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Some further results on meromorphic

functions that share two sets

by Qi Han and Hong-Xun Yi (Jinan)

Abstract. This paper concerns the uniqueness of meromorphic functions and shows
that there exists a set S ⊂ C of eight elements such that any two nonconstant meromor-
phic functions f and g in the open complex plane C satisfying E3)(S, f) = E3)(S, g) and
E(∞, f) = E(∞, g) are identical, which improves a result of H. X. Yi. Also, some other re-
lated results are obtained, which generalize the results of G. Frank, E. Mues, M. Reinders,
C. C. Yang, H. X. Yi, P. Li, M. L. Fang and H. Guo, and others.

1. Introduction and main results. In this paper, a meromorphic
function will always mean meromorphic in the open complex plane C. For
any nonconstant meromorphic function f , we adopt the standard notations
in Nevanlinna’s value distribution theory of meromorphic functions such as
the characteristic function T (r, f), the proximity function m(r, f) and the
counting function N(r, f) (reduced form N(r, f)) of poles. Also, we denote
by S(r, f) any quantity satisfying S(r, f) = o(T (r, f)), possibly outside a
set of finite linear measure in R that is not necessarily the same at each
occurrence. We refer the reader to books [6] and [10] for more details on
those notations.

Let f be a nonconstant meromorphic function, let a ∈ C be a finite
value, and let k be a positive integer or infinity. We denote by E(a, f) the
set of zeros of f − a (counting multiplicity), and by E(a, f) the set of zeros
of f −a (ignoring multiplicity). Also, we denote by Ek)(a, f) the set of zeros
of f − a with multiplicities less than or equal to k (counting multiplicity).
Obviously, E(a, f) = E+∞)(a, f). If a = ∞, we define E(∞, f) := E(0, 1/f).

E(∞, f) and Ek)(∞, f) are similarly defined. For a ∈ C∪{∞}, we denote by
Nk)(r, 1/(f − a)) the counting function corresponding to the set Ek)(a, f),
and by N(k+1(r, 1/(f − a)) the counting function corresponding to the set
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E(k+1(a, f) := E(a, f)/Ek)(a, f). Also, we denote by Nk)(r, 1/(f − a)) and

N(k+1(r, 1/(f−a)) the corresponding reduced forms of Nk)(r, 1/(f−a)) and
N(k+1(r, 1/(f − a)), respectively.

Let S be a subset in C∪{∞} of distinct elements, and let k be a positive
integer or infinity. Set

(1.1) Ek)(S, f) =
⋃

a∈S

Ek)(a, f) and E(S, f) =
⋃

a∈S

E(a, f).

Obviously, for a ∈ C ∪ {∞}, Ek)({a}, f) = Ek)(a, f) and E({a}, f) =

E(a, f). For another nonconstant meromorphic function g, we say that f and
g share the set S CM (respectively, IM ) provided that E(S, f) = E(S, g)
(respectively, E(S, f) = E(S, g)). Evidently, if S contains only one element,
then it coincides with the usual definition of CM (respectively, IM) shared
values. On the other hand, the condition Ek)(S, f) = Ek)(S, g) obviously
implies Ej)(S, f) = Ej)(S, g) for all 1 ≤ j ≤ k.

It was F. Gross [3] who first considered the uniqueness of meromorphic
functions that share sets of distinct elements instead of values. In 1976, he
proposed the following two questions in [4].

Question I. Can one find two (or possibly even one) finite sets Sj

(j = 1, 2) such that any two nonconstant entire functions f and g satisfying
E(Sj , f) = E(Sj , g) (j = 1, 2) are identical?

Question II. If the answer to Question I (for two finite sets) is positive,
then how large have both sets to be?

Further, in 1982, F. Gross and C. C. Yang [5] showed that any two non-
constant entire functions f and g satisfying E(S, f) = E(S, g) are identical,
where S := {ω ∈ C | ω+eω = 0}. Only about twenty years later, were Ques-
tions I and II completely answered by H. X. Yi who proved the following
three theorems.

Theorem A (see [11]). Let S1 = {ω | ωn − 1 = 0} and S2 = {a}, where
n is a positive integer such that n ≥ 5, and a is a constant such that a 6= 0
and a2n 6= 1. If f and g are two nonconstant entire functions satisfying
E(Sj , f) = E(Sj , g) for j = 1, 2, then f ≡ g.

Theorem B (see [12]). Let S = {ω | ωn +aωm + b = 0}, where n and m
are positive integers such that n ≥ 15, n > m ≥ 5, and n and m are relatively
prime, and a and b are nonzero constants such that the algebraic equation
ωn + aωm + b = 0 has no multiple roots. If f and g are two nonconstant
entire functions satisfying E(S, f) = E(S, g), then f ≡ g.

Theorem C (see [15]). Let S1 = {ω | ω3 + aω2 + b = 0} and S2 = {0},
where a and b are nonzero constants such that the equation ω3 + aω2 + b
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= 0 has no multiple roots. If f and g are two nonconstant entire func-
tions satisfying E(Sj , f) = E(Sj , g) for j = 1, 2, then f ≡ g. Obviously,
min {ı(S1), ı(S2)} ≥ 1 and max {ı(S1), ı(S2)} ≥ 3, where ı(S) denotes the
cardinality of S.

Clearly, Theorems A and B answer Question I affirmatively, while The-
orem C answers Question II completely, since examples are given in [15] to
show the sharpness. See also [14] for some related results.

In 1998, G. Frank and M. Reinders obtained the following result which
extends and improves Theorem B.

Theorem D (see [2]). Let n be a positive integer such that n ≥ 11, and
let c be a constant such that c 6= 0, 1. Then the polynomial

(1.2) PFR(ω) =
(n− 1)(n− 2)

2
ωn − n(n− 2)ωn−1 +

n(n− 1)

2
ωn−2 − c

has no multiple roots. Let S denote the zero set of PFR(ω). If f and g are
two nonconstant meromorphic functions satisfying E(S, f) = E(S, g), then
f ≡ g.

In particular, if f and g are entire, then n ≥ 7 suffices, which coincides
with the main result of E. Mues and M. Reinders [9] on entire functions.

It is natural to consider the uniqueness of two nonconstant meromorphic
functions that satisfy E(S, f) = E(S, g) and E(∞, f) = E(∞, g), a problem
clearly inspired by Theorems B and D. The first result on this problem was
obtained by P. Li and C. C. Yang:

Theorem E (see [7]). Let S = {ω | ωn + aωn−m + b = 0}, where n
and m are two positive integers such that m ≥ 2, n > 4m + 6, and n
and m are relatively prime, and a and b are nonzero constants such that
the equation ωn + aωn−m + b = 0 has no multiple roots. If f and g are
two nonconstant meromorphic functions satisfying E(S, f) = E(S, g) and
E(∞, f) = E(∞, g), then f ≡ g.

From then on, many results on that problem have been obtained. In 1995,
H. X. Yi [13], and independently P. Li and C. C. Yang [8], showed that there
exists a set S of 11 elements such that any two nonconstant meromorphic
functions f and g satisfying E(S, f) = E(S, g) and E(∞, f) = E(∞, g) are
identical. In 1997, M. L. Fang and H. Guo in [1] exhibited a set S of nine
elements with this property.

In 2002, H. X. Yi proved the following theorem.

Theorem F (see [16]). Let n be a positive integer such that n ≥ 8, and
let a, b be nonzero constants such that abn−2 6= 2. Then the polynomial

(1.3) P (ω) = aωn − n(n− 1)ω2 + 2n(n− 2)bω − (n− 1)(n− 2)b2



20 Q. Han and H. X. Yi

has no multiple roots. Let S denote the zero set of P (ω). If f and g are
two nonconstant meromorphic functions satisfying E(S, f) = E(S, g) and
E(∞, f) = E(∞, g), then f ≡ g.

In this paper, we prove the following five results, which are improvements
on and supplements to the above theorems.

Theorem 1. Let S be the zero set of P (ω) given by (1.3) with n ≥ 7. If
f and g are two nonconstant entire functions satisfying E2)(S, f)=E2)(S, g),
then f ≡ g.

Theorem 2. Let S be the zero set of P (ω) given by (1.3) with n ≥ 9. If
f and g are two nonconstant entire functions satisfying E1)(S, f)=E1)(S, g),
then f ≡ g.

Theorem 3. Let S be the zero set of P (ω) given by (1.3) with n ≥ 8. If
f and g are two nonconstant meromorphic functions satisfying E3)(S, f) =

E3)(S, g) and E(∞, f) = E(∞, g), then f ≡ g.

Theorem 4. Let S be the zero set of P (ω) given by (1.3) with n ≥ 9. If
f and g are two nonconstant meromorphic functions satisfying E2)(S, f) =

E2)(S, g) and E(∞, f) = E(∞, g), then f ≡ g.

Theorem 5. Let S be the zero set of P (ω) given by (1.3) with n ≥ 12. If
f and g are two nonconstant meromorphic functions satisfying E1)(S, f) =

E1)(S, g) and E(∞, f) = E(∞, g), then f ≡ g.

Remark 6. Let P (ω) be given by (1.3), and let n, a and b be as in
Theorem F. Set

(1.4) R(ω) =
aωn

n(n− 1)(ω − α)(ω − β)
,

where α and β are the two distinct roots of the algebraic equation

(1.5) n(n− 1)ω2 − 2n(n− 2)bω + (n− 1)(n− 2)b2 = 0.

Then

(1.6) R′(ω) =
a(n− 2)ωn−1(ω − b)2

n(n− 1)(ω − α)2(ω − β)2
.

So ω = 0 is an n-fold root of R(ω) = 0, while ω = b is a triple root of
R(ω) − abn−2/2 = 0. Since abn−2 6= 0, 2, we have R(ω) − 1 = 0, and thus
P (ω) = 0 has no multiple roots.

2. Lemmas

Lemma 1 (see [2]). Let

(2.1) Q(ω) = (n− 1)2(ωn − 1)(ωn−2 − 1) − n(n− 2)(ωn−1 − 1)2.
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Then

(2.2) Q(ω) = (n− 1)2(ω − 1)4(ω − γ1)(ω − γ2) · · · (ω − γ2n−6),

where γj ∈ C \ {0, 1} are pairwise distinct for j = 1, . . . , 2n− 6.

Lemma 2. Define

(2.3) ϕ :=

(

F ′

F − 1
−
F ′

F

)

−

(

G′

G− 1
−
G′

G

)

,

where F := R(f) and G := R(g), and R(ω) is given by (1.4). Suppose n ≥ 8
if f and g are meromorphic, and n ≥ 6 if f and g are entire. Then ϕ ≡ 0
implies F ≡ G.

Proof. Since we assume ϕ ≡ 0, integrating (2.3) yields

(2.4)
1

F
−
A

G
≡ 1 −A,

where A 6= 0 is a constant. As F = R(f) and G := R(g), we know that
T (r, F ) = nT (r, f) + O(1) and T (r,G) = nT (r, g) + O(1), which together
with (2.4) yields

(2.5) T (r, f) = T (r, g) +O(1).

Define h1 := 1/F and h2 := −A/G. So, h1 + h2 ≡ 1 − A. If A 6= 1,
applying the second main theorem to h1, plus (2.5), yields

T (r, h1) ≤ N(r, h1) +N

(

r,
1

h1

)

+N

(

r,
1

h1 − (1 −A)

)

+ S(r, f)

≤ N(r, F ) +N(r,G) +N

(

r,
1

F

)

+ S(r, f)

≤ N(r, f) +N

(

r,
1

f − α

)

+N

(

r,
1

f − β

)

+N

(

r,
1

f

)

+N(r, g)

+N

(

r,
1

g − α

)

+N

(

r,
1

g − β

)

+ S(r, f) ≤ 7T (r, f) + S(r, f),

which implies that nT (r, f) ≤ 7T (r, f) + S(r, f), a contradiction to our
assumption that n ≥ 8 if f and g are meromorphic.

If f and g are entire, then N(r, f) = O(1) and N(r, g) = O(1). A con-
tradiction follows immediately, since now nT (r, f) ≤ 5T (r, f) + S(r, f) but
n ≥ 6.

Lemma 3. Let ϕ, F and G be as in Lemma 2. If ϕ 6≡ 0, and if two
nonconstant meromorphic functions f and g satisfy Ek)(S, f) = Ek)(S, g)

for a positive integer k and E(∞, f) = E(∞, g), then

(2.6) N(r, f) ≤
k + 1

kn− 3k − 2
(T (r, f) + T (r, g)) + S(r, f) + S(r, g).
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Proof. Since Ek)(S, f) = Ek)(S, g) for a positive integer k, we have
Ek)(1, F ) = Ek)(1, G).

It is not difficult to show that

(2.7) N(r, 1/h′) ≤ N(r, h) +N(r, 1/h) + S(r, h),

where h is a nonconstant meromorphic function.

In fact, from the lemma of logarithmic derivative, we have

m(r, 1/h) ≤ m(r, 1/h′) +m(r, h′/h) ≤ m(r, 1/h′) + S(r, h).

Combining the above inequality with the first main theorem yields

N(r, 1/h′) = T (r, h′) −m(r, 1/h′) +O(1)

≤ m(r, h′) +N(r, h′) −m(r, 1/h) + S(r, h)

≤ m(r, h) +N(r, h) +N(r, h) +m(r, h′/h) −m(r, 1/h) + S(r, h)

≤ T (r, h) +N(r, h) −m(r, 1/h) + S(r, h)

≤ N(r, 1/h) +N(r, h) + S(r, h),

which implies (2.7).

Obviously, m(r, ϕ) = S(r, f) + S(r, g). Rewrite ϕ as

(2.8) ϕ =
F ′

F (F − 1)
−

G′

G(G− 1)
.

From (2.8) and the assumption Ek)(1, F ) = Ek)(1, G), it is easy to see that
all the poles of ϕ are simple, and derive from the zeros of F or G and the
sets E(k+1(1, F ) and E(k+1(1, G), respectively, that is,

(2.9) N(r, ϕ) = N(r, ϕ) +O(1)

≤ N

(

r,
1

F

)

+N (k+1

(

r,
1

F − 1

)

+N

(

r,
1

G

)

+N (k+1

(

r,
1

G− 1

)

+ S(r, f) + S(r, g)

≤ N

(

r,
1

f

)

+
n

∑

j=1

N (k+1

(

r,
1

f − ωj

)

+N

(

r,
1

g

)

+

n
∑

j=1

N (k+1

(

r,
1

g − ωj

)

+ S(r, f) + S(r, g)

≤ N

(

r,
1

f

)

+N (k

(

r,
1

f ′

)

+N

(

r,
1

g

)

+N (k

(

r,
1

g′

)

+ S(r, f) + S(r, g)

≤ N

(

r,
1

f

)

+
1

k
N

(

r,
1

f ′

)

+N

(

r,
1

g

)

+
1

k
N

(

r,
1

g′

)

+ S(r, f) + S(r, g),
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where ωj for j = 1, . . . , n are the pairwise distinct roots of P (ω) given by
(1.3).

Combining (2.7), (2.9) with the condition E(∞, f) = E(∞, g) yields

(2.10) N(r, ϕ) ≤
k + 1

k
(T (r, f) + T (r, g)) +

2

k
N(r, f) + S(r, f) + S(r, g).

Now, let z0 be a pole of f with multiplicity p, and hence a pole of g with
multiplicity q. Then z0 is a pole of F with multiplicity (n− 2)p and a pole
of G with multiplicity (n− 2)q. By (2.8), z0 is a zero of ϕ with multiplicity
at least n− 3. Since we assume E(∞, f) = E(∞, g), it follows that

(2.11) (n− 3)N(r, f) ≤ N(r, 1/ϕ) ≤ T (r, ϕ) +O(1).

Hence, (2.10), (2.11) and m(r, ϕ) = S(r, f) + S(r, g) yield (2.6).

Lemma 4 (see [16]). Define

(2.12) ψ :=

(

F ′′

F ′
−

2F ′

F − 1

)

−

(

G′′

G′
−

2G′

G− 1

)

,

where F and G are nonconstant meromorphic functions. If ψ ≡ 0, and

N(r, F ) +N(r,G) +N

(

r,
1

F

)

≤ λT (r, F ) + S(r, F )(2.13)

and

N(r, F ) +N

(

r,
1

G

)

+N

(

r,
1

F

)

≤ µT (r, F ) + S(r, F )(2.14)

for some real numbers λ, µ < 1, then either F ≡ G or FG ≡ 1.

Proof. For convenience, we outline a proof. Since we assume ψ ≡ 0,
integrating (2.12) yields

(2.15)
1

G− 1
=

A

F − 1
+B,

where A ( 6= 0) and B are two constants. Rewrite it as

(2.16) G =
(B + 1)F + (A−B − 1)

BF + (A−B)
.

We now distinguish the following three cases.

Case (i): B 6= 0, −1. If A−B − 1 6= 0, then

N

(

r,
1

F + A−B−1
B+1

)

= N

(

r,
1

G

)

+O(1)
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by (2.16). Applying the second main theorem to F yields

T (r, F ) ≤ N(r, F ) +N

(

r,
1

F

)

+N

(

r,
1

F + A−B−1
B+1

)

+ S(r, F )

≤ N(r, F ) +N

(

r,
1

G

)

+N

(

r,
1

F

)

≤ µT (r, F ) + S(r, F ),

a contradiction to (2.14) since µ < 1.

Hence, A − B − 1 = 0. From (2.16), we see that N(r, 1/(F + 1/B)) =
N(r,G) +O(1). Similarly, we derive a contradiction to (2.13).

Case (ii): B = 0. If A 6= 1, we see that N(r, 1/(F +A−1)) = N(r, 1/G)
+ O(1). Analogously, we derive a contradiction to (2.14). So, A = 1, and
thus F ≡ G.

Case (iii): B = −1. If A 6= −1, then N(r, 1/(F − A − 1)) = N(r,G) +
O(1). Analogously, a contradiction to (2.13) follows. Therefore, A = −1 and
FG ≡ 1.

3. Proof of Theorem 3. Define F := R(f) and G := R(g), where
R(ω) is given by (1.4). Since we assume E3)(S, f) = E3)(S, g), it follows
that E3)(1, F ) = E3)(1, G). Let ψ be defined by (2.12).

Firstly, we assume that ψ 6≡ 0. Obviously, E1)(1, F ) = E1)(1, G) anyway.
Let z0 be a simple zero of F −1, and hence a simple zero of G−1. A routine
calculation leads to ψ(z0) = 0. Therefore, noting that m(r, ψ) = S(r, f) +
S(r, g) and that all the poles of ψ are simple, we have

N1)

(

r,
1

F − 1

)

= N1)

(

r,
1

G− 1

)

(3.1)

≤ N

(

r,
1

ψ

)

≤ N(r, ψ) + S(r, f) + S(r, g).

From the expression of F , we know that the poles of F arise from the
poles of f and the zeros of (f − α)(f − β). Let z∞ be a simple pole of F .
A routine calculation leads to

(

F ′′

F ′
−

2F ′

F − 1

)∣

∣

∣

∣

z∞

= O(1).

Obviously, the simple zeros of (f−α)(f−β) are simple poles of F , while
the multiple zeros of (f − α)(f − β) are zeros of f ′.

Differentiating F and G yields

(3.2) F ′ =
a(n− 2)fn−1(f − b)2f ′

n(n− 1)(f − α)2(f − β)2
, G′ =

a(n− 2)gn−1(g − b)2g′

n(n− 1)(g − α)2(g − β)2
.
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Combining (2.12) and (3.2), together with the assumptions that ψ 6≡ 0,
E3)(1, F ) = E3)(1, G), E(∞, f) = E(∞, g) and similar discussions on G,
yields

N(r, ψ) ≤ N(r, f) +N (4

(

r,
1

F − 1

)

+N (4

(

r,
1

G− 1

)

(3.3)

+N

(

r,
1

f

)

+N

(

r,
1

f − b

)

+N

(

r,
1

g

)

+N

(

r,
1

g − b

)

+N0

(

r,
1

f ′

)

+N0

(

r,
1

g′

)

+ S(r, f) + S(r, g),

where N0(r, 1/f
′) denotes the counting function of the zeros of f ′ that are

not the zeros of f(f − b) and F − 1, and N0(r, 1/g
′) denotes the counting

function of the zeros of g′ that are not the zeros of g(g − b) and G− 1.

Applying the second main theorem to f and g jointly with n+ 3 values
0, b, ∞ and the zeros of P (ω) defined by (1.3) yields

(3.4) (n+ 1)(T (r, f) + T (r, g))

≤ N(r, f) +N

(

r,
1

F − 1

)

+N

(

r,
1

f

)

+N

(

r,
1

f − b

)

+N(r, g) +N

(

r,
1

G− 1

)

+N

(

r,
1

g

)

+N

(

r,
1

g − b

)

−N0

(

r,
1

f ′

)

−N0

(

r,
1

g′

)

+ S(r, f) + S(r, g).

From (3.1), (3.3), (3.4) and E(∞, f) = E(∞, g), we have

(3.5) (n+ 1)(T (r, f) + T (r, g))

≤ 3N(r, f) + 2N

(

r,
1

f

)

+ 2N

(

r,
1

f − b

)

+ 2N

(

r,
1

g

)

+ 2N

(

r,
1

g − b

)

+N

(

r,
1

F − 1

)

+N

(

r,
1

G− 1

)

+N (4

(

r,
1

F − 1

)

+N (4

(

r,
1

G− 1

)

−N1)

(

r,
1

F − 1

)

+ S(r, f) + S(r, g).

It is not difficult to see that

N

(

r,
1

F − 1

)

−
1

2
N1)

(

r,
1

F − 1

)

+N (4

(

r,
1

F − 1

)

≤
1

2
N

(

r,
1

F − 1

)

,

N

(

r,
1

G− 1

)

−
1

2
N1)

(

r,
1

G− 1

)

+N (4

(

r,
1

G− 1

)

≤
1

2
N

(

r,
1

G− 1

)

,
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which implies that

(3.6) N

(

r,
1

F − 1

)

+N

(

r,
1

G− 1

)

+N (4

(

r,
1

F − 1

)

+N (4

(

r,
1

G− 1

)

−N1)

(

r,
1

F − 1

)

≤
n

2
(T (r, f) + T (r, g)) +O(1).

Noting that

2N

(

r,
1

f

)

+ 2N

(

r,
1

f − b

)

≤ 4T (r, f) +O(1),

2N

(

r,
1

g

)

+ 2N

(

r,
1

g − b

)

≤ 4T (r, g) +O(1),

we deduce from (3.5) and (3.6) that

(3.7) (n− 6)(T (r, f) + T (r, g)) ≤ 6N(r, f) + S(r, f) + S(r, g).

We have ϕ 6≡ 0. Indeed, otherwise, from the conclusions of Lemma 2, we
have F ≡ G, and hence ψ ≡ 0. From (2.6) and (3.7), and noting k = 3, we
conclude that

(3.8)
3n2 − 29n+ 42

3n− 11
(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

a contradiction to the assumption n ≥ 8.
Therefore, ψ ≡ 0. By (2.15), we know that T (r, F ) = T (r,G)+O(1). So,

N(r, F ) +N(r,G) +N

(

r,
1

F

)

≤
7

n
T (r, F ) + S(r, F ),

N(r, F ) +N

(

r,
1

G

)

+N

(

r,
1

F

)

≤
5

n
T (r, F ) + S(r, F ).

By the conclusions of Lemma 4, we have either F ≡ G or FG ≡ 1.
We now distinguish the following two cases.

Case (i): FG ≡ 1. It is obvious that

(3.9)
fn

(f − α)(f − β)

gn

(g − α)(g − β)
≡
n2(n− 1)2

a2
.

By (3.9) and noting E(∞, f) = E(∞, g), we find that ∞ is a Picard value
of f , and zeros of (f − α)(f − β) are of multiplicities at least n. Therefore,
applying the second main theorem to f yields

T (r, f) ≤ N(r, f) +N

(

r,
1

f − α

)

+N

(

r,
1

f − β

)

+ S(r, f)

≤
1

n
N

(

r,
1

f − α

)

+
1

n
N

(

r,
1

f − β

)

+ S(r, f) ≤
2

n
T (r, f) + S(r, f),

a contradiction to the assumption n ≥ 8.
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Case (ii): F ≡ G. It is obvious that

n(n− 1)f2g2(fn−2 − gn−2) − 2bn(n− 2)fg(fn−1 − gn−1)

+ b2(n− 1)(n− 2)(fn − gn) ≡ 0.

Set h = f/g. Then substituting f = hg into the above equation yields

(3.10) n(n− 1)h2(hn−2 − 1)g2 − 2bn(n− 2)h(hn−1 − 1)g

+ b2(n− 1)(n− 2)(hn − 1) ≡ 0.

If h is not a constant, then from (3.10) we have

(3.11) {n(n−1)h(hn−2−1)g− bn(n−2)(hn−1−1)}2 ≡ −b2n(n−2)Q(h),

where Q(ω) is given by (2.1). Applying the conclusions of Lemma 1 to (3.11)
yields

(3.12) {n(n− 1)h(hn−2 − 1)g − bn(n− 2)(hn−1 − 1)}2

≡ −b2n(n− 2)(n− 1)2(h− 1)4(h− γ1)(h− γ2) · · · (h− γ2n−6),

where γj ∈ C\{0, 1} are pairwise distinct andQ(γj) = 0 for j = 1, . . . , 2n−6.

It is easily seen from (3.12) that zeros of h − γj (j = 1, . . . , 2n − 6) are
of multiplicities at least 2. Therefore, applying the second main theorem to
h yields

(2n− 8)T (r, h) ≤

2n−6
∑

j=1

N

(

r,
1

h− γj

)

+ S(r, h)

≤
1

2

2n−6
∑

j=1

N

(

r,
1

h− γj

)

+ S(r, h)

≤ (n− 3)T (r, h) + S(r, h),

a contradiction to the assumption n ≥ 8.

Hence, h is a constant. From (3.10), we see that hn−2−1 = 0, hn−1−1 = 0
and hn − 1 = 0 simultaneously, which means h = 1. So, f ≡ g.

4. Proof of Theorem 4. Similar to the proof Theorem 3, we have

(4.1) (n+ 1)(T (r, f) + T (r, g))

≤ 3N(r, f) + 2N

(

r,
1

f

)

+ 2N

(

r,
1

f − b

)

+ 2N

(

r,
1

g

)

+ 2N

(

r,
1

g − b

)

+N

(

r,
1

F − 1

)

+N

(

r,
1

G− 1

)

+N (3

(

r,
1

F − 1

)

+N (3

(

r,
1

G− 1

)

−N1)

(

r,
1

F − 1

)

+ S(r, f) + S(r, g).
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It is not difficult to see that

(4.2) N

(

r,
1

F − 1

)

−
1

2
N1)

(

r,
1

F − 1

)

+
1

2
N (3

(

r,
1

F − 1

)

≤
1

2
N

(

r,
1

F − 1

)

,

(4.3) N

(

r,
1

G− 1

)

−
1

2
N1)

(

r,
1

G− 1

)

+
1

2
N (3

(

r,
1

G− 1

)

≤
1

2
N

(

r,
1

G− 1

)

.

From (2.7), we have

N (3

(

r,
1

F − 1

)

≤

n
∑

j=1

N (3

(

r,
1

f − ωj

)

≤
1

2
N

(

r,
1

f ′

)

≤
1

2
N(r, f) +

1

2
N

(

r,
1

f

)

+ S(r, f)

≤
1

2
N(r, f) +

1

2
T (r, f) + S(r, f),

where ωj for j = 1, . . . , n are the pairwise distinct roots of P (ω) given by
(1.3).

Similarly, we have

(4.5) N (3

(

r,
1

G− 1

)

≤
1

2
N(r, g) +

1

2
T (r, g) + S(r, g).

Combining (4.2)–(4.5) with the assumptions E2)(1, F ) = E2)(1, G) and

E(∞, f) = E(∞, g) yields

N

(

r,
1

F − 1

)

+N

(

r,
1

G− 1

)

+N (3

(

r,
1

F − 1

)

+N (3

(

r,
1

G− 1

)

−N1)

(

r,
1

F − 1

)

≤
1

2
N(r, f) +

2n+ 1

4
(T (r, f) + T (r, g)) +O(1).

Substituting the above inequality into (4.1) yields

(4.6) (2n− 13)(T (r, f) + T (r, g)) ≤ 14N(r, f) + S(r, f) + S(r, g).

Applying the conclusions of Lemma 2 to (4.6) with k = 2 yields

2n2 − 21n+ 31

n− 4
(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

a contradiction to the assumption n ≥ 9.



Meromorphic functions that share two sets 29

5. Proof of Theorem 5. Analogously to the proof Theorem 3, we have

(5.1) (n+ 1)(T (r, f) + T (r, g))

≤ 3N(r, f) + 2N

(

r,
1

f

)

+ 2N

(

r,
1

f − b

)

+ 2N

(

r,
1

g

)

+ 2N

(

r,
1

g − b

)

+N

(

r,
1

F − 1

)

+N

(

r,
1

G− 1

)

+N (2

(

r,
1

F − 1

)

+N (2

(

r,
1

G− 1

)

−N1)

(

r,
1

F − 1

)

+ S(r, f) + S(r, g).

It is not difficult to see that

N

(

r,
1

F − 1

)

−
1

2
N1)

(

r,
1

F − 1

)

≤
1

2
N

(

r,
1

F − 1

)

,(5.2)

N

(

r,
1

G− 1

)

−
1

2
N1)

(

r,
1

G− 1

)

≤
1

2
N

(

r,
1

G− 1

)

.(5.3)

From (2.7) and (4.4), we have

N (2

(

r,
1

F − 1

)

≤
n

∑

j=1

N (2

(

r,
1

f − ωj

)

≤ N

(

r,
1

f ′

)

(5.4)

≤ N(r, f) + T (r, f) + S(r, f),

where ωj are as before for j = 1, . . . , n.
Analogously, we have

(5.5) N (2

(

r,
1

G− 1

)

≤ N(r, g) + T (r, g) + S(r, g).

Combining (5.2)–(5.5) with the assumptions E1)(1, F ) = E1)(1, G) and

E(∞, f) = E(∞, g) yields

N

(

r,
1

F − 1

)

+N

(

r,
1

G− 1

)

+N (2

(

r,
1

F − 1

)

+N (2

(

r,
1

G− 1

)

−N1)

(

r,
1

F − 1

)

≤ 2N(r, f) +
n+ 2

2
(T (r, f) + T (r, g)) +O(1).

Substituting the above inequality into (5.1) yields

(5.6) (n− 8)(T (r, f) + T (r, g)) ≤ 10N(r, f) + S(r, f) + S(r, g).

Applying the conclusions of Lemma 2 to (5.6) with k = 1 yields

n2 − 13n+ 20

n− 5
(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

a contradiction to the assumption n ≥ 12.
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6. Proof of Theorems 1 and 2. Analogously to the proof of Theo-
rem 4, we have

(6.1) (2n− 13)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

since the terms N(r, f) and N(r, g) are O(1). Clearly, this contradicts the
assumption that n ≥ 7 and terminates the proof of Theorem 1.

For the proof of Theorem 2, by the proofs of Theorems 1 and 5, we see
that

(6.2) (n− 8)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

which immediately yields a contradiction to n ≥ 9.
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