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Convergence in capacity

by Pham Hoang Hiep (Hanoi)

Abstract. We prove that if E(Ω) ∋ uj → u ∈ E(Ω) in Cn-capacity then
lim infj→∞(ddcuj)

n ≥ 1{u>−∞}(dd
cu)n. This result is used to consider the convergence

in capacity on bounded hyperconvex domains and compact Kähler manifolds.

1. Introduction. Let Ω be an open set in C
n. We denote by PSH(Ω)

the set of plurisubharmonic (psh) functions on Ω. In [BT1, 2] the authors
established the comparison principle and used it to study the Dirichlet prob-
lem in PSH ∩ L∞loc(Ω). Recently, Cegrell introduced a general class E(Ω) of
psh functions on which the complex Monge–Ampère operator can be de-
fined. He obtained many important results of pluripotential theory in E(Ω),
for example, on the comparison principle and solvability of the Dirichlet
problem (see [Ce1,2]). In [Bł1, 2] Błocki proved that the class E(Ω) has
local property. In [ÅCCH] the authors studied Monge–Ampère measure of
functions in E(Ω) on pluripolar sets and solved a general Dirichlet problem.

The aim of the present paper is to continue the study of convergence
in capacity. In Section 2 we introduce some definitions and known results.
In Section 3, we first prove that if E(Ω) ∋ uj → u ∈ E(Ω) in Cn-capacity
then lim infj→∞(dd

cuj)
n ≥ 1{u>−∞}(dd

cu)n. This result is then used to
investigate when (ddcuj)

n → (ddcu)n weakly as j →∞.
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2. Preliminaries. First we recall some elements of pluripotential theory
that will be used throughout the paper. All this can be found in [BT1, 2],
[Ce1, 2], [GZ], [H1–3], [Kl], [Ko], [Xi1, 2].

2.1. Unless otherwise specified, Ω will be a bounded hyperconvex do-
main in C

n, meaning that there exists a negative exhaustive psh function
for Ω.

2.2. The Cn-capacity in the sense of Bedford and Taylor on Ω is the set
function given by

Cn(E) = Cn(E,Ω) = sup
{ \
E

(ddcu)n : u ∈ PSH(Ω), −1 ≤ u ≤ 0
}

for every Borel set E in Ω. It is known [BT2] that

Cn(E) =
\
Ω

(ddch∗E,Ω)
n,

where h∗E,Ω is the relative extremal psh function for E (relative to Ω) defined
as the smallest upper semicontinuous majorant of hE,Ω, where

hE,Ω(z) = sup{u(z) : u ∈ PSH(Ω), −1 ≤ u ≤ 0, u ≤ −1 on E}.

The following definition was introduced in [Xi1]: A sequence uj ∈ PSH
−(Ω)

converges to u in Cn-capacity if

Cn(K ∩ {|uj − u| > δ})→ 0 as j →∞, ∀K ⊂⊂ Ω, ∀δ > 0.

2.3. The following classes of psh functions were introduced by Cegrell in
[Ce1, 2]:

E0 = E0(Ω) =
{
ϕ ∈ PSH−(Ω) ∩ L∞(Ω) : lim

z→∂Ω
ϕ(z) = 0,

\
Ω

(ddcϕ)n<∞
}
,

F = F(Ω) =
{
ϕ ∈ PSH−(Ω) : ∃E0(Ω) ∋ ϕj ց ϕ, sup

j≥1

\
Ω

(ddcϕj)
n <∞

}
,

E = E(Ω) = {ϕ ∈ PSH−(Ω) : ∃ϕK ∈ F(Ω), ϕK = ϕ on K, ∀K ⊂⊂ Ω},

Ea = Ea(Ω) = {ϕ ∈ E(Ω) : (ddcϕ)n vanishes on all pluripolar sets}.

2.4. Let u, v ∈ E(Ω). We say that (u, v) ∈ A(Ω) if for every z ∈ Ω there
is a neighborhood G of z in Ω and ψG ∈ E

a(G) such that u+ψG ≤ v on G.

Next we introduce some results needed for our work:

2.5. Proposition. Let E(Ω) ∋ v ≤ uj ∈ E(Ω) for j ≥ 1, and ϕ ∈
PSH∩L∞loc(Ω). Assume that uj converges to some u ∈ E(Ω) in Cn-capacity.
Then ϕ(ddcuj)

n → ϕ(ddcu)n weakly as j →∞.

Proof. We can assume that ϕ ∈ PSH−(Ω). Let D ⊂⊂ Ω. By the remark
following Definition 4.6 in [Ce2] we can find w ∈ F(Ω) such that w|D = v|D
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and w ≥ v on Ω. We set

ũj = max(uj , w), ũ = max(u,w),

ϕ̃ = sup{ψ ∈ PSH−(Ω) : ψ ≤ ϕ on D} ∈ E0(Ω).

We have F(Ω) ∋ ũj → ũ ∈ F(Ω) in Cn-capacity and ũj |D = uj |D, ũ|D =
u|D, ϕ̃|D = ϕ|D. We only have to prove that ϕ̃(dd

cũj)
n → ϕ̃(ddcũ)n weakly

as j → ∞. We can assume that ϕ̃(ddcũj)
n → µ weakly as j → ∞. Let

C−(Ω) ∋ ϕ̃k ց ϕ̃ and f ∈ C∞0 (Ω) with f ≥ 0. By Theorem 1.1 in [Ce3] we
have (ddcũj)

n → (ddcũ)n weakly as j →∞. So, we obtain\
Ω

f dµ = lim
j→∞

\
Ω

fϕ̃(ddcũj)
n ≤ lim sup

k→∞

(
lim
j→∞

\
Ω

fϕ̃k(dd
cũj)

n
)

= lim sup
k→∞

\
Ω

fϕ̃k(dd
cũ)n =

\
Ω

fϕ̃(ddcũ)n.

Therefore µ ≤ ϕ̃(ddcũ)n. On the other hand, by the proof of Theorem 1.1
in [Ce3] we have \

Ω

ϕ̃(ddcũ)n = lim
j→∞

\
Ω

ϕ̃(ddcũj)
n ≤ µ(Ω).

Hence µ = ϕ̃(ddcũ)n.

2.6. Proposition.

(i) If u, v ∈ E(Ω), u ≥ v then

1{u=−∞}(dd
cu)n ≤ 1{v=−∞}(dd

cv)n.

(ii) If u ∈ E(Ω) and v ∈ Ea(Ω) then

1{u+v=−∞}(dd
c(u+ v))n = 1{u=−∞}(dd

cu)n.

where 1E is the characteristic function of the set E.

Proof. (i) See Lemma 4.3 in [ÅCCH].
(ii) See Lemma 4.8 in [ÅCCH].

2.7. Proposition. Let µ, ν be non-negative measures on Ω. Assume

that µ(Ω) + ν(Ω) < ∞ and
T
Ω
−ϕdµ ≥

T
Ω
−ϕdν for all ϕ ∈ E0(Ω). Then

µ(K) ≥ ν(K) for all complete pluripolar subsets K in Ω.

Proof. By Theorem 2.1 in [Ce2] we have\
Ω

−ϕdµ ≥
\
Ω

−ϕdν ∀ϕ ∈ PSH− ∩ L∞(Ω).

Let ψ ∈ PSH−(Ω) be such that K = {ψ = −∞}. We have\
Ω

−max(εψ,−1) dµ ≥
\
Ω

−max(εψ,−1) dν

for all ε > 0. Letting ε→ 0 we get µ(K) ≥ ν(K).
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2.8. Proposition. Let K be a compact subset of E1 × · · · × En with
E1, . . . , En polar in C. Then there exists a function ϕ ∈ PSH(Cn) such that
K = {ϕ = −∞}.

Proof. We can assume that E1, . . . , En are complete polar in C. Let
a = (a1, . . . , an) 6∈ K. Since E1 \ {a1}, . . . , En \ {an} are complete polar in
C we can find u1, . . . , un ∈ PSH(C) such that Ej \ {aj} = {uj = −∞} for
j = 1, . . . , n. Set

u(z1, . . . , zn) = u1(z1) + · · ·+ un(zn) ∈ PSH(C
n).

Then u(a) > −∞ and K ⊂ E1 × · · · ×En \ {(a1, . . . , an)} ⊂ {u = −∞}. By
[Ze], K is complete pluripolar in C

n.

We set

K(Ω) = {u ∈ E(Ω) : 1{u=−∞}(dd
cu)n(Ω \E1 × · · · × En) = 0

for some E1, . . . , En polar in C}.

2.9. Proposition.

(i) If u ∈ PSH−(Ω), v ∈ K(Ω) and u ≥ v then u ∈ K(Ω).

(ii) If u, v ∈ K(Ω) then u+ v ∈ K(Ω).

(iii) If u1 ∈ K(Ω1) and u2 ∈ K(Ω2) then max(u1, u2) ∈ K(Ω1 ×Ω2).

Proof. (i) Follows directly from Proposition 2.6.

(ii) & (iii) Follow from [ÅCCH].

3. Convergence in capacity. We start with the first main result:

3.1. Theorem. Let E(Ω) ∋ uj → u ∈ E(Ω) in Cn-capacity. Then

lim inf
j→∞

(ddcuj)
n ≥ 1{u>−∞}(dd

cu)n.

Proof. Let f ∈ C∞0 (Ω) and Ω
′ ⊂⊂ Ω with f ≥ 0 and suppf ⊂⊂ Ω′. We

only have to prove that

lim inf
j→∞

[ \
Ω

f(ddcuj)
n −

\
Ω

1{u>−∞}f(dd
cu)n
]
≥ 0.

For each s > 0 we have\
Ω

f(ddcuj)
n −

\
Ω

1{u>−∞}f(dd
cu)n = Ajs +Bjs + Cs,
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where

Ajs =
\
Ω

f [(ddcuj)
n − (ddcmax(uj ,−s))

n] +
\
Ω

1{u=−∞}f(dd
cu)n,

Bjs =
\
Ω

f [(ddcmax(uj ,−s))
n − (ddcmax(u,−s))n],

Cs =
\
Ω

f [(ddcmax(u,−s))n − (ddcu)n].

By Theorem 4.1 in [KH] we get

Ajs =
\

{uj≤−s}

f [(ddcuj)
n − (ddcmax(uj ,−s))

n] +
\
Ω

1{u=−∞}f(dd
cu)n

≥ −
\

{uj≤−s}

f(ddcmax(uj ,−s))
n +

\
Ω

1{u=−∞}f(dd
cu)n

≥ −
\

{uj≤−s}∩{|uj−u|≤1}

f(ddcmax(uj ,−s))
n

−
\

{|uj−u|>1}

f(ddcmax(uj ,−s))
n] +

\
Ω

1{u=−∞}f(dd
cu)n

≥ −
\

{u<−s+2}

f(ddcmax(uj ,−s))
n − snCn({|uj − u| > 1} ∩Ω

′)

+
\
Ω

1{u=−∞}f(dd
cu)n

≥
\
Ω

h{u<−s+2}∩Ω′,Ωf(dd
cmax(uj ,−s))

n − snCn({|uj − u| > 1} ∩Ω
′)

+
\
Ω

1{u=−∞}f(dd
cu)n.

Letting j →∞ by Proposition 2.5 we have

lim inf
j→∞

Ajs ≥
\
Ω

h{u<−s+2}∩Ω′,Ωf(dd
cmax(u,−s))n +

\
Ω

1{u=−∞}f(dd
cu)n.

Thus by Proposition 2.5 we get

lim inf
s→∞

(lim inf
j→∞

Ajs)

≥ lim inf
s→∞

\
Ω

h{u<−s+2}∩Ω′,Ωf(dd
cmax(u,−s))n +

\
Ω

1{u=−∞}f(dd
cu)n

≥ lim inf
s→∞

\
Ω

h{u<−t}∩Ω′,Ωf(dd
cmax(u,−s))n +

\
Ω

1{u=−∞}f(dd
cu)n

=
\
Ω

h{u<−t}∩Ω′,Ωf(dd
cu)n +

\
Ω

1{u=−∞}f(dd
cu)n
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for all t > 0. Since {u < −t} ∩ Ω′ ց {u = −∞} ∩ Ω′ as t → ∞ and
Cn({u = −∞} ∩ Ω

′) = 0, it follows that h{u<−t}∩Ω′,Ω ր 0 on Ω \ E as
t → ∞ for some subset E of Ω with Cn(E) = 0. Letting t → ∞ by the
decomposition theorem of Cegrell (Theorem 5.11 in [Ce2]) we get

lim inf
s→∞

(lim inf
j→∞

Ajs) ≥
\
Ω

−1Ef(dd
cu)n +

\
Ω

1{u=−∞}f(dd
cu)n ≥ 0.

Moreover by Proposition 2.5 we get

lim inf
j→∞

[ \
Ω

f(ddcuj)
n −

\
Ω

1{u>−∞}f(dd
cu)n
]

≥ lim inf
s→∞

(lim inf
j→∞

Ajs) + lim inf
s→∞

Cs ≥ 0.

3.2. Corollary. Let E(Ω) ∋ uj → u ∈ E(Ω) in Cn-capacity. Assume
that (uj , u) ∈ A(Ω) for all j ≥ 1. Then

lim inf
j→∞

(ddcuj)
n ≥ (ddcu)n.

Proof. By Definition of A(Ω) and Proposition 2.6 we have

(ddcuj)
n ≥ 1{uj=−∞}(dd

cuj)
n ≥ 1{u=−∞}(dd

cu)n.

Hence Theorem 3.1 yields the assertion.

3.3. Corollary. Let F(Ω) ∋ uj → u ∈ F(Ω) in Cn-capacity. Assume
that (uj , u) ∈ A(Ω) for all j ≥ 1 and

lim
j→∞

\
Ω

(ddcuj)
n =

\
Ω

(ddcu)n.

Then (ddcuj)
n → (ddcu)n weakly as j →∞.

Proof. We can assume that (ddcuj)
n → µ weakly as j → ∞. By Corol-

lary 3.2 we get µ ≥ (ddcu)n. On the other hand,

µ(Ω) ≤ lim inf
j→∞

\
Ω

(ddcuj)
n =

\
Ω

(ddcu)n

Therefore µ = (ddcu)n.

The second main result is a generalization of Theorem 1.1 in [Ce3] for
the class K(Ω).

3.4. Theorem. Let uj , v ∈ E(Ω), u ∈ K(Ω), and D ⊂⊂ Ω be such

that uj ≥ v on Ω \ D for all j ≥ 1 and uj → u in Cn-capacity. Then

(ddcuj)
n → (ddcu)n weakly as j →∞.

Proof. Let E1, . . . , En be polar subsets in C such that

1{u=−∞}(dd
cu)n(Ω \E1 × · · · × En) = 0.
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We set

ũj = max(uj , v), ũ = max(u, v).

Then E(Ω) ∋ ũj → ũ ∈ E(Ω) in Cn-capacity and ũj |Ω\D = uj |Ω\D, ũ|Ω\D =
u|Ω\D. By Proposition 2.5, (dd

cũj)
n → (ddcũ)n weakly as j → ∞. Let Ω′

be a hyperconvex domain such that D ⊂⊂ Ω′ ⊂⊂ Ω. By Stokes’ theorem
we have

lim sup
j→∞

\
Ω′

(ddcuj)
n = lim sup

j→∞

\
Ω′

(ddcũj)
n ≤

\̄
Ω′

(ddcũ)n <∞.

So, we can assume that (ddcuj)
n → µ weakly as j → ∞. We only have to

prove that µ = (ddcu)n on Ω′. Let ϕ ∈ E0(Ω
′). By Stokes’ theorem we get\

Ω′

−ϕdµ = lim
j→∞

\
Ω′

−ϕ(ddcuj)
n ≥ lim

j→∞

\
Ω′

−ϕ(ddcũj)
n ≥

\
Ω′

−ϕ(ddcũ)n.

Moreover by Propositions 2.7 and 2.8 we get

µ(K) ≥ (ddcu)n(K)

for all compact subsets K of E1×· · ·×En. Therefore µ ≥ 1{u=−∞}(dd
cu)n.

Thus by Theorem 3.1 we have

(1) µ ≥ (ddcu)n on Ω′.

Let Ω′′ be a domain such that D ⊂⊂ Ω′′ ⊂⊂ Ω′. By Stokes’ theorem we
have

µ(Ω′′) ≤ lim inf
j→∞

\
Ω′′

(ddcuj)
n = lim inf

j→∞

\
Ω′′

(ddcũj)
n

≤
\̄
Ω′′

(ddcũ)n ≤
\
Ω′

(ddcũ)n =
\
Ω′

(ddcu)n.

Hence

(2) µ(Ω′) ≤ (ddcu)n(Ω′).

It follows from (1) and (2) that µ = (ddcu)n on Ω′.

3.5. Example. We set uj(z1, z2) = max(j ln |z1|, j
−1 ln |z2|) on ∆

2, the
unit polydisk in C

2. Then F(∆2) ∋ uj → 0 in Cn-capacity but (dd
cuj)

n =
δ{0} 6→ 0 weakly as j →∞.

Let X be a compact Kähler manifold with a fundamental form ω = ωX
such that

T
X
ωn = 1. An upper semicontinuous function ϕ : X → [−∞,∞)

is called ω-plurisubharmonic (ω-psh) if ϕ ∈ L1(X) and ω + ddcϕ ≥ 0. We
consider the Cegrell class

E(X,ω) = {ϕ ∈ PSH(X,ω) : ∀z ∈ X, there is a neighborhood U of z

and a potential θ of ω on U such that (ϕ+ θ)|U ∈ E(U)}.
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In [Ko] Kołodziej introduced the capacity CX,ω on X by

CX(E) = CX,ω(E) = sup
{ \
E

ωnϕ : ϕ ∈ PSH(X,ω), −1 ≤ ϕ ≤ 0
}
,

where ωnϕ = (ω+ dd
cϕ)n and n = dimX. In [GZ] Guedj and Zeriahi proved

that CX is a Choquet capacity on X and

CX(E) =
\
X

(−h∗E,ω)ω
n
h∗E,ω

,

where h∗E,ω denotes the upper semicontinuous regularization of hE,ω given by

hE,ω(z) = sup{ϕ(z) : ϕ ∈ PSH
−(X,ω), ϕ|E ≤ −1}.

From Corollary 3.2 we deduce the following

3.6. Corollary. Let E(X,ω) ∋ uj → u ∈ E(X,ω) in CX-capacity.
Assume that (uj , u) ∈ A(X) for all j ≥ 1. Then ω

n
uj
→ ωnu weakly as

j →∞.

Proof. We can assume that ωnuj → µ weakly as j → ∞ with µ(X) =
ωnu(X) = 1. On the other hand, by Corollary 3.2 we have µ ≥ ωnu . Hence
µ = ωnu .
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