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Unicity theorems for meromorphic
functions that share three values

by Wei-Ran Lü and Hong-Xun Yi (Jinan)

Abstract. We deal with the problem of uniqueness of meromorphic functions shar-
ing three values, and obtain several results which improve and extend some theorems of
M. Ozawa, H. Ueda, H. X. Yi and other authors. We provide examples to show that results
are sharp.

1. Introduction and main results. In this paper, a meromorphic
function means meromorphic in the complex plane. We denote by E (resp. I)
a set of finite (resp. infinite) linear measure, not necessarily the same at
each occurrence. It is assumed that the reader is familiar with the standard
notations of Nevanlinna’s theory such as T (r, f), m(r, f), N(r, f), N(r, f),
and so on, which can be found in [2]. In particular, S(r, f) denotes any
quantity that satisfies S(r, f) = o(T (r, f)) (r → ∞, r 6∈ E). For a complex
number a, we say that two non-constant meromorphic functions f and g
share the value a CM provided f−a and g−a have the same zeros counting
multiplicities (see [9]). We say that two non-constant meromorphic functions
f and g share ∞ CM provided that 1/f and 1/g share 0 CM.

Let f be a non-constant meromorphic function, and let k be a positive
integer. We denote by Nk)(r, f) the counting function of poles of f with
multiplicity ≤ k, and by N(k(r, f) the counting function of poles of f with
multiplicity ≥ k (see [9]). Let

δk)(a, f) = 1− lim sup
r→∞

Nk)
(
r, 1
f−a

)

T (r, f)
.

In 1976, M. Ozawa [3] proved the following result.

Theorem A. Let f and g be two non-constant entire functions of finite
order such that f and g share 0, 1 CM. If δ(0, f)>1/2, then f ·g≡1 or f≡g.
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In 1983, H. Ueda [4] obtained the following theorem.

Theorem B. Let f and g be two non-constant meromorphic functions
sharing 0, 1 and ∞ CM. If

lim sup
r→∞

N(r, f) +N(r, 1/f)
T (r, f)

<
1
2
,

then either f ≡ g or f · g ≡ 1.

In 1990, H. Yi [6] proved the following further result.

Theorem C. Let f and g be two non-constant meromorphic functions
sharing 0, 1 and ∞ CM. If

N1)(r, f) +N1)(r, 1/f) < (λ+ o(1))T (r) (r ∈ I),

where λ < 1/2, T (r) = max{T (r, f), T (r, g)}, then either f ≡ g or f · g ≡ 1.

Example 1. Let f(z) = −eγ(z) − e2γ(z), g = −e−γ(z) − e−2γ(z), where
γ(z) is a non-constant entire function.

Example 2. Let f(z) = −e2z/(ez + 1), g(z) = −e−z/(ez + 1).

It is easy to see that Examples 1 and 2 show that the number 1/2 in the
above theorems is sharp.

In this paper, we improve and generalize the above theorems, and obtain
the following results:

Theorem 1. Let f and g be two distinct non-constant meromorphic
functions sharing 0, 1 and ∞ CM. If

(1) lim sup
r→∞
r∈I

N1)(r, f) +N1)(r, 1/f)
T (r, f)

< 1,

then

(2) f =
esγ − 1

e−(k+1−s)γ − 1
, g =

e−sγ − 1
e(k+1−s)γ − 1

,

where s and k are positive integers (1 ≤ s ≤ k) such that (s, k+ 1) = 1, and
γ is a non-constant entire function.

Example 3. Let

f(z) =
e−z − 1
2ez − 1

, g(z) =
ez − 1

1
2e
−z − 1

.

This example shows that condition (1) in Theorem 1 is best possible.

From Theorem 1, we obtain the following corollaries.

Corollary 1. Let f and g be two distinct non-constant meromorphic
functions sharing 0, 1 and ∞ CM. If δ1)(∞, f) + δ1)(0, f) > 1, then the
conclusion of Theorem 1 is valid.
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Corollary 2. Let f and g be two distinct non-constant meromorphic
functions sharing 0, 1 and ∞ CM. If N1)(r, f) = S(r, f) and δ1)(0, f) > 0,
then

f = −ekγ − e(k−1)γ − . . .− eγ , g = −e−kγ − e−(k−1)γ − . . .− e−γ ,
where k is a positive integer and γ is a non-constant entire function.

Remark 1. Clearly, from Theorem 1, we can get

lim sup
r→∞
r 6∈E

N1)(r, f) +N1)(r, 1/f)
T (r, f)

= 1− 1
k

;

from this we know that fg ≡ 1 when k = 1, hence we see that Theorem 1
contains Theorems A, B and C.

Remark 2. From Remark 1, we can get the following result: Let f and
g be two distinct non-constant meromorphic functions sharing 0, 1 and ∞
CM. If N1)(r, f) = S(r, f) and 1/3 < δ1)(0, f) ≤ 1/2, then f = −e2γ − eγ ,
g = −e−2γ − e−γ , where γ is a non-constant entire function. This shows
that Example 1 is the only exceptional example for Theorem A when 1/3 <
δ(0, f) ≤ 1/2.

Theorem 2. Let f and g be two distinct non-constant meromorphic
functions sharing 0, 1 and ∞ CM. If N1)(r, f) = S(r, f) and

(3) lim sup
r→∞
r∈I

N1)
(
r, 1
f−1

)
+N1)

(
r, 1
f

)

T (r, f)
< 2,

then f and g assume one of the following forms:

(a) f = ekγ + e(k−1)γ + . . .+ eγ + 1, g = e−kγ + e−(k−1)γ + . . .+ e−γ + 1,
(b) f = −ekγ − e(k−1)γ − . . .− eγ , g = −e−kγ − e−(k−1)γ − . . .− e−γ ,

where k is a positive integer and γ is a non-constant entire function.

From Theorem 2, we obtain the following corollary.

Corollary 3. Let f and g be two distinct non-constant meromorphic
functions sharing 0, 1 and ∞ CM. If N1)(r, f) = S(r, f) and δ1)(1, f) +
δ1)(0, f) > 0, then the conclusion of Theorem 2 is true.

In 1980, H. Ueda [5] proved the following theorem.

Theorem D. Let f and g be two non-constant entire functions of finite
order such that f and g share 0, 1 CM and 0 < δ(0, f) ≤ 1/2. If there exists
at least one zero z0 of f such that

f (j)(z0) = g(j)(z0) = 0 (j = 0, 1, . . . , n− 1), f (n)(z0) = g(n)(z0) 6= 0,

where n is a positive integer , then f ≡ g.
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In this paper, we improve Theorem D and obtain the following result.

Theorem 3. Let f and g be two non-constant entire functions sharing
0, 1 CM and such that δ1)(1, f) + δ1)(0, f) > 0. If there exists at least one
zero z0 of f such that

f (j)(z0) = g(j)(z0) = 0 (j = 0, 1, . . . , n− 1), f (n)(z0) = g(n)(z0) 6= 0,

where n is a positive integer , then f ≡ g.

2. Some lemmas. Let f and g share 0, 1 and ∞ CM. We denote by
N0(r) the counting function of the zeros of f − g that are not zeros of f ,
1/f or f − 1 (see [7] or [10]). In this section, we present some lemmas which
are necessary for the proofs of our result.

Lemma 1 ([7, Lemma 4]). Let f and g be two non-constant meromorphic
functions sharing 0, 1,∞ CM. If f 6≡ g, then

N(2

(
r,

1
f

)
+N(2

(
r,

1
f − 1

)
+N(2(r, f) = S(r, f).

Lemma 2 ([1, Lemma 3] or [10, Lemma 7]). Let f and g be two dis-
tinct non-constant meromorphic functions sharing 0, 1 and ∞ CM. If f is
a Möbius transformation of g, then f and g satisfy one of the following
relations:

(i) f · g ≡ 1,
(ii) (f − 1)(g − 1) ≡ 1,
(iii) f + g ≡ 1,
(iv) f ≡ cg,
(v) f − 1 ≡ c(g − 1),
(vi) [(c− 1)f + 1] · [(c− 1)g − c] ≡ −c,

where c (6= 0, 1) is a constant.

Lemma 3 ([10, Theorem 1]). Let f and g be two distinct non-constant
meromorphic functions sharing 0, 1 and ∞ CM. If

lim sup
r→∞
r 6∈E

N0(r)
T (r, f)

>
1
2
,

then f is a Möbius transformation of g.

Lemma 4 ([10, Theorem 2]). Let f and g be two non-constant meromor-
phic functions sharing 0, 1 and ∞ CM. If

0 < lim sup
r→∞
r 6∈E

N0(r)
T (r, f)

≤ 1
2
,



Functions that share three values 135

then f is not a Möbius transformation of g, and f and g satisfy one of the
following relations:

(I) f ≡ esγ − 1
e(k+1)γ − 1

, g ≡ e−sγ − 1
e−(k+1)γ − 1

,

(II) f ≡ e(k+1)γ − 1
esγ − 1

, g ≡ e−(k+1)γ − 1
e−sγ − 1

,

(III) f ≡ esγ − 1
e−(k+1−s)γ − 1

, g ≡ e−sγ − 1
e(k+1−s)γ − 1

,

where s and k (≥ 2) are positive integers such that 1 ≤ s ≤ k, s and k + 1
are relatively prime, and γ is a non-constant entire function.

Lemma 5 ([9, Theorem 5.13]). Let f and g be two non-constant mero-
morphic functions sharing 0, 1 and ∞ CM. If f is not a Möbius transfor-
mation of g, then

T (r, f) + T (r, g) = N

(
r,

1
f

)
+N

(
r,

1
f − 1

)
+N(r, f) +N0(r) + S(r, f).

3. Proofs of the main results

Proof of Theorem 1. Since f 6≡ g, by Lemma 1, it follows that

N

(
r,

1
f − a

)
= N1)

(
r,

1
f − a

)
+ S(r, f), a = 0, 1,∞.

Now we discuss the following two cases.

Case 1. Suppose that f is a Möbius transformation of g. By Lemma 2,
f and g satisfy one of the six relations (i)–(vi) of Lemma 2. We discuss them
separately.

Assume that f and g satisfy (i). Let f = −eγ , g = −e−γ , where γ is a
non-constant entire function. Hence the assertion of Theorem 1 is true with
k = 1.

If f and g satisfy (ii), then 1 and∞ are Picard values of f and N1)(r, 1/f)
= T (r, f) + S(r, f), which contradicts (1).

If (iii) holds, then 0 and 1 are Picard values of f and N1)(r, f) = T (r, f)+
S(r, f), which contradicts (1).

If (iv) holds, then 1 and c are Picard values of f. So, we have

T (r, f) = N1)(r, f) + S(r, f), T (r, f) = N1)(r, 1/f) + S(r, f),

which contradicts (1).
If (v) holds, then 0 and 1 − c are Picard values of f. It follows from

the second main theorem that T (r, f) = N1)(r, f) + S(r, f), and we have a
contradiction.



136 W. R. Lü and H. X. Yi

If (vi) holds, then 1/(1− c) and ∞ are Picard values of f. Thus, we also
get a contradiction for T (r, f) = N1)(r, 1/f) + S(r, f).

Case 2. Suppose that f is not a Möbius transformation of g. By Lem-
ma 3, we consider the following two subcases.

Subcase 2.1. Assume that

0 < lim sup
r→∞
r 6∈E

N0(r)
T (r, f)

≤ 1
2
.

By Lemma 4, f and g satisfy one of the three relations (I)–(III) of Lemma 4.
If f and g satisfy (I), then noting that s and k are positive integers such

that (s, k + 1) = 1, we have

T (r, f) = k T (r, eγ) + S(r, f),

N1)(r, f) = k T (r, eγ) + S(r, f),

N1)(r, 1/f) = (s− 1)T (r, eγ) + S(r, f),

which contradicts (1).
In a similar manner, we can prove that (II) is impossible.
If (III) is satisfied, then

lim sup
r→∞

N1)(r, f) +N1)(r, 1/f)
T (r, f)

= 1− 1
k
< 1.

Thus (2) holds.

Subcase 2.2. Assume that

lim sup
r→∞
r 6∈E

N0(r)
T (r, f)

= 0.

Thus,

(4) N0(r) = S(r, f).

Noting that f and g share 0, 1 and ∞ CM, by Lemma 1, Lemma 5 and (4)
we get

T (r, f) ≤ N1)(r, 1/f) +N1)(r, f) + S(r, f),

which is a contradiction.
Theorem 1 is thus completely proved.

Proof of Theorem 2. Since f 6≡ g, by Lemma 1, it follows that

N

(
r,

1
f − a

)
= N1)

(
r,

1
f − a

)
+ S(r, f), a = 0, 1,∞.

Now we discuss the following two cases.

Case 1. Suppose that f is a Möbius transformation of g. By Lemma 2,
f and g satisfy one of the six relations (i)–(vi) of Lemma 2.
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If (i) holds, then f = −eγ , g = −e−γ , where γ is a non-constant entire
function.

If (ii) holds, then f = eγ + 1, g = e−γ + 1, where γ is a non-constant
entire function.

Hence the assertion of Theorem 2 is true with k = 1 in both subcases.
If (iii) (resp. (iv), (v)) holds, then 0 and 1 (resp. 1 and c, 0 and 1 − c)

are Picard values of f . By the second fundamental theorem, we obtain

N1)(r, f) = T (r, f) + S(r, f),

which is a contradiction.
If (vi) holds, then 1/(1− c) and∞ are Picard values of f . By the second

fundamental theorem, we obtain

N1)(r, 1/f) = T (r, f) + S(r, f), N1)

(
r,

1
f − 1

)
= T (r, f) + S(r, f),

which contradicts (3).

Case 2. Suppose that f is not a Möbius transformation of g. By Lem-
ma 3, we consider the following two subcases.

Subcase 2.1. Assume that

0 < lim sup
r→∞
r 6∈E

N0(r)
T (r, f)

≤ 1
2
.

By Lemma 4, f and g satisfy one of the three relations (I)–(III) of Lemma 4.
If f and g satisfy (I), then 1 ≤ s ≤ k and N1)(r, f) = S(r, f), which is

impossible.
If (II) holds, then noticing that N1)(r, f) = S(r, f), we have s = 1 and

derive

f = ekγ + e(k−1)γ + . . .+ eγ + 1, g = e−kγ + e−(k−1)γ + . . .+ e−γ + 1.

So we have proved the form (a).
If f and g satisfy (III), then we can easily obtain the form (b) with k = s.

Subcase 2.2. Assume that

lim sup
r→∞
r 6∈E

N0(r)
T (r, f)

= 0.

Noting that f and g share 0, 1 and ∞ CM, by Lemma 1, Lemma 5 and (4),
we get

T (r, f) = N1)

(
r,

1
f

)
+ S(r, f), T (r, f) = N1)

(
r,

1
f − 1

)
+ S(r, f),

which leads to a contradiction with (3).
This completes the proof of Theorem 2.
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Proof of Theorem 3. Suppose that f 6≡ g. According to Corollary 3, f
and g assume one of the following forms:

(a) f = ekγ + e(k−1)γ + . . .+ eγ + 1, g = e−kγ + e−(k−1)γ + . . .+ e−γ + 1,
(b) f = −ekγ − e(k−1)γ − . . .− eγ , g = −e−kγ − e−(k−1)γ − . . .− e−γ ,

where k is a positive integer and γ is a non-constant entire function.
If (a) holds, then

f − 1
g − 1

g

f
= eγ .

Substituting z0 into the above equation, we get eγ(z0) = 1. From this and
(a) we have f(z0) = k + 1, which contradicts f(z0) = 0. The same method
leads to a contradiction in the second case, which proves Theorem 3.
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