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Positive periodic solutions of

functional differential equations with infinite delay

by Changxiu Song (Guangzhou)

Abstract. The author applies a generalized Leggett–Williams fixed point theorem
to the study of the nonlinear functional differential equation

x
′(t) = −a(t, x(t))x(t) + f(t, xt).

Sufficient conditions are established for the existence of multiple positive periodic solu-
tions.

1. Introduction. In this paper, we are concerned with the functional
differential equation

(1.1) x′(t) = −a(t, x(t))x(t) + f(t, xt),

where

• a ∈ C(R × R, R) with a(t + ω, x) ≡ a(t, x);
• ∀t ∈ R, xt = xt(θ) = x(t + θ), −∞ < θ ≤ 0; we assume xt ∈ C,

where C = C((−∞, 0], R) is a Banach space with the norm ‖ϕ‖C =
maxθ∈(−∞,0] |ϕ(θ)|;

• f ∈ C(R × C+, R) with f(t + ω, ϕ) ≡ f(t, ϕ), ϕ ∈ C+, where C+ =
{ϕ ∈ C : ϕ(θ) ≥ 0, θ ∈ (−∞, 0]};

• ω > 0.

We make the following assumptions:

(H1) there exist ω-periodic functions a1, a2 ∈ C(R, R) satisfying

a1(t) ≤ a(t, x) ≤ a2(t),

ω\
0

a1(t) dt > 0;
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(H2) f(t, ϕ) maps bounded sets into bounded sets and is a nonnegative
continuous function defined on R × C+.

Our purpose is to prove that (1.1) has multiple positive periodic solu-
tions by using a generalized Leggett–Williams fixed point theorem. For the
biological senses of (1.1), we refer to [2, 3, 6].

From (1.1) we obtain

(1.2)
[

x(t) exp
(

t\
0

a(τ, x(τ)) dτ
)]′

= exp
(

t\
0

a(τ, x(τ)) dτ
)

f(t, xt).

After integration from t to t + ω, we obtain

(1.3) x(t) =

t+ω\
t

G(t, s)f(s, xs) ds,

where

(1.4) G(t, s) =
exp(

Ts
t
a(τ, x(τ)) dτ)

exp(
Tω
0 a(τ, x(τ)) dτ) − 1

.

Let

M1 = inf
0≤t≤s≤ω

exp
(

s\
t

a1(τ) dτ
)

, M2 = sup
0≤t≤s≤ω

exp
(

s\
t

a2(τ) dτ
)

,

k1 = exp
(

ω\
0

a1(τ) dτ
)

, k2 = exp
(

ω\
0

a2(τ) dτ
)

, δ =
M1(k1 − 1)

M2(k2 − 1)
;

we know that 0 < δ < 1. Furthermore, we have from (H1) and (1.4)

M1

k2 − 1
≤ G(t, s) ≤

M2

k1 − 1
.

Now, let X be the set of all real ω-periodic continuous functions, endowed
with the usual linear structure as well as the norm ‖x‖ = supt∈[0,ω] |x(t)|. It
is a Banach space with a cone

P =
{

x ∈ X : x(t) ≥ δ‖x‖, x(t) exp
(

t\
0

a1(τ) dτ
)

is nondecreasing on [0, ω]
}

.

Furthermore, for all x ∈ X, we have

‖x‖ = ‖xt‖C for each t ∈ [0, ω],

and for all x ∈ P , we deduce that x(t) exp(
Tt
0 a2(τ) dτ) is nondecreasing on

[0, ω].
Define T : P → X as

(1.5) Tx(t) =

t+ω\
t

G(t, s)f(s, xs) ds.

Similar to the proofs of Lemmas 2.2 and 2.4 in [4], one can easily show
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Lemma 1.1. T : P → P is well defined and completely continuous.

One can easily see that x is a positive solution of (1.1) if and only if x is
a fixed point of T on P .

For convenience, we present a generalized Leggett–Williams fixed point
theorem due to Avery and Henderson [1]. Let

P (δ, e) = {x ∈ P : δ(x) < e},

∂P (δ, e) = {x ∈ P : δ(x) = e},

P (δ, e) = {x ∈ P : δ(x) ≤ e}.

Lemma 1.2. Let X be a real Banach space, P a cone of X, γ and α
two nonnegative increasing continuous function on P , and θ a nonnegative

continuous function on P with θ(0) = 0 such that there are positive numbers

c and M satisfying

γ(x) ≤ θ(x) ≤ α(x), ‖x‖ ≤ Mγ(x) for x ∈ P (γ, c).

Moreover , assume that T : P (γ, c) → P is completely continuous and there

are positive numbers 0 < a < b < c such that

θ(λx) ≤ λθ(x) for all λ ∈ [0, 1] and x ∈ ∂P (θ, b),

and

(i) γ(Tx) > c for x ∈ ∂P (γ, c);
(ii) θ(Tx) < b for x ∈ ∂P (θ, b);
(iii) α(Tx) > a and P (α, a) 6= ∅ for x ∈ ∂P (α, a).

Then T has at least two fixed points x1, x2 ∈ P (γ, c) satisfying

a < α(x1), θ(x1) < b, b < θ(x2), γ(x2) < c.

The following lemma is similar to Lemma 1.2.

Lemma 1.3. The conclusion of Lemma 1.2 still holds if we replace

(i)–(iii) there by

(i) γ(Tx) < c for x ∈ ∂P (γ, c);
(ii) θ(Tx) > b for x ∈ ∂P (θ, b);
(iii) α(Tx) < a and P (α, a) 6= ∅ for x ∈ ∂P (α, a).

Lemma 1.4 ([5]). Let P be a cone of a real Banach space X, Ω a bounded

open subset of X, and 0 ∈ Ω. Moreover , assume that T : P ∩ Ω → P is

completely continuous and satisfies

Tx = λx for some x ∈ P ∩ ∂Ω ⇒ λ < 1.

Then

i(T, P ∩ Ω, P ) = 1.



78 C. X. Song

Remark 1.1. We know that Ω = P (α, a) in Lemma 1.3 is a bounded
open subset of X, and by (iii) of Lemma 1.3, we have

Tx < x for all x ∈ P ∩ ∂Ω = ∂P (α, a).

From Lemma 1.3, Lemma 1.4 and Remark 1.1, we have the following
result.

Lemma 1.5. Let the conditions of Lemma 1.3 hold. Furthermore, as-

sume θ ∈ P (α, a). Then T has at least three fixed points x1, x2, x3 ∈ P (γ, c)
satisfying

α(x1) < a, a < α(x2), ω(x2) < b, b < ω(x3), γ(x3) < c.

2. Main results. Fix 0 ≤ η < l ≤ ω and define nonnegative, increasing,
continuous functions γ, θ, and α on P by

γ(x) = min
η≤t≤l

e
Tt
0

a1(τ) dτx(t) = x(η)e
Tη
0

a1(τ) dτ ,

θ(x) = max
0≤t≤η

e
Tt
0

a1(τ) dτx(t) = x(η)e
Tη
0

a1(τ) dτ ,

α(x) = min
l≤t≤ω

e
Tt
0

a2(τ) dτx(t) = x(l)e
Tl
0

a2(τ) dτ .

We have
γ(x) = θ(x) ≤ α(x), x ∈ P,

and

γ(x) = x(η)e
Tη
0

a1(τ) dτ ≥ e
Tη
0

a1(τ) dτδ‖x‖ for each x ∈ P,(1.6)

α(x) = x(l)e
Tl
0

a2(τ) dτ ≥ e
Tl
0

a2(τ) dτδ‖x‖ for each x ∈ P.(1.7)

Then

(1.8) ‖x‖ ≤ e−
Tη
0

a1(τ) dτ 1

δ
γ(x) = e−

Tη
0

a1(τ) dτ 1

δ
θ(x) for each x ∈ P,

(1.9) ‖x‖ ≤ e−
Tl
0

a2(τ) dτ 1

δ
α(x) for each x ∈ P,

θ(λx) = λθ(x) for all λ ∈ [0, 1] and x ∈ P.

For the notational convenience, we set

σ1 =
M1(ω − η)

k2 − 1
e
Tη
0

a1(τ) dτ , ̺1 =
M2ω

k1 − 1
e
Tη
0

a1(τ) dτ ,

σ2 =
M1(ω − l)

k2 − 1
e
Tl
0

a2(τ) dτ , ̺2 =
M2ω

k1 − 1
e
Tl
0

a2(τ) dτ .

Theorem 2.1. Suppose that there are positive numbers a < b < c such

that

0 < a <
σ2

̺1
b <

σ2δ

̺1
c.
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Assume f(t, ϕ) satisfies the following conditions:

(A) f(t, ϕ) > c/σ1 for (t, ϕ) ∈ [η, ω] × K1,

(B) f(t, ϕ) < b/̺1 for (t, ϕ) ∈ [0, ω] × K2,

(C) f(t, ϕ) > a/σ2 for (t, ϕ) ∈ [l, ω] × K3,

where

K1 = {ϕ ∈ C+ : ce−
Tη
0

a1(τ) dτ ≤ ‖ϕ‖C ≤ (c/δ)e−
Tη
0

a1(τ) dτ},

K2 = {ϕ ∈ C+ : 0 ≤ ‖ϕ‖C ≤ (b/δ)e−
Tη
0

a1(τ) dτ},

K3 = {ϕ ∈ C+ : ae−
Tl
0

a2(τ) dτ ≤ ‖ϕ‖C ≤ (a/δ)e−
Tl
0

a2(τ) dτ}.

Then (1.1) has at least two positive periodic solutions x1 and x2 satisfying

a < α(x1), θ(x1) < b, b < θ(x2), γ(x2) < c.

Proof. By Lemma 1.1, T : P (γ, c) → P and T is completely continuous.
Now, we show that (i)–(iii) of Lemma 1.2 are satisfied.

First, we verify that x ∈ ∂P (γ, c) implies γ(Tx) > c. Since γ(x) =
x(η)e

Tη
0

a1(τ) dτ = c, one gets

x(t)e
Tt
0

a1(τ) dτ ≥ c for t ∈ [η, ω].

From (1.8), we have

ce−
Tη
0

a1(τ) dτ ≤ ‖xt‖C ≤ e−
Tη
0

a1(τ) dτ c

δ
for t ∈ [η, ω].

Then we get

γ(Tx) = (Tx)(η)e
Tη
0

a1(τ) dτ = e
Tη
0

a1(τ) dτ

η+ω\
η

G(η, s)f(s, xs) ds

≥ e
Tη
0

a1(τ) dτ

ω\
η

G(η, s)f(s, xs) ds

> e
Tη
0

a1(τ) dτ

ω\
η

M1

k2 − 1

c

σ1
ds = c.

Secondly, we prove that x ∈ ∂P (θ, b) implies θ(Tx) < b. Since θ(x) = b
implies x(η)e

Tη
0

a1(τ) dτ = b, we have

0 ≤ x(t)e
Tt
0

a1(τ) dτ ≤ b for t ∈ [0, η].

From (1.8), we have

0 ≤ ‖xt‖C ≤
b

δ
e−

Tη
0

a1(τ) dτ for t ∈ [0, ω] or t ∈ [η, η + ω].
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Then

θ(Tx) = (Tx)(η)e
Tη
0

a1(τ) dτ = e
Tη
0

a1(τ) dτ

η+ω\
η

G(η, s)f(s, xs) ds

≤ e
Tη
0

a1(τ) dτ

η+ω\
η

M2

k1 − 1

b

̺1
ds = b.

Finally, we show that

P (α, a) 6= ∅, α(Tx) > a for all x ∈ ∂P (α, a).

The nonemptiness is obvious. On the other hand, α(x) = x(l)e
Tl
0

a2(τ) dτ = a

implies a ≤ x(t)e
Tt
0

a2(τ) dτ for t ∈ [l, ω]. Recalling (1.9), we know

ae−
Tl
0

a2(τ) dτ ≤ ‖xt‖C ≤ e−
Tl
0

a2(τ) dτ a

δ
for t ∈ [l, ω].

Thus

α(Tx) = (Tx)(l)e
Tl
0

a2(τ) dτ = e
Tl
0

a2(τ) dτ

l+ω\
l

G(l, s)f(s, xs) ds

≥ e
Tl
0

a2(τ) dτ

ω\
l

G(l, s)f(s, xs) ds

> (ω − l)e
Tl
0

a2(τ) dτ M1

k2 − 1

a

σ2
= a.

Thus by Lemma 1.2, T has at least two different fixed points x1 and x2,
which are positive periodic solutions of (1.1). The proof is complete.

Similarly, by Lemma 1.5, we have the following result.

Theorem 2.2. Suppose that there are positive numbers 0 < a < b < c
such that

0 < a < δb < σ1δc/̺1.

Assume f(t, ϕ) satisfies the following conditions:

(A′) f(t, ϕ) < c/̺1 for (t, ϕ) ∈ [0, ω] × K ′
1,

(B′) f(t, ϕ) > b/σ1 for (t, ϕ) ∈ [η, ω] × K ′
2,

(C′) f(t, ϕ) < a/̺2 for (t, ϕ) ∈ [0, ω] × K ′
3,

where

K ′
1 = {ϕ ∈ C+ : 0 ≤ ‖ϕ‖C ≤ (c/δ)e−

Tη
0

a1(τ) dτ},

K ′
2 = {ϕ ∈ C+ : be−

Tη
0

a1(τ) dτ ≤ ‖ϕ‖C ≤ (b/δ)e−
Tη
0

a1(τ) dτ},

K ′
3 = {ϕ ∈ C+ : 0 ≤ ‖ϕ‖C ≤ (a/δ)e−

Tl
0

a2(τ) dτ}.

Then (1.1) has at least three positive solutions x1, x2 and x3 satisfying

a < α(x1), θ(x1) < b, b < θ(x2), γ(x2) < c.
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The proof is omitted since it is similar to that of Theorem 2.1.
Now, we give theorems which may be considered as corollaries of Theo-

rems 2.1 and 2.2.
Choose ε1, ε2, ε3 such that

ε1σ2e
−
Tl
0

a2(τ) dτ > 1, ε2σ1e
−
Tη
0

a1(τ) dτ > 1,

0 < ε3
max{̺1, ̺2}

δ
e−

Tη
0

a1(τ) dτ < 1.

Theorem 2.3. Let the following conditions be satisfied :

(D) lim
‖ϕ‖C→0

min
t∈[l,ω]

f(t, ϕ)

‖ϕ‖C

> ε1; lim
‖ϕ‖C→∞

min
t∈[η,ω]

f(t, ϕ)

‖ϕ‖C

> ε2;

(E) there exists a p1 > 0 such that for each ϕ with 0 ≤ ‖ϕ‖C ≤
(p1/δ)e−

Tη
0

a1(τ) dτ ,

f(t, ϕ) < p1/̺1 for all t ∈ [0, ω].

Then (1.1) has at least two positive periodic solutions.

Proof. First, choose b = p1; one gets

f(t, ϕ) <
p1

̺1
=

b

̺1
for t ∈ [0, ω], 0 ≤ ‖ϕ‖C ≤

b

δ
e−

Tη
0

a1(τ) dτ .

Secondly, since

lim
‖ϕ‖C→0

min
t∈[l,ω]

f(t, ϕ)

‖ϕ‖C

> ε1,

there is R1 > 0 sufficiently small such that

f(t, ϕ) > ε1‖ϕ‖C for t ∈ [l, ω], 0 ≤ ‖ϕ‖C ≤ R1.

Without loss of generality, suppose

R1 ≤
σ2

̺1δ
be−

Tl
0

a2(τ) dτ .

Choose a > 0 so that a < δR1e
Tl
0

a2(τ) dτ . For

ae−
Tl
0

a2(τ) dτ ≤ ‖ϕ‖C ≤ e−
Tl
0

a2(τ) dτ a

δ
,

we have ‖ϕ‖C ≤ R1 and a < (σ2/̺1)b. Thus

f(t, ϕ) > ε1‖ϕ‖C ≥ ε1ae−
Tl
0

a2(τ) dτ > a/σ2

for t ∈ [l, ω], ae−
Tl
0

a2(τ) dτ ≤ ‖ϕ‖C ≤ e−
Tl
0

a2(τ) dτ a

δ
.

Thirdly, since

lim
‖ϕ‖C→∞

min
t∈[η,ω]

f(t, ϕ)

‖ϕ‖C

> ε2,

there is R2 > 0 sufficiently large such that

f(t, ϕ) > ε2‖ϕ‖C for t ∈ [η, ω], ‖ϕ‖C ≥ R2.
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Without loss of generality, suppose R2 > (b/δ)e−
Tη
0

a1(τ) dτ . Choose c ≥
R2e

Tη
0

a1(τ) dτ . Then

f(t, ϕ) > ε2‖ϕ‖C ≥ ε2ce
−
Tη
0

a1(τ) dτ > c/σ1

for t ∈ [η, ω], ce−
Tη
0

a1(τ) dτ ≤ ‖ϕ‖C ≤ e−
Tη
0

a1(τ) dτ c

δ
.

We now get 0 < a < σ2b/̺1 < σ2δc/̺1, and then the conditions in Theorem
2.1 are all satisfied. By Theorem 2.1, (1.1) has at least two positive periodic
solutions. The proof is complete.

Theorem 2.4. Let the following conditions be satisfied :

(F) lim
‖ϕ‖C→0

max
t∈[0,ω]

f(t, ϕ)

‖ϕ‖C
< ε3;

(G) there exists a p2 > 0 such that for each ϕ with p2e
−
Tη
0

a1(τ) dτ ≤
‖ϕ‖C ≤ (p2/δ)e−

Tη
0

a1(τ) dτ ,

f(t, ϕ) > p2/σ1 for all t ∈ [η, ω].

Then (1.1) has at least three positive periodic solutions.

The following corollaries are obvious.

Corollary 2.1. Let the following conditions be satisfied :

(D′) lim
‖ϕ‖C→0

min
t∈[l,ω]

f(t, ϕ)

‖ϕ‖C

= ∞; lim
‖ϕ‖C→∞

min
t∈[η,ω]

f(t, ϕ)

‖ϕ‖C

= ∞;

(E) there exists a p1 > 0 such that for each ϕ with 0 ≤ ‖ϕ‖C ≤
(p1/δ)e−

Tη
0

a1(τ) dτ ,

f(t, ϕ) < p1/̺1 for all t ∈ [0, ω].

Then (1.1) has at least two positive periodic solutions.

Corollary 2.2. Let the following conditions be satisfied :

(F)′ lim
‖ϕ‖C→0

max
t∈[0,ω]

f(t, ϕ)

‖ϕ‖C
= 0;

(G) there exists a p2 > 0 such that for each ϕ with p2e
−
Tη
0

a1(τ) dτ ≤
‖ϕ‖C ≤ (p2/δ)e−

Tη
0

a1(τ) dτ ,

f(t, ϕ) > p2/σ1 for all t ∈ [η, ω].

Then (1.1) has at least three positive periodic solutions.
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