f1 ∈ AR,n+p again. By repeating this process with f1,

f1(x′, xn, λ)− f1(x′, λ2, λ) = (xn − λ2)f2(x, λ)

with f2 ∈ AR,n+p. Finally, we get

f(x) = g(x, λ)(xn − λ1) . . . (xn − λp) +
p∑
i=1

gi(x′, λ)xp−in

with g ∈ AR,n+p and gi ∈ AR,n−1+p, 1 ≤ i ≤ p.
We see that g and gi, 1 ≤ i ≤ p, are symmetric with respect to λ1, . . . , λp,

since g and the gi are uniquely determined in the above representation of
f(x), by the quasianalyticity of the system AR. By Lemma 4.1, there exist
q ∈ AR,n+p and ri ∈ AR,n−1+p, 1 ≤ i ≤ p, such that

g = φ(q), gi = φ(ri).

Then
f = φ(f) = φ(q)φ(P ) +

∑
i

φ(ri)xp−in ,

and this implies that

f(x) = P (x, λ)q(x, λ) +
p∑
i=1

ri(x′, λ)xp−in ,

since φ is injective. The uniqueness follows from the quasianalyticity of the
system AR.
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6. Weierstrass division theorem. Let f ∈ AR,n − {0}. We say that
f is regular of order p with respect to xn if the formal series f̂ is regular of
order p with respect to xn. For any f ∈ AR,n − {0}, after making a linear
transformation of (x1, . . . , xn), there is an integer p ∈ N such that f is regular
of order p with respect to xn.

Theorem 6.1. Let f ∈ AR,n − {0} be regular of order p with respect
to xn. Then for any g ∈ AR,n, there exist unique q ∈ AR,n and ri ∈ AR,n−1,
1 ≤ i ≤ p, such that

g(x) = f(x)q(x) +
p∑
i=1

ri(x′)xp−in .

Proof. By Lemma 5.1, we divide f by the generic polynomial P (xn, λ) =
xpn +

∑p
i=1 λix

p−i
n . We have

(∗) f(x) = P (xn, λ)q(x, λ) +
p∑
i=1

ri(x′, λ)xp−in

with q(x, λ) ∈ AR,n+p and ri(x′, λ) ∈ AR,n−1+p, 1 ≤ i ≤ p. Since f is regular
of order p with respect xn, we can easily see that

q(0, 0) 6= 0, ri(0, 0) = 0, 1 ≤ i ≤ p.

We shall show that the p × p matrix
[
∂ri
∂λj

(0, 0)
]
i,j=1,...,p

is nonsingular. By
applying ∂

∂λk
, k = 1, . . . , p, to (∗), we find

q(0, xn, 0)xp−kn + xpn
∂q(0, xn, 0)

∂λk
+

p∑
i=1

∂ri(0, 0)
∂λk

xp−in = 0.

Since q(0, 0) 6= 0, we see that

∂ri(0, 0)
∂λk

= −δikq(0, 0), i, k = 1, . . . , p,

where δik is the Kronecker symbol. We then see that the determinant of the
matrix

[
∂ri
∂λj

(0, 0)
]
i,j=1,...,p

is

D(r1, . . . , rp)
D(λ1, . . . , λp)

(0, 0) = (−1)p(q(0, 0))p.

By the implicit function theorem (A4), there is ψ(x′) = (ψ1(x′) . . . , ψp(x′)) ∈
(AR,n−1)p, ψ(0) = 0, such that ri(x′, ψ(x′)) = 0, 1 ≤ i ≤ p. Hence f(x) =
q(x, ψ(x′))P (xn, ψ(x′)). Since q(x, ψ(x′)) is invertible inAR,n, f is equivalent
in AR,n to the polynomial xpn +

∑p
i=1 ψi(x

′)xp−in .
Now let g ∈ AR,n. We divide g by the generic polynomial P (xn, λ) and

hence by P (xn, ψ(x′)) after the substitution λ 7→ ψ(x′). Since q(x′, ψ(x′))
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is invertible in AR,n, we have proved the existence. The uniqueness follows
from the quasianalyticity of the system AR.

From Theorem 6.1, we have:

Corollary 6.2. AR,n is a regular local ring of dimension n. In partic-
ular it is a noetherian unique factorization domain.

Proof. Using Theorem 6.1 we prove, by induction on n ∈ N, that AR,n
is a noetherian ring. The proof is the same as that given in [9, II.1.5, 1.6] for
real analytic systems.

The following consequence of Theorem 6.1 is the approximation theorem
of M. Artin [1]. It was announced for NR in [3, 8.3.1]. The proof for AR is
the same as that given in [9, III.4.2] for real analytic systems. This proof
uses the implicit function theorem and Weierstrass’s division theorem.

Theorem 6.3. Let f = (f1, . . . , fq) ∈ (AR,n+m)q be such that f(0, 0)
= 0. Consider a solution ŷ(x) = (ŷ1(x), . . . , ŷm(x)) ∈ R[[x1, . . . , xn]] of the
equation f(x, y) = 0. Then for any integer s ≥ 1 there exists a solution
y(x) = (y1(x), . . . , ym(x)) ∈ (AR,n)m of f(x, y) = 0 such that ŷi(x)−yi(x) ∈
ms for i = 1, . . . ,m.

7. Strongly quasianalytic systems associated to a real closed
field. If AR and A′R are two differentiable systems, we will write AR ⊂ A′R
to mean that AR,n ⊂ A′R,n for all n ∈ N.

Let R be a real closed field and consider the family

FR = {A′R | A′R is a strongly quasianalytic system, NR ⊂ A′R }.
Definition 7.1. For a real closed field R, a maximal element of FR will

be called a strongly quasianalytic system associated to R.

In the following, we prove that if R is the field of reals, there exists a
unique strongly quasianalytic system associated to R, which is the system
given in Example 3.3(ii). The following result, proved in [6], will be used.

Theorem 7.2. Let CR be a quasianalytic system such that the Weier-
strass division theorem holds in the ring CR,3. Then CR ⊂ HR.

We recall that if Hn is the ring of germs, at the origin of Rn, of analytic
functions, then we put HR = {Hn ⊂ ER,n}.

Corollary 7.3. Let AR be a strongly quasianalytic system associated
to R. Then AR = HR.

Proof. First, by Theorem 6.1, Weierstrass’s division theorem holds inAR,
hence by Theorem 7.2, we have AR ⊂ HR. Moreover NR ⊂ HR and by [5]
we know that HR is a strongly quasianalytic system, hence HR = AR.
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8. Semi-AR germs

Definition 8.1.

(i) A neighborhood system of the origin in Rn (n.s.) is a collection of
open subsets of Rn which contains the origin.

(ii) If U is a n.s. in Rn, then ÃR,n(U) denotes the set of all pairs (U, f)
where U ∈ U and f : U → R is a C∞ map such that f̂ ∈ AR,n.

(iii) A semi-AR germ is a germ of a set, at the origin of Rn, which can
be represented as a (finite) boolean combination of germs of sets
of the form {x ∈ U1 | f1(x) = 0}, {x ∈ U2 | f2(x) > 0} where
(U1, f1), (U2, f2) ∈ ÃR,n(U).

(iv) A semi-AR germ, A, is called semi-AR connected if there do not
exist disjoint semi-AR germs A1, A2 both open in A such that A =
A1 ∪A2.

As for germs of semi-analytic sets in Rn, we prove some properties of
semi-AR germs. The proof is the same as in the case of R = R, but we give
a brief summary for completeness.

Theorem 8.2. Let P1(x, t), . . . , Pl(x, t) be polynomials of n+1 variables,
where x=(x1, . . . , xn). Then there is a semi-algebraic partition {A1, . . . , Am}
of Rn such that, for each k = 1, . . . ,m, the zeros of P1(x, t), . . . , Pl(x, t) on
Ak are given by continuous semi-algebraic functions ξ1 < · · · < ξrk and the
sign of each Pj(x, y) on Ak depends only on the sign of y−ξi(x), i = 1, . . . , rk.

For the proof see [3, 2.3.1].

Definition 8.3. Let U ∈ U and f : U ⊂ Rn → R a map such that
f(0) = 0. We say that f is a semi-AR map if the germ of its graph, at
(0, 0) ∈ Rn ×R, is a semi-AR germ.

Proposition 8.4. Let f1(x, y), . . . , fq(x, y) ∈ ÃR,n(U)[y]. Then there is
U ∈ U in which all fi are defined and a partition {A1, . . . , As} of U such
that, for each k = 1, . . . , s:

(1) The germ of Ak at 0 ∈ Rn is a semi-AR germ.
(2) The zeros of f1, . . . , fq on Ak are given by continuous semi-AR maps

ξ1 < · · · < ξrk .
(3) The sign of each fj(x, y) on Ak depends only on the sign of the y −

ξi(x).

Proof. Let fj(x, y) =
∑N

k=1 λjk(x)yk, j = 1, . . . , t, where each λjk ∈
ÃR,n(U). Each λjk is a C∞ map on Ujk ∈ U . We put U =

⋂
j,k Ujk. De-

fine the polynomials Pj(Z, y) =
∑N

k=1 Zjky
k where Z = (Zjk) are vari-

ables. For the finite family of polynomials P1(Z, y), . . . , Pt(Z, y), consider
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the semi-algebraic partition {A′k} and, for each k, the continuous semi-
algebraic functions ξ′i(Z) given by Theorem 8.2. Then fj(x, ξ′i(Z(x))) =
Pj(Z(x), ξ′i(Z(x))) = 0 whenever Z(x) ∈ A′k. Take Ak = Z−1(A′k) and
ξi = ξ′i ◦ Z.

Definition 8.5. A finite family f1, . . . , fm ∈ ÃR,n(U) is separating if
there exists an open neighborhood U ⊂ Rn of the origin such that all the fj
are defined and C∞ maps on U , and for any subset A ⊂ U of the form

A =
m⋂
i=1

{x ∈ U | fi(x)σi 0},

where each σi is in {<,>,=}, we have:

(i) The germ of A at 0 ∈ Rn is either empty or semi-AR connected.
(ii) If A 6= ∅, then the germ at 0 ∈ Rn of the set

m⋂
i=1

{x ∈ U | fi(x)σi 0},

where σi ∈ {≤,≥,=}, is exactly the germ at 0 ∈ Rn of the closure
of A in U .

Theorem 8.6. Any finite family of elements in ÃR,n(U) can be com-
pleted to a separating family.

Proof. By induction on n, the proof is the same as for R = R by using
Weierstrass’s division theorem (see [2, 2.6]).

Corollary 8.7. Each semi-AR germ is the union of a finite number of
semi-AR connected germs. The closure, and thus the interior, of a semi-AR
germ is also a semi-AR germ.

9. The real spectrum of the ring AR,n

9.1. The real spectrum of a ring. The notion of the real spectrum of
a ring was introduced by M. Coste and M. F. Roy in the late 1970’s and soon
became a fundamental tool in real geometry. A more detailed exposition can
be found in [3], where the proofs are also given.

In this section we shall interpret the elements of the real spectrum ofAR,n
by equivalence classes of certain points with coordinates in a real closed field
R∗ which is an extension of R.

Let A be a unital commutative ring. We consider the set of all nontrivial
homomorphisms α from A into some real closed field Rα. We define an
equivalence relation on this set as follows: if α : A→ Rα and β : A→ Rβ are
ring homomorphisms from A into real closed fields Rα and Rβ respectively,
we say that α and β are equivalent, and write α ∼ β, if α−1(R2

α) = β−1(R2
β)
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where R2 is the set of all nonnegative elements of the real closed field R. We
denote by [α] the class of α.

Now the real spectrum of A is defined as

sperA = {[α] | α : A→ R, R a real closed field}.

9.2. Structure. A language L consists of:

(i) a set F of function symbols and a positive integer nf for each f ∈ F ,
(ii) a set R of relation symbols and a positive integer nR for each R ∈ R,
(iii) a set C of constant symbols.

The numbers nf and nR tell us that f is a function of nf variables and R
is an nR-ary relation. Some or all of the sets F , R and C may be empty.
Examples of languages:

(i) the language Lr of rings where F = {+,−, ·}, R = ∅, C = {0, 1},
(ii) the language of ordered rings Lor = Lr ∪ {<} where R = {<}.
Definition 9.1. An L-structureM is given by the following data:

(i) a nonempty set M called the domain ofM,
(ii) a function fM : Mnf →M for each f ∈ F ,
(iii) a set RM ⊂MnR for each R ∈ R,
(iv) an element cM ∈M for each c ∈ C.
An L-term is a finite sequence of symbols obtained by repeated applica-

tion of the following rules:

(i) Each constant c ∈ C is an L-term.
(ii) Variables are L-terms.
(iii) If f ∈ F and t1, . . . , tnf

are L-terms, then f(t1, . . . , tnf
) is an L-term.

SupposeM is an L-structure and s is a term built using variables from
v = (v1, . . . , vim). We want to interpret s as a function sM : M im →M . For
a = (a1, . . . , aim) ∈M im , we inductively define sM(a):

(i) If s is a constant symbol c ∈ C, then sM(a) = cM.
(ii) If s is the variable vij , then sM(a) = aij .
(iii) If s is the term f(t1, . . . , tnf

), where f is a function symbol and
t1, . . . , tnf

are terms, then sM(a) = fM(tM1 (a), . . . , tMnf
(a)).

We are now ready to define L-formulas. We say that φ is an atomic L-formula
if φ is either

(i) t1 = t2 where t1, t2 are terms, or
(ii) R(t1, . . . , tnR) where R ∈ R and t1, . . . , tnR are terms.

The set of L-formulas is the smallest set W containing the atomic for-
mulas such that:

(i) If φ ∈ W, then ¬φ is in W.
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(ii) If φ and ψ are in W, then φ ∧ ψ and φ ∨ ψ are in W.
(iii) If φ ∈ W, then ∃viφ and ∀viφ are in W.

We say that a variable occurs freely in a formula φ if it is not inside the
scope of a quantifier, otherwise we say it is bound. We call an L-formula
an L-sentence if it has no free variables. If v1, . . . , vm are distinct variables,
we write φ(v1, . . . , vm) to indicate a formula φ all of whose freely occurring
variables are among v1, . . . , vm.

LetM be an L-structure and φ an L-sentence. Then φ is either true or
false inM. If φ is true inM, we writeM |= φ.

We can extend the language L to the language LM by adding a new
constant symbol a for each element a ∈ M . We consider M as an LM -
structure in the obvious way. Given an L-formula φ(v1, . . . , vm) and elements
a1, . . . , am ∈M we let φ(a1, . . . , am) be an LM -sentence, hence φ(a1, . . . , am)
is either true or false in M .

LetM and N be two L-structures with domains respectively M and N ,
and suppose that M ⊂ N . If for all L-formulas φ(v1, . . . , vn) and all
a1, . . . , am ∈M , we have

M |= φ(a1, . . . , am) ⇔ N |= φ(a1, . . . , am),

we say that N is an elementary extension ofM.
Let L be a language andM an L-structure with domainM . Let Y ⊂M .

We denote by Fmln(LY ) the set of all LY -formulas φ with free variables
among v1, . . . , vn. A subset Φ ⊂ Fmln(LY ) is said to be realized in M if
there exists an element a = (a1, . . . , an) ∈ Mn such that, for all φ ∈ Φ,
M |= φ(a). Clearly if Φ ⊂ Fmln(LY ) is realized in M, then every finite
subset {φ1, . . . , φq} ⊂ Φ is realized inM. The converse is not true.

We say that Φ ⊂ Fmln(LY ) is finitely realized inM if every finite subset
of Φ is realized in M. By definition, an LY -type of M is a finitely realized
subset of Fmln(LY ).

Definition 9.2. Let κ be an infinite cardinal. An L-structure M is
called κ-saturated if for each subset Y ⊂ M such that cardY < κ, every
LY -type ofM is realized inM.

The following theorem is usually proved for saturated structures.

Theorem 9.3. Let M be an L-structure and let κ be the cardinal of
L (κ = max{ℵ0, cardF , cardR, card C}). Then there exists a κ+-saturated
elementary extensionM∗ ofM.

Recall that κ+ is the next cardinal after κ.
Now let R be a real closed field. We consider the language of ordered

rings, Lor. We denote by R the Lor-structure whose domain is R. We extend
the language Lor by introducing for each f ∈ ÃR,n(U) a function symbol,



272 A. Elkhadiri

denoted again by f . We write L for the extended language. Our structure
is (R, (f), f ∈ ÃR(U)). Let us recall that for each f ∈ ÃR,n(U) there is an
open neighborhood U of the origin in Rn such that f is a C∞ map on U
with values in R and the germ of f at 0 ∈ Rn is in AR,n. As a function on
an L-structure is a total function, we extend f to all Rn by setting it to 0
outside of U .

We let κ be the cardinality of R. The extended language L then has car-
dinality ν = max{ℵ0, 2κ}. By Theorem 9.3, there is an elementary extension
R̃∗ of R that is ν+-saturated. Let R∗ be its domain.

Let f ∈ ÃR,n(U). We denote by f̄ its germ at the origin of Rn (recall
that f̄ ∈ AR,n), and by f∗ its extension to R∗n. Let

MR = {a ∈ R∗ | |a| < ε for all ε ∈ R, ε > 0}
be the ideal of infinitesimals. If x = (x1, . . . , xn) ∈ Rn, we put ‖x‖ =
maxni=1 |xi|.

Lemma 9.4. For all f, g ∈ ÃR,n(U) we have

f̄ = g ⇔ ∀a ∈Mn
R, f

∗(a) = g∗(a).

Proof. If f̄ = g, then for some positive ε ∈ R we have

R |= ∀x(‖x‖ < ε→ f(x) = g(x)).

Since R̃∗ is an elementary extension of R, the same LR-sentence holds in R̃∗.
Hence f∗(x) = g∗(x) for all x ∈ R∗n such that ‖x‖ < ε. Thus, in particular,
f∗ = g∗ on Mn

R.
If, conversely, f∗(a) = g∗(a) for all a ∈Mn

R, we find

R̃∗ |= ∃ε∀x(‖x‖ < ε→ f∗(x) = g∗(x)),

taking for ε any positive element inMn
R. Since R̃

∗ is an elementary extension
of R, this sentence is also true in R, hence

R |= ∃ε∀x(‖x‖ < ε→ f(x) = g(x)),

hence f(x) = g(x) for all x in the ball B(0, ε); thus f̄ = g.

As a consequence of Lemma 9.4, for each α ∈ Mn
R, the assignment f̄ 7→

f∗(α) is well defined and yields a ring homomorphism from AR,n to R∗. This
corresponds to a point in sperAR,n.

We define an equivalence relation on Mn
R as follows: for α, β ∈Mn

R,

α ∼ β ⇔ (f∗(α) ≥ 0⇔ f∗(β) ≥ 0), ∀f̄ ∈ AR,n.
We shall see that the equivalence classes [α] of α ∈ Mn

R give the full real
spectrum of the ring AR,n.

Remark. Let σ : AR,n → Rσ be a homomorphism into a real closed field
Rσ. Let R′σ be the real closure of the quotient field, say [σ(AR,n)], of the ring
σ(AR,n). Consider the homomorphism σ′ : AR,n → [σ(AR,n)] ↪→ R′σ; clearly
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we have σ ∼ σ′. Since cardR = κ and the elementary extension R̃∗ of R is
ν+-saturated, where ν = max{ℵ0, 2κ}, we see, by [8, 7.7, 9.7], that R′α can
be embedded in R∗. Thus

sperAR,n = {[α] | α : AR,n → R∗}.
The following theorem can be seen as a weak version, for AR,n, of the

substitution theorem for Nash functions [3, 8.5.2]. We will use it to transfer
some algebraic properties to geometric ones.

Theorem 9.5. Let [σ] ∈ sperAR,n. Then there exists α ∈Mn
R such that

σ(f̄) ≥ 0⇔ f∗(α) ≥ 0, for all f̄ ∈ AR,n.
Proof. For the proof, we need the following lemma proved for AR,n = Hn

in [8, 10.3] by using the Weierstrass division theorem and Tarski’s quantifier
elimination for real closed fields. The proof for AR,n is the same.

Lemma 9.6. Let [σ] ∈ AR,n and f̄ , g1, . . . , gm ∈ AR,n such that σ(f̄) = 0,
σ(g1) > 0, . . . , σ(gm) > 0. Then there exists some α ∈ Mn

R satisfying
f∗(α) = 0, g∗1(α) > 0, . . . , g∗m(α) > 0.

Let [σ] ∈ AR,n. We consider the set of LR-formulas

Φ = {f(x1, . . . , xn) ≥ 0 | σ(f̄) ≥ 0, f̄ ∈ AR,n}
∪ {f(x1, . . . , xn) < 0, σ(f̄) < 0, f̄ ∈ AR,n}
∪ {|xi| < ε, 1 ≤ i ≤ n, 0 < ε ∈ R}.

By the above lemma, the set Φ is finitely realized in R∗. Since R̃∗ is ν+-
saturated, where ν = max{ℵ0, 2κ}, and cardR = κ, the LR-type Φ is realized
in R̃∗. Hence there is α ∈ R∗n satisfying Φ. Thus in particular α ∈Mn

R and
f∗(α) ≥ 0⇔ σ(f̄) ≥ 0.

We mention a formal theorem proved in [3, 4.4.1] for a general ring A
with unit. We need some terminology and notation.

Let A be a commutative ring with unit. We denote by
∑
A2 the set of

all finite sums
∑
a2
i , ai ∈ A. If a1, . . . , at ∈ A, we denote by T (a1, . . . , at)

the smallest subset of A containing the elements a1, . . . , at and
∑
A2, and

closed under addition and multiplication. Clearly T (a1, . . . , at) is exactly the
set {

p+ q1g1 + · · ·+ qsgs

∣∣∣ p, q1, . . . , qs ∈∑A2

}
where g1, . . . , gs are finite products of a1, . . . , at.

Theorem 9.7 ([3, 4.4.1]). Let h1, . . . , hr, g1, . . . , gs, f̄1, . . . , f̄t ∈ AR,n.
Then the following assertions are equivalent:

(i) {σ ∈ sperAR,n | σ(h1) = 0, . . . , σ(hr) = 0, σ(g1) 6= 0, . . . , σ(gs) 6= 0,
σ(f̄1) ≥ 0, . . . , σ(f̄t) ≥ 0} = ∅.
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(ii) There exists an equation of the form

g2m1
1 . . . . .g2ms

s + a = b1h1 + · · ·+ brhr

for suitable m1, . . . ,ms ∈ N, b1, . . . , br ∈ AR,n and a ∈ T (f̄1, . . . , f̄t).

Let I ⊂ AR,n be an ideal. We denote by VI(R) the germ at 0 ∈ Rn of
the zero-set of I. For g1, . . . , gs, f̄1, . . . , f̄t ∈ AR,n, we denote by SR,g,f the
semi-AR germ defined by

x ∈ SR,g,f ⇔ g1(x) 6= 0, . . . , gs(x) 6= 0, f1(x) ≥ 0, . . . , ft(x) ≥ 0.

Proposition 9.8. With the notation above, the following are equivalent:

(i) VI(R) ∩ SR,g,f = ∅.
(ii) There exist n1, . . . , ns ∈ N and q ∈ T (f̄1, . . . , f̄t) such that

g2n1
1 . . . g2ns

s + q ∈ I.
Proof. Let (h1, . . . , hr) be a system of generators of the ideal I. It is

clear that (ii)⇒(i). For the nontrivial implication (i)⇒(ii), assume that no
n1, . . . , ns ∈ N and q ∈ T (f̄1, . . . , f̄t) exist. Then by Theorem 9.7, there exists
σ ∈ sperAR,n such that

σ(h1)= · · ·=σ(hr)=0, σ(g1) 6=0, . . . , σ(gs) 6=0, σ(f̄1)≥0, . . . , σ(f̄t)≥0.

By Lemma 9.6, there exists α ∈Mn
R such that

h∗1(α)= · · ·=h∗r(α)=0, g∗1(α) 6=0, . . . , g∗s(α) 6=0, f∗1 (α)≥0, . . . , f∗t (α)≥0.

Hence α ∈ VI(R∗)∩SR∗,g,f . Since R̃∗ is an elementary extension of R, there
exists x ∈ VI(R) ∩ SR,g,f , which is a contradiction.

Theorem 9.9 (Positivstellensatz). Let f̄ ∈ AR,n. Then f is strictly pos-
itive on the semi-AR germ {f1(x) ≥ 0, . . . , ft(x) ≥ 0} ∩ VI(R) if and only if
there are q1, q2 ∈ T (f̄1, . . . , f̄t) such that q1f̄ − (1 + q2) ∈ I.

Proof. For the nontrivial implication, we can apply Proposition 9.8 to
s = 1, g1 = 1, and add f̄t+1 = −f . This gives 1 + (q2 − f̄ q1) ∈ I, where
q1, q2 ∈ T (f̄1, . . . , f̄t).

Theorem 9.10 (Real Nullstellensatz). Let f̄ ∈ AR,n. Then f is zero on
the germ VI(R) if and only if there exist m ∈ N and ϕ1, . . . , ϕq ∈ AR,n such
that f̄2m + ϕ2

1 + . . .+ ϕ2
q ∈ I.

Proof. We take s = 1, g1 = f , t = 1, and f1 = 0 in Proposition 9.8. Now
T (0) is exactly the set

∑
A2
R,n. For the nontrivial implication assume that f

is zero on VI(R). Then VI(R)∩ {x | f(x) 6= 0} = ∅. Now Theorem 9.9 yields
the result.

Theorem 9.11 (Hilbert’s 17th Problem). Let f̄ , ϕ1, . . . , ϕq ∈ AR,n. If
on a neighborhood of 0 ∈ Rn, f(x) ≥ 0 whenever f1(x) ≥ 0, . . . , ft(x) ≥ 0,
then there exist m ∈ N and q1, q2 ∈ T (f̄1, . . . , f̄t) such that f̄ q1 = f̄2m + q2.
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Proof. We apply Proposition 9.8 to s = 1, g1 = f , I the null ideal and
add ft+1 = −f .
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