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On the mean-value property of superharmonic functions

by ROBERT DALMASSO (Grenoble)

Abstract. We complement a previous result concerning a converse of the mean-value
property for smooth superharmonic functions. The case of harmonic functions was treated
by Kuran and an improvement was given by Armitage and Goldstein.

Recall that a function u is harmonic (resp. superharmonic) on an open
set U C R* (n > 1) if u € C2(U) and Au = 0 (resp. Au < 0) on U.
Denote by H(U) the space of harmonic functions on U and by SH(U) the
subset of C%(U) consisting of superharmonic functions on U. Notice that
superharmonic functions are usually defined in a more general sense (see [5]
and Remark 3).

If A C R" is Lebesgue measurable, L'(A) denotes the space of Lebesgue
integrable functions on A. If A has finite measure we denote by |A| the
Lebesgue measure of A.

In [3] we proved the following theorem.

THEOREM 1. Let 2 C R™ (n > 1) be a bounded open set. Suppose that
there exists xy € {2 such that

)2 g7 Jute)
for every u € SH(2) N LY (2) \ H(£2). Then £ is a ball with center .

Theorem 1 extends a result obtained by Epstein and Schiffer [4] for har-
monic functions. The final step concerning harmonic functions was achieved
by Kuran [6] who proved the following theorem.

THEOREM 2. Let 2 C R"™ (n > 2) be a connected open set of finite
measure. Suppose that there exists xo € {2 such that

1
(1) u(zo) = — | u(x) dx
o)
for every uw € H($2) N LY(82). Then §2 is a ball with center .
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REMARK 1. The proof of Theorem 2 given in [2] for n = 2, which extends
to n > 2, shows that the connectedness assumption is superfluous.

REMARK 2. The hypothesis of Theorem 2 can be weakened to require
only that (1) holds for all positive harmonic functions that are integrable
over {2: see [1].

We first give a proof of the following result.
THEOREM 3. Let 2 C R™ (n > 2) be an open set of finite measure.
Suppose that there exists g € {2 such that

2) u(wo) > —

> Tl S u(zx) dx

n
for every v € SH(2)N LY (2)\ H(2). Then (2 is a ball with center zg.

Proof. We shall show that (2 satisfies the assumptions of Theorem 2.
Let h € H(Q2)N LY ). Let y € R*\ 2 and a, € (—n,0). We define
v:R"\ {y} = R by

v(z) = —[lz—y[*, xeR"\{y}.
We have Av < 0 in £2. Moreover, v € L'(£2). Indeed, let B(y,r) denote the
open ball of fixed radius 7 > 0. Clearly v € L'(B(y,)). Since 2 has finite
measure and v is bounded on 2\ B(y,r), v € L'(£2\ B(y,r)) and the result
follows. Now for m € N* = {1,2,3,...} we set

1
Um =h+ —w.
m
Then u,, € SH(2) N L' (2)\ H(£2) and we have
1
Um(z0) > ﬁ S um () dz,
N
that is,
1 1 1
h(zo) + — v(axg) > al | h(z)da + 7 | v(@)do
2 9]

(3) h(zo) > 70 | h(x) da.
(0]

As (3) holds for every h € H(S2)
conclude that

LY(02), replacing h by —h in (3) we

1

h(xo) = ]

S h(zx) dx
Q

for all h € H(£2) N L*(£2). Then Theorem 2 implies that (2 is a ball centered
at xg.
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Now we have the following theorem.

THEOREM 4. Let 2 C R™ (n > 2) be an open set of finite measure.
Suppose that, for all y € 812, there exists a sequence (y;) in R™\ £ such
that y; — y as j — +oo. If (2) holds for every positive u € SH(2)NL(£2)\
H($2), then £2 is a ball with center xy.

We shall need three lemmas.

LEMMA 1. Let 2 C R™ (n > 1) be an open set of finite measure. Suppose
that (2) holds for all positive v € SH(£2) N L' (2)\ H(£2). Then (2) holds
for all w € SH(2)N LY (2)\ H(£2) that are bounded from below.

Proof. Let u € SH(£2) N L'(£2)\ H(£2) be bounded from below. There
exists ¢ € R such that v > con £2. Then u—c € SH(2)NL'(£2)\ H({2) since
{2 has finite measure, and u — c¢ is positive on (2. By hypothesis, © — ¢ has
the mean value property (2). The constant function ¢ has the mean value
property (1). Hence u satisfies (2).

LEMMA 2. Let 2 CR™ (n > 1) be an open set of finite measure and let
a € (—n,0).

(i) Suppose that there exists a sequence (y;) in R™\ 2 such that y; —
y €012 as j — 4.

(ia)
lim V llz = yjll*de = | |2 — y|* da.
! 19 2
(ib) If (b;) is a sequence in R™ such that bj — b as j — 400, then

jHim Vbj-(x = yj)llz = y|* "V dz = { b.(x = )z -yl da.
2

(ii) Suppose that there ezists a sequence (zj) in R™ \ 2 such that
|zj|| = 400 as j — 4o00. Then

lim S |z — z;||“ dz = 0.
j—too )

Proof. (i) Since the arguments are similar, we only prove (ia). Since (2
has finite measure the function x — ||z — y;||* is in L!(£2) for every j € N
and we have seen in the proof of Theorem 3 that x — |z — y[|* is also in
LY(£2). Let r > 0 be fixed. There exists j(r) € N such that y; € B(y,r/3)
for all j > j(r). For j > j(r) we can write

Vollz—ylodz= | [lo—yl|®da+t | | —y;[|* da.
2NB(y,r) 2NB(y;,r/3) 20B(y,r)\B(y;,r/3)
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We have
| [l —y;]|* dz < Cpr*e, | e —yl¥ds < Cprt
N2NB(y;,r/3) 2NB(y,r)
and
| |z — ;]| dz < (r/3)*[20 B(y,r) \ By, /3)| < Cpr™*?,

QNB(y,r)\B(y;,r/3)
where C),, > 0 is independent of j and r. On the other hand, the Lebesgue
dominated convergence theorem implies that

@ B T e N
A\B(yr) A\B(y,r)

Now let fj(z) = |lz — y;[|* — [[x — y||*, @ € 2. For j > j(r) we write
‘ S fi(x) daj‘ < ‘ S fi(x) d:v‘ + ‘ S fi(x) d:z:‘
(9] 2NB(y,r) 2\ B(y,r)
< 3C, "t + ‘ S fi(x) dm‘.
2\B(y,r)

Let € > 0. Take r > 0 such that 3C,,r" ™ < /2. By (4) there exists jo > j(r)
such that
T B@ds|<e2 iz
A\B(y,r)
and (ia) follows.
(ii) For k € N* define 2, = 2\ B(0,k). Let kK € N* and r > 0 be fixed.
We write

Vie—zll*de = | lz—z|*de+ | |z — 2| de.
n 2NB(0,k) 2
We have
Vool =2 de < |
2k\B(25,r)
and
S |z — 2;]|* dz < Cpr™ ™,
2,NB(z;,r)

where C,, > 0 is independent of j, k and r. Now let € > 0. Take r > 0 such
that C,r"™® < /3. Since |£2x] — 0 as k — +o00, there exists k € N such
that 7|2 < /3. By the Lebesgue dominated convergence theorem there
exists jo € N such that

| le—zl*de<e/3 Vj>jo,

2nB(0,k)
and (ii) follows.
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LEMMA 3. In the setting of Theorem 4 there exists a sequence (z;) in
R™ \ §2 such that ||z;|| — 400 as j — +o0.

Proof. Suppose first that 02 is bounded. Since {2 has finite measure,
we deduce that R™ \ 2 is unbounded and the lemma follows. Now, if 02
is unbounded, there exists a sequence (y;) in 02 such that [|y;[| — +oo.
By hypothesis, for each j € N there exists z; € (R \ §2) N B(y;, 1). Clearly
15l = +o00-.

Proof of Theorem 4. Since {2 has finite measure there exists a largest
open ball B centered at g of radius r which lies in {2. We will show that
(2 = B. There exists y € 02N 0B such that ||y —zo|| = 7. Let (y;) in R™\ {2
be such that y; — y as j — 400 and let (2;) be as in Lemma 3. Define

h(z) =r"2(|z — @l = r?)[la —yl™", 2 €R"\ {y},
hj(z) = lly; — 2ol" (Il — 2ol* — lly; — zo|*)llx — 5l ™", = € R"\ {y;},
and
vj(z) = —llz — z[|*, = e R"\{z},

where a,, € (—n,0). Clearly h € H(R"\{y}), h; € H(R"\{y;}) and Av; < 0
in £2. Moreover h, h; and v; are in L*(§2), h(z¢) = —1 and h > 0 on R"\ B.
Let u; = 1+ h; +v;. Then u; € SH(2)N LY(2)\ H(£) and u; is bounded
from below on {2 for every j. Therefore Lemma 1 implies that

(5) uj(zo) > \Q\ uj(@)dz  VjeN
By Lemma 2 we can let j — 400 in ( ) to obtain

(6) 1+ h(zo) > §1+h ) dex.
Q

Since 1+ h € H(£2) N L*(£2) we have

(7) 0=1+h(xo) = | (14 h(x))dz.
B

Now with the help of (6) and (7) we can write

1
O]EA + h(z)) da

1
_ mQ§B(1 + h(x))dr + — ’Q’ S(l + h(z))dx
1 e > [2\Bl 12\ B]
=1 ) rne)dez S > 2o

2\B
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This implies that |2\ B| = 0. Then the open set {2 \ B must be empty,
hence {2 C B. Since {2 is open and B C 2 C B, we deduce that 2 = B.

REMARK 3. The assumption in Theorem 2 imposes a certain geometric
restriction on the open set 2. We give an example that shows that this
hypothesis cannot be omitted completely. Let {2 = B\ {z} where B denotes
an open ball centered at the origin in R™ (n > 2) and € B\ {0}. We claim
that if u € L1(£2) is a positive superharmonic function on (2, then (2) holds.
Indeed such a function v has a (unique) superharmonic extension v on B
(see [5, Theorem 7.7, p. 130]). Then we have

1 1
w(0) =v(0) > — \v(y)dy = — \ u(y) dy.
(0) = (0) = |B‘§9 (y) dy |9|§2 (y) dy
In fact, using Theorem 7.7 in [5], we can take 2 = B\ Z where Z is a
relatively closed polar subset of B such that 0 ¢ Z. For instance in R3, Z
could be a line segment (see [5, Example 4, p. 127]).
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