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On the mean-value property of superharmonic functions

by Robert Dalmasso (Grenoble)

Abstract. We complement a previous result concerning a converse of the mean-value
property for smooth superharmonic functions. The case of harmonic functions was treated
by Kuran and an improvement was given by Armitage and Goldstein.

Recall that a function u is harmonic (resp. superharmonic) on an open
set U ⊂ R

n (n ≥ 1) if u ∈ C2(U) and ∆u = 0 (resp. ∆u ≤ 0) on U .
Denote by H(U) the space of harmonic functions on U and by SH(U) the
subset of C2(U) consisting of superharmonic functions on U . Notice that
superharmonic functions are usually defined in a more general sense (see [5]
and Remark 3).

If A ⊂ R
n is Lebesgue measurable, L1(A) denotes the space of Lebesgue

integrable functions on A. If A has finite measure we denote by |A| the
Lebesgue measure of A.

In [3] we proved the following theorem.

Theorem 1. Let Ω ⊂ R
n (n ≥ 1) be a bounded open set. Suppose that

there exists x0 ∈ Ω such that

u(x0) ≥
1

|Ω|

\
Ω

u(x) dx

for every u ∈ SH(Ω) ∩ L1(Ω) \ H(Ω). Then Ω is a ball with center x0.

Theorem 1 extends a result obtained by Epstein and Schiffer [4] for har-
monic functions. The final step concerning harmonic functions was achieved
by Kuran [6] who proved the following theorem.

Theorem 2. Let Ω ⊂ R
n (n ≥ 2) be a connected open set of finite

measure. Suppose that there exists x0 ∈ Ω such that

u(x0) =
1

|Ω|

\
Ω

u(x) dx(1)

for every u ∈ H(Ω) ∩ L1(Ω). Then Ω is a ball with center x0.
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Remark 1. The proof of Theorem 2 given in [2] for n = 2, which extends
to n ≥ 2, shows that the connectedness assumption is superfluous.

Remark 2. The hypothesis of Theorem 2 can be weakened to require
only that (1) holds for all positive harmonic functions that are integrable
over Ω: see [1].

We first give a proof of the following result.

Theorem 3. Let Ω ⊂ R
n (n ≥ 2) be an open set of finite measure.

Suppose that there exists x0 ∈ Ω such that

u(x0) ≥
1

|Ω|

\
Ω

u(x) dx(2)

for every u ∈ SH(Ω) ∩ L1(Ω) \ H(Ω). Then Ω is a ball with center x0.

Proof. We shall show that Ω satisfies the assumptions of Theorem 2.
Let h ∈ H(Ω) ∩ L1(Ω). Let y ∈ R

n \ Ω and an ∈ (−n, 0). We define
v : R

n \ {y} → R by

v(x) = −‖x − y‖an , x ∈ R
n \ {y}.

We have ∆v < 0 in Ω. Moreover, v ∈ L1(Ω). Indeed, let B(y, r) denote the
open ball of fixed radius r > 0. Clearly v ∈ L1(B(y, r)). Since Ω has finite
measure and v is bounded on Ω \B(y, r), v ∈ L1(Ω \B(y, r)) and the result
follows. Now for m ∈ N

⋆ = {1, 2, 3, . . .} we set

um = h +
1

m
v.

Then um ∈ SH(Ω) ∩ L1(Ω) \ H(Ω) and we have

um(x0) ≥
1

|Ω|

\
Ω

um(x) dx,

that is,

h(x0) +
1

m
v(x0) ≥

1

|Ω|

\
Ω

h(x) dx +
1

m|Ω|

\
Ω

v(x) dx.

Letting m → +∞ we obtain

h(x0) ≥
1

|Ω|

\
Ω

h(x) dx.(3)

As (3) holds for every h ∈ H(Ω) ∩ L1(Ω), replacing h by −h in (3) we
conclude that

h(x0) =
1

|Ω|

\
Ω

h(x) dx

for all h ∈ H(Ω)∩L1(Ω). Then Theorem 2 implies that Ω is a ball centered
at x0.
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Now we have the following theorem.

Theorem 4. Let Ω ⊂ R
n (n ≥ 2) be an open set of finite measure.

Suppose that , for all y ∈ ∂Ω, there exists a sequence (yj) in R
n \ Ω such

that yj → y as j → +∞. If (2) holds for every positive u ∈ SH(Ω)∩L1(Ω)\
H(Ω), then Ω is a ball with center x0.

We shall need three lemmas.

Lemma 1. Let Ω ⊂ R
n (n ≥ 1) be an open set of finite measure. Suppose

that (2) holds for all positive u ∈ SH(Ω) ∩ L1(Ω) \ H(Ω). Then (2) holds

for all u ∈ SH(Ω) ∩ L1(Ω) \ H(Ω) that are bounded from below.

Proof. Let u ∈ SH(Ω) ∩ L1(Ω) \ H(Ω) be bounded from below. There
exists c ∈ R such that u > c on Ω. Then u−c ∈ SH(Ω)∩L1(Ω)\H(Ω) since
Ω has finite measure, and u − c is positive on Ω. By hypothesis, u − c has
the mean value property (2). The constant function c has the mean value
property (1). Hence u satisfies (2).

Lemma 2. Let Ω ⊂ R
n (n ≥ 1) be an open set of finite measure and let

α ∈ (−n, 0).

(i) Suppose that there exists a sequence (yj) in R
n \ Ω such that yj →

y ∈ ∂Ω as j → +∞.

(ia)

lim
j→+∞

\
Ω

‖x − yj‖
α dx =

\
Ω

‖x − y‖α dx.

(ib) If (bj) is a sequence in R
n such that bj → b as j → +∞, then

lim
j→+∞

\
Ω

bj .(x − yj)‖x − yj‖
α−1 dx =

\
Ω

b.(x − y)‖x − y‖α−1 dx.

(ii) Suppose that there exists a sequence (zj) in R
n \ Ω such that

‖zj‖ → +∞ as j → +∞. Then

lim
j→+∞

\
Ω

‖x − zj‖
α dx = 0.

Proof. (i) Since the arguments are similar, we only prove (ia). Since Ω
has finite measure the function x 7→ ‖x − yj‖

α is in L1(Ω) for every j ∈ N

and we have seen in the proof of Theorem 3 that x 7→ ‖x − y‖α is also in
L1(Ω). Let r > 0 be fixed. There exists j(r) ∈ N such that yj ∈ B(y, r/3)
for all j ≥ j(r). For j ≥ j(r) we can write\
Ω∩B(y,r)

‖x−yj‖
α dx =

\
Ω∩B(yj ,r/3)

‖x−yj‖
α dx+

\
Ω∩B(y,r)\B(yj ,r/3)

‖x−yj‖
α dx.
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We have\
Ω∩B(yj ,r/3)

‖x − yj‖
α dx ≤ Cnrn+α,

\
Ω∩B(y,r)

‖x − y‖α dx ≤ Cnrn+α

and \
Ω∩B(y,r)\B(yj ,r/3)

‖x − yj‖
α dx ≤ (r/3)α|Ω ∩ B(y, r) \ B(yj , r/3)| ≤ Cnrn+α,

where Cn > 0 is independent of j and r. On the other hand, the Lebesgue
dominated convergence theorem implies that

lim
j→+∞

\
Ω\B(y,r)

‖x − yj‖
α dx =

\
Ω\B(y,r)

‖x − y‖α dx.(4)

Now let fj(x) = ‖x − yj‖
α − ‖x − y‖α, x ∈ Ω. For j ≥ j(r) we write

∣

∣

∣

\
Ω

fj(x) dx
∣

∣

∣
≤

∣

∣

∣

\
Ω∩B(y,r)

fj(x) dx
∣

∣

∣
+

∣

∣

∣

\
Ω\B(y,r)

fj(x) dx
∣

∣

∣

≤ 3Cnrn+α +
∣

∣

∣

\
Ω\B(y,r)

fj(x) dx
∣

∣

∣
.

Let ε > 0. Take r > 0 such that 3Cnrn+α ≤ ε/2. By (4) there exists j0 ≥ j(r)
such that

∣

∣

∣

\
Ω\B(y,r)

fj(x) dx
∣

∣

∣
≤ ε/2 ∀j ≥ j0,

and (ia) follows.
(ii) For k ∈ N

⋆ define Ωk = Ω \ B(0, k). Let k ∈ N
⋆ and r > 0 be fixed.

We write\
Ω

‖x − zj‖
α dx =

\
Ω∩B(0,k)

‖x − zj‖
α dx +

\
Ωk

‖x − zj‖
α dx.

We have \
Ωk\B(zj ,r)

‖x − zj‖
α dx ≤ rα|Ωk|

and \
Ωk∩B(zj ,r)

‖x − zj‖
α dx ≤ Cnrn+α,

where Cn > 0 is independent of j, k and r. Now let ε > 0. Take r > 0 such
that Cnrn+α ≤ ε/3. Since |Ωk| → 0 as k → +∞, there exists k ∈ N such
that rα|Ωk| ≤ ε/3. By the Lebesgue dominated convergence theorem there
exists j0 ∈ N such that\

Ω∩B(0,k)

‖x − zj‖
α dx ≤ ε/3 ∀j ≥ j0,

and (ii) follows.
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Lemma 3. In the setting of Theorem 4 there exists a sequence (zj) in

R
n \ Ω such that ‖zj‖ → +∞ as j → +∞.

Proof. Suppose first that ∂Ω is bounded. Since Ω has finite measure,
we deduce that R

n \ Ω is unbounded and the lemma follows. Now, if ∂Ω
is unbounded, there exists a sequence (yj) in ∂Ω such that ‖yj‖ → +∞.
By hypothesis, for each j ∈ N there exists zj ∈ (Rn \ Ω) ∩ B(yj , 1). Clearly
‖zj‖ → +∞.

Proof of Theorem 4. Since Ω has finite measure there exists a largest
open ball B centered at x0 of radius r which lies in Ω. We will show that
Ω = B. There exists y ∈ ∂Ω∩∂B such that ‖y−x0‖ = r. Let (yj) in R

n \Ω
be such that yj → y as j → +∞ and let (zj) be as in Lemma 3. Define

h(x) = rn−2(‖x − x0‖
2 − r2)‖x − y‖−n, x ∈ R

n \ {y},

hj(x) = ‖yj − x0‖
n−2(‖x − x0‖

2 − ‖yj − x0‖
2)‖x − yj‖

−n, x ∈ R
n \ {yj},

and

vj(x) = −‖x − zj‖
an , x ∈ R

n \ {zj},

where an ∈ (−n, 0). Clearly h ∈ H(Rn\{y}), hj ∈ H(Rn\{yj}) and ∆vj < 0
in Ω. Moreover h, hj and vj are in L1(Ω), h(x0) = −1 and h > 0 on R

n \B.
Let uj = 1 + hj + vj . Then uj ∈ SH(Ω)∩L1(Ω) \H(Ω) and uj is bounded
from below on Ω for every j. Therefore Lemma 1 implies that

uj(x0) ≥
1

|Ω|

\
Ω

uj(x) dx ∀j ∈ N.(5)

By Lemma 2 we can let j → +∞ in (5) to obtain

1 + h(x0) ≥
1

|Ω|

\
Ω

(1 + h(x)) dx.(6)

Since 1 + h ∈ H(Ω) ∩ L1(Ω) we have

0 = 1 + h(x0) =
\
B

(1 + h(x)) dx.(7)

Now with the help of (6) and (7) we can write

0 ≥
1

|Ω|

\
Ω

(1 + h(x)) dx

=
1

|Ω|

\
Ω\B

(1 + h(x)) dx +
1

|Ω|

\
B

(1 + h(x)) dx

=
1

|Ω|

\
Ω\B

(1 + h(x)) dx ≥
|Ω \ B|

|Ω|
≥

|Ω \ B|

|Ω|
.



90 R. Dalmasso

This implies that |Ω \ B| = 0. Then the open set Ω \ B must be empty,
hence Ω ⊂ B. Since Ω is open and B ⊂ Ω ⊂ B, we deduce that Ω = B.

Remark 3. The assumption in Theorem 2 imposes a certain geometric
restriction on the open set Ω. We give an example that shows that this
hypothesis cannot be omitted completely. Let Ω = B \{x} where B denotes
an open ball centered at the origin in R

n (n ≥ 2) and x ∈ B \{0}. We claim
that if u ∈ L1(Ω) is a positive superharmonic function on Ω, then (2) holds.
Indeed such a function u has a (unique) superharmonic extension v on B
(see [5, Theorem 7.7, p. 130]). Then we have

u(0) = v(0) ≥
1

|B|

\
B

v(y) dy =
1

|Ω|

\
Ω

u(y) dy.

In fact, using Theorem 7.7 in [5], we can take Ω = B \ Z where Z is a
relatively closed polar subset of B such that 0 /∈ Z. For instance in R

3, Z
could be a line segment (see [5, Example 4, p. 127]).
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