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On the Noether exponent

by Anna Stasica (Kraków and Le Bourget du Lac)

Abstract. We obtain, in a simple way, an estimate for the Noether exponent of an
ideal I without embedded components (i.e. we estimate the smallest number µ such that
(rad I)µ ⊂ I).

1. Introduction. Let k[X] be the polynomial ring of n variables over
an algebraically closed field. The Nullstellensatz guarantees that for a given
ideal I ⊂ k[X] there is a number µ such that (rad I)µ ⊂ I. The smallest such
µ is called the Noether exponent of the ideal I and will be denoted by µI .
An estimate of this exponent was obtained by Kollár in [K]. Subsequently
several authors contributed to this problem, especially in the easier case
when the ideal I has only isolated components in its primary decomposition
(see e.g. [CP], [FPT], [JOW], [STV], [AM]).

In this note we also consider the case without embedded components. We
give a very simple method to obtain an estimate for the Noether exponent
(Theorem 7) which is sharper than the results obtained in [FPT] and [JOW].
More precisely for the ideal I = (f1, . . . , fk), where deg f2 ≥ . . . ≥ deg fk ≥
deg f1 we show that

µI ≤ max
i∈{r1,...,rm}

{
deg f1 · . . . · deg fi

di

}
,

where r1, . . . , rm are all possible codimensions of irreducible components
of the zero set of the ideal I, and di is the minimal degree of irreducible
components of codimension i of the variety given by the ideal I.

We conjecture that this estimate is also valid in the general case.
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2. Preliminaries. We denote by An the affine space of dimension n and
by k[X] = k[x1, . . . , xn] the polynomial ring over the algebraically closed
field k. The zero set of an ideal I is denoted by V (I). For an algebraic set
Z ⊂ An we consider the ideal I(Z) = {f ∈ k[X] | f|Z = 0}.

Let Z1, . . . , Zr ⊂ An be hypersurfaces and let V be an irreducible com-
ponent of Z1 ∩ . . . ∩ Zr. We say that Z1, . . . , Zr meet properly along V or
that this intersection is proper along V if dimV = n− r. Recall

Definition 1. Let Z1 = {F1 = 0}, . . . , Zr = {Fr = 0} ⊂ An be hyper-
surfaces meeting properly along the variety V . Then we define the index of
intersection of Z1, . . . , Zr along V to be the number

i(Z1 · . . . · Zr;V ) := ek[X]p((F1, . . . , Fr)p),

where
ek[X]p((F1, . . . , Fr)p)

n!
tn + . . .

is the Hilbert–Samuel polynomial of k[X]p/(F1, . . . , Fr)p and p = I(V ) is
the ideal of the variety V .

Remark 2. Since k[X]p is a Cohen–Macaulay ring we have

i(Z1 · . . . · Zr;V ) = length(k[X]p/(F1, . . . , Fr)p).

See e.g. [F, Example 7.1.10, p. 123].

We will need the following facts:

Theorem 3 (Associativity formula from [Na, (24.7)]). Let (R,m) be a
local ring and let I be an m-primary ideal generated by a system of pa-
rameters f1, . . . , fn ∈ m. Let b be the ideal generated by f1, . . . , fr for some
r ≤ n, and let pi be the minimal prime ideals of b such that length(pi) = k
and dimR/pi = n− r. Then

e(I) =
∑

i

e((I + pi)pi) · e(bRpi).

Theorem 4. Let Φ : kn → kn be a generically finite polynomial map-
ping of geometric degree gdegΦ (by geometric degree we mean the number
of points in a generic fiber). Then for each y ∈ kn the number of isolated
points in the fiber Φ−1(y) is not greater than gdegΦ.

Proof. The statement is obvious for a quasi-finite mapping. The general
case follows from the Stein factorization applied to the compactification of
Φ. Indeed, let Γ = graphΦ and let Γ ⊂ Pn×kn be its closure. Consider the
projection f : Γ → kn. Due to the Stein factorization theorem there exist
a normal variety W and two morphisms, q : Γ → W which has connected
fibers and u : W → kn which is finite, such that f = u◦q. Moreover, gdeg u =
gdegΦ. Consequently, every fiber f−1(y) has no more than gdeg u = gdegΦ
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connected components. This implies that the number of isolated points in a
fiber Φ−1(y) is not greater than gdegΦ.

We have a useful characterization of the index of proper intersection:

Proposition 5. Let Z1 = {F1 = 0}, . . . , Zr = {Fr = 0} ⊂ An be
hypersurfaces given by polynomials Fi which meet along V properly. Let
Hj =V (αj) be the hyperplane given by a linear form αj for j∈{1, . . . , n− r}.
Define Φ := (F1, . . . , Fr, α1, . . . , αn−r). If the intersection Z1∩. . .∩Zr∩H1∩
. . . ∩Hn−r is proper at a point Q, then

i(Z1 · . . . · Zr;V ) = i(Z1 · . . . · Zr · L;Q) = µQ(Φ)

for every linear subspace L of dimension n − r which meets
⋂r
i=1 Zi trans-

versely at Q. Here µQ(Φ) denotes the multiplicity index of Φ at Q.

Proof. We follow [No]. Set F = {F1, . . . , Fr} and H = {α1, . . . , αn−r}.
Clearly F1, . . . , Fr form a system of parameters of the localization k[X]p,
where p is the ideal of the variety V . Since the hyperplanes Hj for j ∈
{1, . . . , n− r} meet V transversely at Q, it follows that {F,H} is a system
of local parameters in the ring k[X]mQ and hence from the associativity
formula we get

e((F,H)) = e(((F,H) + p)/p) · e(k[X]p/(F )p).

Since (F,H) generate the maximal ideal in the local ring k[X]mQ , we get
e(((F,H) + p)/p) = 1 and

e(F,H) = e(k[X]p/(F )p),

which proves that i(Z1 · . . . · Zr;V ) = i(Z1 · . . . · Zr · L;Q).

We will also need the following version of the Bézout Theorem.

Theorem 6 (Bézout Theorem, an affine version). Let Z1 = {F1 = 0},
. . . , Zr = {Fr = 0} ⊂ An be hypersurfaces given by polynomials Fi which
meet along V1, . . . , Vs properly. Then

s∑

i=1

i(Z1 · . . . · Zr;Vi) deg Vi ≤
r∏

i=1

degFi.

Proof. According to the previous proposition the index of intersection
is independent of the choice of a generic point P . Take generic hyperplanes
Hj given by linear forms αj (j = 1, . . . , n − r) and set di := deg Vi for
i = 1, . . . , s.

Clearly the intersection S := (
⋃s
i=1 Vi) ∩

⋂n−r
j=1 Hj is a finite set. Let

{P i1, . . . , P idi} := Vi∩S for i ∈ {1, . . . , s}. Consider the map Φ := (F1, . . . , Fr,
α1, . . . , αn−r). Note that it is generically finite and hence for a generic fiber
Φ−1(y) we have, by Theorem 4 and by the inequality of Rusek–Winiarski
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[Ł, p. 319]),
∑

P∈Φ−1(y)

µP (Φ) = gdegΦ ≤
r∏

i=1

degFi,

where µP (Φ) is the multiplicity of Φ at P . Since there are exactly di points
in Vi ∩ S we have

∑

P∈Φ−1(y)

µP (Φ) =
s∑

i=1

µP i1(Φ) · di,

and finally due to Proposition 5 we get
s∑

i=1

i(Z1 · . . . · Zr;Vi) deg Vi ≤
r∏

i=1

degFi.

3. Main result. Our main result is the following estimate.

Theorem 7. Let I = (f1, . . . , fk) be an ideal generated by polynomials
fj ∈ k[X], where deg f2 ≥ . . . ≥ deg fk ≥ deg f1. Assume that there is a pri-
mary decomposition I =

⋂m
i=1 qi without embedded components, where qi are

pi-primary ideals. Set ri := codimV (qi), and define dt := min{deg V (qi) |
codimV (qi) = t} for t ∈ {r1, . . . , rm}. Then

µI ≤ max
t∈{r1,...,rm}

{
deg f1 · . . . · deg ft

dt

}
.

To prove this theorem we will proceed by reduction to the case where
the intersection along components of V (I) is proper. The proof will be given
in the next section.

Observe that for an ideal I without embedded components we are able
to find in this ideal a finite set F of polynomials such that each component
of V (I) can be represented as a proper intersection of some hypersurfeces
given by polynomials which lie in the set F . In fact we have the following

Lemma 8. Let I = (f1, . . . , fk) be an ideal with only isolated pi-prime
components qi, say (f1, . . . , fk) =

⋂m
i=1 qi, and define ri := codimV (qi).

Then there exists a family of polynomials{
F1 := f1,
Fu := auufu + . . .+ aukfk for u ≥ 2,

where auj ∈ k, such that for each i ∈ {1, . . . ,m} the intersection V (F1) ∩
. . . ∩ V (Fri) along V (qi) is proper.

Proof. We will construct such a family inductively. Obviously for i such
that codimV (qi) = 1 the statement is true. Assume that for all s < l ≤
max{r1, . . . , rm} we have polynomials Fs such that the intersection Ws :=
V (F1) ∩ . . . ∩ V (Fs) is proper along each component which does not lie
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in the set V (I). Moreover, suppose that if there is i ∈ {1, . . . ,m} such
that ri = s then the hypersurfaces V (F1), . . . , V (Fs) meet properly along
V (qi). Consider a decomposition Wl−1 = W 1

l−1∪ . . .∪W
sl−1
l−1 into irreducible

components. Take points xpl−1 ∈ W
p
l−1 \ V (I) (for non-empty W p

l−1 \ V (I)).
Since not all fj for j = l, . . . , k vanish at xpl−1, for generic alj the intersection
Wl−1∩V (Fl) along all components of codimension l is proper. Thus if there
is V (qj) such that rj = l then clearly it must be contained in Wl−1 ∩ V (Fl)
and hence V (F1), . . . , V (Fl) meet properly along this V (qj). Continuing this
process, in a finite number of steps we obtain a family of polynomials Fu
such that for each i the intersection V (F1) ∩ . . . ∩ V (Fri) is proper along
V (qi).

4. Estimates. In this section we give the proof of the main result, hence
we work throughout under the assumptions and notation of Theorem 7.
First, consider the rings k[X]pi/Ipi for i ∈ {1, . . . ,m}. Since the ideal I has
only isolated components we obtain for each i an isomorphism

k[X]pi/Ipi ∼= k[X]pi(qi)pi =: Ri.

Consider in the ring Ri an increasing family of modules

M i
s(h) := ((qi)pi : hs) = {g ∈ Ri | ghs ∈ (qi)pi},

for some h ∈ k[X] with h|V (I) = 0. We have

Lemma 9. If s is such that

M i
0(h) ( . . . (M i

s(h) = M i
s+1(h) = . . .

then hs ∈ qi.
Proof. Take the smallest n ∈ N such that hn ∈ (qi)pi and assume that

n > s. Clearly hn−s−1 ∈ M i
s+1(h) and hence also hn−s−1 ∈ M i

s(h), but this
means that hn−1 ∈ (qi)pi , contrary to the minimality of n. Thus hs

1 = a
b for

some a ∈ qi and b 6∈ rad qi. This means that bhs ∈ qi and since the ideal qi
is primary, hs ∈ qi.

Define

si(h) := min{s |M i
s(h) = M i

s+1(h)}, si := max{si(h) | h|V (I) = 0}.
This is well defined since Ri is the Artin ring. Finally define s as the maxi-
mum of si for i ∈ {1, . . . ,m}. Then we have the following inequalities:

Lemma 10. µI ≤ s ≤ length(Ri) for i such that si = s. Consequently ,
µI ≤ maxi∈{1,...,m}{length(Ri)}.

Proof. Take h such that h|V (I) = 0. Then h = 0 on each Vi and hence
hs ∈ qi for each i ∈ {1, . . . ,m} by Lemma 9. This proves the first inequality.
The second one is a consequence of the definition of the length.
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Proof of Theorem 7. We choose polynomials Fu as in Lemma 8. Denote
by Zu the hypersurface V (Fu). Since for each i = 1, . . . ,m the intersection
Z1 ∩ . . . ∩ Zri is proper along V (qi), Remark 2 yields

length(k[X]pi/(F1, . . . , Fri)pi) = i(Z1 · . . . · Zri ;Vi).
Using the affine version of the Bézout Theorem we get

i(Z1 · . . . · Zri ;Vi) ≤
degF1 · . . . · degFri

dri
≤ deg f1 · . . . · deg fri

dri
.

Clearly
length(Ri) ≤ length(k[X]pi/(F1, . . . , Fri)pi),

hence finally due to Lemma 10 we obtain

µI ≤ max
i∈{r1,...,rm}

{
deg f1 · . . . · deg fi

di

}
.

Note that for a set-theoretic complete intersection we have at once
(see [PT])

Corollary 11. If an ideal I = (f1, . . . , fr) is a set-theoretic complete
intersection, then

µI ≤
deg f1 · . . . · deg fr

mini∈{1,...,s}{degXi}
,

where V (I) =
⋃s
i=1Xi.

The next corollary is a generalization of a result from [CP].

Corollary 12. Let f = (f1, . . . , fn) be a polynomial mapping such that
f−1(0) is a finite, non-empty set. Set µ := max{µa(f) | a ∈ f−1(0)}, where
µa(f) is the local multiplicity of the map f at the point a. Then for each
polynomial g ∈ C[X] such that g|f−1(0) = 0, we have gµ ∈ (f1, . . . , fn).

Finally let us state the following

Conjecture. Let I = (f1, . . . , fk) be an ideal generated by polynomials
fj ∈ k[X], where deg f2 ≥ . . . ≥ deg fk ≥ deg f1. Let

⋂m
i=1 qi = I be a pri-

mary decomposition. Set ri := codimV (qi) and define dt := min{deg V (qj) |
codimV (qj) = t} for t ∈ {r1, . . . , rm}. Then

µI ≤ max
t∈{r1,...,rm}

{
deg f1 · . . . · deg ft

dt

}
.
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Université de Savoie
Campus scientifique

F-73376 Le Bourget du Lac Cedex, France
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