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The Kneser property for the abstract Cauchy problem

by Hernán R. Henŕıquez (Santiago) and
Genaro Castillo G. (Talca)

Abstract. We establish existence of mild solutions for the semilinear first order func-
tional abstract Cauchy problem and we prove that the set of mild solutions of this problem
is connected in the space of continuous functions.

1. Introduction. The purpose of this work is to show that the set
formed by the mild solutions of a semilinear abstract Cauchy problem (ACP)
of first order is connected in the space of continuous functions. This property
is known in the literature as the Kneser property . We refer to [3] for the
original result in the framework of differential equations and to [4] for a
similar result for functional equations.

We start with an abstract statement of this property. In this statement
we denote by Vδ(B) the δ-neighborhood of a set B in a metric space.

Lemma 1.1. Let X,Y be metric spaces, B a closed subset of Y , and
T : X → Y a continuous function. Let S = T−1(B) and assume that there
is a compact set K ⊆ X such that for each ε > 0 there is a set Kε ⊆ K with
the following properties:

(i) the sets Kε are connected ;
(ii) d(x,Kε) < ε for all x ∈ S;

(iii) T (Kε) ⊆ Vδ(ε)(B), where δ(ε)→ 0 as ε→ 0.

Then S is connected.

Proof. Assume that S is not connected. Then there exist nonempty dis-
joint closed sets F1 and F2 in S such that S = F1 ∪ F2. This implies that
both F1 and F2 are closed in X and d(F1, F2) = η > 0. Let U be the
η/2-neighborhood of F1. It is clear that Kε ∩ U 6= ∅ and Kε ∩ (X \ U) 6= ∅
for each 0 < ε < η/2. Since Kε is connected, it follows that Fr(U)∩Kε 6= ∅.
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Thus, we can choose xn ∈ Fr(U)∩Kn, where Kn = K1/n for n ∈ N, n ≥ N .
Since Kn ⊆ K, there is a subsequence, which we denote again by (xn), such
that xn → x as n → ∞. Clearly, x ∈ Fr(U) and because T is continuous,
T (xn) → T (x) as n → ∞. Since d(T (xn), B) → 0 as n → ∞, it follows
that d(T (x), B) = 0, which in turn implies that T (x) ∈ B and x ∈ S.
Consequently, x ∈ Fr(U) ∩ S, which is absurd by the construction of U .

In the next section we apply this result to the set formed by the solu-
tions of a certain integral equation. To this end, the following version of
Lemma 1.1 is more convenient. From now on, X denotes a Banach space,
I ⊆ R is a compact interval and C(I;X) stands for the space of continuous
functions from I into X endowed with the norm of uniform convergence.

Corollary 1.1. Let T : C(I;X) → C(I;X) be continuous and S the
set of fixed points of T . Assume that there is a compact set K ⊆ C(I;X)
and that for each ε > 0 there is a set Kε ⊆ K with the following properties:

(i) the sets Kε are connected ;
(ii) d(x,Kε) < ε for all x ∈ S;

(iii) ‖y − T y‖∞ < δ(ε) for all y ∈ Kε, where δ(ε)→ 0 as ε→ 0.

Then S is connected.

Another abstract version of the Kneser property, which is known as the
Krasnosel’skĭı–Perov theorem (see [9]), is obtained using degree theory.

We denote by L(X) the Banach space of bounded linear operators from
X into X.

2. First order abstract Cauchy problem. In this section we assume
that A is the infinitesimal generator of a strongly continuous semigroup of
bounded linear operators T (t) on X. We refer the reader to [2, 7] for the
theory of strongly continuous semigroup and the associated ACP. We only
mention here that every strongly continuous semigroup is uniformly bounded
on bounded intervals. Moreover, a semigroup T (·) is called compact when
the operators T (t) are compact for all t > 0.

The existence of solutions of the first order abstract Cauchy problem

x′(t) = Ax(t) + h(t), t ≥ 0,(2.1)

x(0) = x0,(2.2)

where h : [0,∞) → X is a locally integrable function, has been treated in
several works. We only mention [2, 7] and the references therein. Similarly,
the existence of solutions of the semilinear abstract Cauchy problem has
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been discussed in [1, 6]. We only recall here that the function

x(t) = T (t)x0 +
t�
0

T (t− s)h(s) ds, t ≥ 0,(2.3)

is called a mild solution of (2.1)–(2.2).
Our aim in this section is to establish a Kneser’s type property for the

solutions of the functional semilinear first order ACP

x′(t) = Ax(t) + f(t, x(a(t))), 0 ≤ t ≤ τ,(2.4)

with initial condition (2.2). We abbreviate the notation by writing I = [0, τ ]
and we let M indicate a constant such that ‖T (t)‖ ≤M for all 0 ≤ t ≤ τ .

We begin with a result that ensures existence of solutions under quite
general hypotheses which are suitable for our purposes. To study this initial
value problem we always assume that the following conditions are fulfilled:

Assumption A. (a) The function a : I → I is continuous.
(b) The function f : I × X → X satisfies the following Carathéodory

conditions:

(i) f(t, ·) : X → X is continuous for a.e. t ∈ I;
(ii) for each x ∈ X, the function f(·, x) : I → X is strongly measur-

able.

The expression (2.3) motivates the following concept of mild solution.

Definition 1. We say that a function x : I → X is a mild solution
of the problem (2.4), (2.2) if x is a continuous function that satisfies the
integral equation

x(t) = T (t)x0 +
t�
0

T (t− s)f(s, x(a(s))) ds.(2.5)

In what follows we denote by BR the closed ball with center at 0 and
radius R in an appropriate space. Moreover, we denote by co(B) the closed
convex hull of a set B.

Theorem 2.1. Assume that Assumption A and the following conditions
hold :

(H-1) For each R > 0 there is a positive integrable function γR ∈ L1(I)
such that sup{‖f(t, x)‖ : ‖x‖ ≤ R} ≤ γR(t) for a.e. t ∈ I.

(H-2) For each 0 < t ≤ τ and R ≥ 0 the set {T (t)f(s, x) : 0 ≤
s ≤ τ , ‖x‖ ≤ R} is relatively compact.

(H-3) lim inf
R→∞

M

R

τ�
0

γR(s) ds < 1.
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Then there is a mild solution of (2.4), (2.2). Furthermore, if the following
condition is fulfilled :

(H-4) lim sup
R→∞

M

R

τ�
0

γR(s) ds < 1,

then the set S of mild solutions of (2.4), (2.2) is compact in C(I;X).

Proof. Let T : C(I;X)→ C(I;X) be the map defined by

T (x)(t) = T (t)x0 +
t�
0

T (t− s)f(s, x(a(s))) ds.(2.6)

Clearly T is well defined and the Lebesgue dominated convergence theorem
implies that T is continuous. We claim that there exists n ∈ N such that
T : Bn → Bn. In fact, otherwise we can select a sequence (xk)k∈N in C(I;X)
such that ‖xk‖∞ ≤ k and ‖T (xk)‖∞ > k for every k ∈ N. Consequently, for
k ∈ N from (2.6) we see that

k < ‖T (xk)‖∞ ≤M‖x0‖+M

τ�
0

γk(s) ds,

which yields

1 ≤ lim inf
k→∞

M

k

τ�
0

γk(s) ds,

and this inequality contradicts (H-3).
Next, using (H-1) and (H-2), we establish that T is completely contin-

uous. Since T is continuous it remains to prove that T takes bounded sets
into relatively compact sets in C(I;X). From the Ascoli–Arzelà theorem it
is sufficient to prove that for each R ≥ 0 the set {T0(x)(t) : ‖x‖∞ ≤ R} is re-
latively compact in X for all 0 ≤ t ≤ τ and that the set {T0(x) : ‖x‖∞ ≤ R}
is equicontinuous, where

T0(x)(t) =
t�
0

T (t− s)f(s, x(a(s))) ds.

We begin by establishing the first assertion. Let t > 0 and take ε > 0 small
enough. We can write

T0(x)(t) =
t−ε�
0

T (t− s)f(s, x(a(s))) ds+
t�
t−ε

T (t− s)f(s, x(a(s))) ds(2.7)

=
t−ε�
0

T (t− ε− s)T (ε)f(s, x(a(s))) ds

+
t�
t−ε

T (t− s)f(s, x(a(s))) ds.
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The mean value theorem for the Bochner integral ([5]) shows that

t−ε�
0

T (t− ε− s)T (ε)f(s, x(a(s))) ds

∈ (t− ε) co {T (t− ε− s)T (ε)f(s, x) : ‖x‖ ≤ R, 0 ≤ s ≤ t− ε}.

By (H-2) the set on the right hand side is compact so that the first term
on the right hand side of (2.7) is included in a compact set which does not
depend on the function x(·).

On the other hand, for the second term on the right hand side of (2.7)
we obtain the estimate

∥∥∥
t�
t−ε

T (t− s)f(s, x(a(s))) ds
∥∥∥ ≤M

t�
t−ε

γR(s) ds,

which shows that this term converges to zero as ε→ 0 since γR is integrable.
Hence the set K(t) = T0(BR)(t) is relatively compact.

To establish the second assertion we first observe that

T0(x)(t+ h)− T0(x)(t) =
t+h�

0

T (t+ h− s)f(s, x(a(s))) ds

−
t�
0

T (t− s)f(s, x(a(s))) ds

= (T (h)− I)
t�
0

T (t− s)f(s, x(a(s))) ds

+
t+h�
t

T (t+ h− s)f(s, x(a(s))) ds.

We observe that the first term on the right hand side is in (T (h) − I)K(t)
so it converges to zero as h→ 0, independently of x(·) ∈ BR. Similarly, the
second term satisfies

∥∥∥
t+h�
t

T (t+ h− s)f(s, x(a(s))) ds
∥∥∥ ≤M

t+h�
t

γR(s) ds,

which implies that it tends to 0 as h→ 0.

Applying now the fixed point theorem of Schauder we infer that T has
a fixed point x in Bn. Clearly x is a mild solution of (2.4), (2.2). Moreover,
the continuity of T implies that the set S of mild solutions is closed.
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On the other hand, if condition (H-4) holds then S is bounded. In fact,
otherwise there exists a sequence xk ∈ S such that Rk = ‖xk‖∞ ≥ k. Hence

‖xk(t)‖ = ‖T xk(t)‖ ≤M‖x0‖ + M

τ�
0

γRk(s) ds,

which yields

1 ≤ lim sup
k→∞

M

Rk

τ�
0

γRk(s) ds;

but this is impossible by (H-4). Finally, using the fact that T is completely
continuous we infer that S is compact. Thus the proof is complete.

Remark. The semigroups that arise in applications are frequently com-
pact. For this reason we point out that condition (H-2) holds when T is
compact and the function f takes closed bounded sets into bounded sets.

Now we study the properties of S. We assume that the conditions of
Theorem 3.1 hold. We need the following property.

Lemma 2.1. Assume that f is continuous and conditions (H-1) and
(H-2) hold. Then for R > 0 the set { � t0 T (t − s)f(s, y(s)) ds : 0 ≤ t ≤ τ ,
y ∈ L∞(I;X), ‖y‖∞ ≤ R} is relatively compact.

Proof. Proceeding as in the proof of Theorem 2.1 we infer that the set

V (t) =
{ t�

0

T (t− s)f(s, y(s)) ds : y ∈ L∞(I;X), ‖y‖∞ ≤ R
}

is relatively compact. We put V =
⋃

0≤t≤τ V (t) and we claim that V is re-
latively compact. We first observe that for each ε > 0, there is δ > 0 such
that

V (t+ h) ⊆ T (h)V (t) +Bε, |h| ≤ δ.
In fact, choose δ > 0 such that M � t+ht γR(s) ds ≤ ε for h ≤ δ. If x ∈ V (t+h)
then we can write

x =
t+h�

0

T (t+ h− s)f(s, y(s)) ds

= T (h)
t�
0

T (t− s)f(s, y(s)) ds+
t+h�
t

T (t+ h− s)f(s, y(s)) ds.

Since the first term on the right hand side is in T (h)V (t), and the norm of
the second term is less than or equal to M � t+ht γR(s) ds, we have established
the claim.
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Now, assuming that δ = τ/n for some n ∈ N large enough we have

V ⊆
n−1⋃

i=0

( ⋃

0≤h≤δ
T (h)V (iδ) +Bε

)
=

⋃

0≤h≤δ
T (h)

( n−1⋃

i=0

V (iδ)
)

+Bε,

which implies that V is relatively compact.

Next we assume that the problem (2.4), (2.2) has mild solutions and we
denote by S the set of those solutions. For F ⊆ C(I;X) we denote by F(I)
the set {f(t) : f ∈ F , t ∈ I}.

Theorem 2.2. Assume that f and a are continuous functions and that
(H-1) and (H-2) are fulfilled. Suppose moreover that the following conditions
hold :

(H-5) The set S is compact.
(H-6) For all t ∈ I, a(t) ≤ t.

(H-7) 3M lim inf
R→∞

1
R

τ�
0

γR(s) ds < 1.

Then S is connected.

Proof. Set h(t) = T (t)x0. Applying (H-5) and (H-7) we can select a
constant R > 0 large enough such that ‖x‖∞ ≤ R for all x ∈ S and

‖h‖∞ + 3M
τ�
0

γR(s) ds ≤ R.(2.8)

Let V be the set constructed in the proof of Lemma 2.1. Without loss of
generality we can assume that V is absolutely convex. We set U = 2V ,
U1 = 3V and N1 = 2M � τ0 γR(s) ds.

We divide the proof into several steps.

Step 1. For a partition d of I formed by the points 0 = t0 < t1 < . . . <
tn−1 < tn = τ we consider the function z(·) given by z(0) = x0 and

z(t) = h(t) +
i−1∑

k=1

( tk�
tk−1

T (t− s)f(s, z(a(tk−1))) ds+ (tk − tk−1)uk
)

(2.9)

+
t�

ti−1

T (t− s)f(s, z(a(ti−1))) ds+ (t− ti−1)ui

for ti−1 < t ≤ ti, where we choose uk so that
∑i

k=1(tk − tk−1)uk ∈ U and
‖∑i

k=1(tk − tk−1)uk‖ ≤ N1 for all i = 1, . . . , n. Clearly z is a continuous
function. Next, for fixed z given by (2.9) we denote by y(·) and ϕ(·) the step
functions defined by y(0) = x0, ϕ(0) = u1, y(t) = z(a(tk−1)) and ϕ(t) = uk
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for tk−1 < t ≤ tk and k = 1, . . . , n. Thus, we can rewrite the definition of z
as

z(t) = h(t) +
t�
0

T (t− s)f(s, y(s)) ds+
t�
0

ϕ(s) ds.(2.10)

We shall show that ‖z(t)‖ ≤ R for 0 ≤ t ≤ τ, independently of the
division d and the choice of ui. From (2.8) we easily obtain ‖z(t)‖ ≤ R for
0 < t ≤ t1. Assuming now that this inequality holds on [0, ti−1], we show it
for ti−1 < t ≤ ti. In fact, since

∑i−1
k=1(tk − tk−1)uk + (t− ti−1)ui is a convex

combination of
∑i−1

k=1(tk − tk−1)uk and
∑i

k=1(tk − tk−1)uk, from (2.9) we
obtain

‖z(t)‖ ≤ ‖h(t)‖+
∥∥∥
t�
0

T (t− s)f(s, y(s)) ds
∥∥∥

+
∥∥∥
i−1∑

k=1

(tk − tk−1)uk + (t− ti−1)ui
∥∥∥

≤ ‖h‖∞ +M

τ�
0

γR(s) ds+ 2M
τ�
0

γR(s) ds,

which establishes our assertion.

Step 2. To simplify the construction we consider the points tk equally
spaced with δ = tk − tk−1 and, in addition to the conditions considered in
Step 1, we suppose that

∥∥∥δ
j∑

k=i+1

uk − [T ((j − i)δ)− I]
i∑

k=1

uk

∥∥∥ ≤ 2M
jδ�
iδ

γR(s) ds(2.11)

for all 1 ≤ i+1 ≤ j ≤ n. We prove that the set K formed by the functions z
defined by (2.9) is relatively compact in C(I;X). Since h is a fixed function,
if we write z̃ = z − h we must prove that K0 = {z̃ : z ∈ K} is relatively
compact.

From (2.9) and Lemma 2.1 it follows that

z̃(t) =
t�
0

T (t− s)f(s, y(s)) ds+ δ

i−1∑

k=1

uk + (t− ti−1)ui

∈ V + U ⊆ U1

for every z ∈ K and t ∈ I.
Now we prove that K0 is equicontinuous. Let 0 ≤ t′ ≤ t ≤ τ . From (2.9)

we can write
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z̃(t)− z̃(t′) =
t�
0

T (t− s)f(s, y(s)) ds−
t′�
0

T (t′ − s)f(s, y(s)) ds+
t�
t′
ϕ(s) ds

= [T (t− t′)− I]
t′�
0

T (t′ − s)f(s, y(s)) ds

+
t�
t′
T (t− s)f(s, y(s)) ds+

t�
t′
ϕ(s) ds

= [T (t− t′)− I]
(
z̃(t′)−

t′�
0

ϕ(s) ds
)

+
t�
t′
T (t− s)f(s, y(s)) ds+

t�
t′
ϕ(s) ds.

Since z̃(t′)− � t′0 ϕ(s) ds ∈ V and V is a compact set, it is sufficient to show
that � tt′ ϕ(s) ds converges to zero as t − t′ → 0, independently of the con-
struction of z.

Since U is compact and γR is integrable, for every ε > 0 there exists
η0 > 0 such that ‖(T (s) − I)u‖ ≤ ε/2 for all 0 ≤ s ≤ η0 and u ∈ U , and
2M � ss′ γR(s) ds ≤ ε/2 for all s′, s ∈ I with |s − s′| ≤ η0. We denote by C1
the constant

C1 = sup{s−1‖(T (s)− I)u‖ : η0 ≤ s ≤ τ, u ∈ U}
and we take 0 < η ≤ min{η0, η0ε/(2N1), ε/(2C1)}.

First we assume that t′, t coincide with some points of the partition, say
t′ = ti and t = tj . In this case,

t�
t′
ϕ(s) ds = δ

j∑

k=i+1

uk

= δ

j∑

k=i+1

uk − (T ((j − i)δ)− I)δ
i∑

k=1

uk

+ (T ((j − i)δ)− I)δ
i∑

k=1

uk

and applying (2.11) we obtain

∥∥∥
t�
t′
ϕ(s) ds

∥∥∥ ≤ 2M
t�
t′
γR(s) ds+

∥∥∥(T (t− t′)− I)δ
i∑

k=1

uk

∥∥∥.

Consequently, since δ
∑i

k=1 uk∈U , if tj− ti ≤ η0 it follows that ‖ � tt′ ϕ(s) ds‖
≤ ε.
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Let t − t′ ≤ η. We analyze three possible situations with regard to the
relative location of the points tk. First, we assume that there is no tk between
t′ and t. Hence, there is an i such that ti < t′ < t ≤ ti+1 and � tt′ ϕ(s) ds =
(t− t′)ui+1. From (2.11) we have

‖ui+1‖ ≤
2M
δ

ti+1�
ti

γR(s) ds+
∥∥∥(T (δ)− I)

i∑

k=1

uk

∥∥∥.

Hence, if δ ≤ η0, then since t− t′ ≤ δ, the above estimates imply that

(t− t′)‖ui+1‖ ≤ ε/2 +
t− t′
δ

∥∥∥(T (δ)− I)δ
i∑

k=1

uk

∥∥∥ ≤ ε,

while if δ ≥ η0 we obtain

(t− t′)‖ui+1‖ ≤ (t− t′) N1

δ
+ (t− t′) 1

δ

∥∥∥(T (δ)− I)δ
i∑

k=1

uk

∥∥∥ ≤ ε,

which establishes the assertion in this case.
Now we assume that there is an i such that ti−1 < t′ < ti < t < ti+1.

Then from our definitions it follows that
t�
t′
ϕ(s) ds = (ti − t′)ui + (t− ti)ui+1.

Since ti− t′ < t− t′ and t− ti < t− t′ we can argue as in the preceding case.
Finally, we assume that there is i < j such that ti−1 < t′ < ti < tj < t

< tj+1. Clearly,

‖φ(t)− φ(t′)‖ ≤ ‖φ(t)− φ(tj)‖+ ‖φ(tj)− φ(ti)‖+ ‖φ(ti)− φ(t′)‖
where we have abbreviated φ(t) = � t0 ϕ(s) ds. Since tj − ti ≤ t − t′, from
our initial remark we obtain ‖φ(tj)− φ(ti)‖ ≤ ε. Thus, this case is reduced
to estimating the first and third terms on the right hand side of the above
estimate. For the first term we observe that φ(t) is a convex combination of
φ(tj) and φ(tj+1), so

‖φ(t)− φ(tj)‖ ≤ ‖φ(tj+1)− φ(tj)‖,
and since δ = tj+1 − tj ≤ t − t′ we can repeat the previous argument. The
third term is estimated similarly.

From the Ascoli–Arzelà theorem it follows that K0 is relatively compact
and hence so is K = h+K0.

Step 3. Let now ε > 0 be fixed. Without loss of generality we also
assume that ε ≤ min{τ/2, 2N1} and we take ε1 = ε/(2Mτ). Using the
compactness of S andK, and the continuity of f and a, we infer the existence
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of 0 < δ1 ≤ ε such that

‖f(s, x1)− f(s, x2)‖ ≤ ε1(2.12)

for all s ∈ I and for every x1, x2 ∈ (K ∪ S)(I) such that ‖x1 − x2‖ ≤ δ1.
Similarly, there is δ2 > 0 such that

‖x(s)− x(t)‖ ≤ δ1/4(2.13)

for all x ∈ K ∪S and s, t ∈ I with |t− s| ≤ δ2, and there is δ3 > 0 such that

‖a(s)− a(t)‖ ≤ δ2(2.14)

whenever |t− s| ≤ δ3. Now we choose δ = τ/n ≤ min{δ1, δ2, δ3, δ1/(2Mε1)}.
In what follows we consider the partition d defined by ti = iδ, i =

0, . . . , n. Let Kε be the set formed by the functions defined by (2.9) with
(u1, . . . , un) ∈ Zε where Zε is the set of points (u1, . . . , un) ∈ (2δ−1U)n that
satisfy the following conditions:

(i) δ
i∑

k=1

uk ∈ U ;

(ii) δ
∥∥∥

i∑

k=1

uk

∥∥∥ ≤Mtiε1;

(iii)
∥∥∥δ

j∑

k=i+1

uk − δ[T ((j − i)δ)− I]
i∑

k=1

uk

∥∥∥ ≤ 2M
tj�
ti

γR(s) ds,

for all i = 1, . . . , n and j ≥ i+ 1.
We notice that condition (ii) implies that δ‖∑i

k=1 uk‖ ≤ N1. Next we
establish some properties of Kε.

Step 4. The set Kε is connected. This is an easy consequence of the fact
that the functions z ∈ Kε depend continuously on the choice of (u1, . . . , un)
∈ Zε and Zε is convex by our construction.

Step 5. In this step we show that the solutions of (2.5) can be approx-
imated by elements in Kε. Fix x ∈ S. We proceed to define z ∈ Kε so that
‖x− z‖∞ ≤ ε. We define z(·) inductively on the intervals [ti−1, ti]. To avoid
some cumbersome expressions we set p(t) = x(a(t)) and q(t) = z(a(t)).

Let i = 1. In this case t1 = δ and we take

u1 =
1
t1

t1�
0

T (t1 − s)[f(s, p(s))− f(s, p(0))] ds.

It is clear from our construction that u1 ∈ δ−1U . Moreover, by (2.12)–(2.14)
we have ‖f(s, p(s))− f(s, p(0))‖ ≤ ε1 for all 0 ≤ s ≤ δ, which implies that
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‖u1‖ ≤Mε1. We define

z(t) = h(t) +
t�
0

T (t− s)f(s, p(0)) ds+ tu1

for 0 ≤ t ≤ t1. From this expression it follows that

z(t1) = h(t1) +
t1�
0

T (t1 − s)f(s, p(0)) ds+ t1u1

= h(t1) +
t1�
0

T (t1 − s)f(s, p(s)) ds = x(t1).

Moreover, for 0 < t ≤ t1 we have

‖x(t)− z(t)‖ ≤
∥∥∥
t�
0

T (t− s)[f(s, p(s))− f(s, p(0))] ds
∥∥∥+ t‖u1‖

≤ 2Mε1t ≤ δ1/2.

Proceeding by induction, we assume that we have selected elements uk,
k = 1, . . . , i− 1, such that (u1, . . . , ui−1, 0, . . . , 0) ∈ Zε and the function z(t)
given by (2.9) for t ∈ [0, ti−1] satisfies z(tk) = x(tk) and the estimate

‖x(t)− z(t)‖ ≤ δ1/2, 0 ≤ t ≤ ti−1.

We now define the function z on [ti−1, ti]. We begin by selecting

ui =
1
δ

i−1∑

k=1

tk�
tk−1

[T (ti−s)−T (ti−1−s)] [f(s, p(s))−f(s, q(tk−1))] ds(2.15)

+
1
δ

ti�
ti−1

T (ti − s)[f(s, p(s))− f(s, q(ti−1))] ds.

Utilizing the function y(·) defined previously we can write

ui =
1
δ

ti�
0

T (ti − s)[f(s, p(s))− f(s, y(s))] ds

− 1
δ

ti−1�
0

T (ti−1 − s)[f(s, p(s))− f(s, y(s))] ds.

First we establish that (u1, . . . , ui, 0, . . . , 0) ∈ Zε. From the above expression
it follows easily that δui ∈ 2U and

δ

i∑

k=1

uk =
ti�
0

T (ti − s)[f(s, p(s))− f(s, y(s))] ds,
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which implies that δ
∑i

k=1 uk ∈ U and δ‖∑i
k=1 uk‖ ≤ N1. Moreover, for

m+ 1 ≤ j ≤ i, we have

δ

j∑

k=m+1

uk = δ

j∑

k=1

uk − δ
m∑

k=1

uk

=
tj�
0

T (tj − s)[f(s, p(s))− f(s, y(s))] ds

−
tm�
0

T (tm − s)[f(s, p(s))− f(s, y(s))] ds

= [T (tj − tm)− I]
tm�
0

T (tm − s)[f(s, p(s))− f(s, y(s))] ds

+
tj�
tm

T (tj − s)[f(s, p(s))− f(s, y(s))] ds,

which yields

δ

j∑

k=m+1

uk− [T (tj− tm)− I]δ
m∑

k=1

uk =
tj�
tm

T (tj−s)[f(s, p(s))−f(s, y(s))] ds,

which in turn implies the estimate
∥∥∥δ

j∑

k=m+1

uk − [T ((j −m)δ)− I]δ
m∑

k=1

uk

∥∥∥ ≤ 2M
tj�
tm

γR(s) ds.

In addition, for ti−1 < s ≤ ti we can write

p(s)− y(s) = p(s)− p(ti−1) + p(ti−1)− q(ti−1) + q(ti−1)− y(s).

From (2.13) and (2.14) we have ‖p(s) − p(ti−1)‖ ≤ δ1/4 and by induction
‖q(ti−1)− y(s)‖ = 0 and ‖p(ti−1) − q(ti−1)‖ ≤ δ1/2. Combining these with
(2.12) we infer that δ‖∑i

k=1 uk‖ ≤ Mtiε1, which completes the proof that
(u1, . . . , ui, 0, . . . , 0) ∈ Zε.

Now we define z(t) for ti−1 < t ≤ ti by means of (2.9). Using this
expression as well as the choice of uk, k = 1, . . . , i, we infer that

x(ti)− z(ti) =
ti�
0

T (ti − s)[f(s, p(s))− f(s, y(s))] ds− δ
i∑

k=1

uk

=
ti�
0

T (ti − s)[f(s, p(s))− f(s, y(s))] ds

−
ti−1�

0

T (ti−1 − s)[f(s, p(s))− f(s, y(s))] ds− δui = 0.
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Moreover, from (2.13) and the choice of δ it follows that

‖x(t)− z(t)‖ ≤ ‖x(t)− x(ti−1)‖+ ‖z(t)− z(ti−1)‖ ≤ δ1/2,

which establishes the assertion.

Step 6. In this step we prove that the elements of Kε are approximate
solutions of (2.5). Specifically, we show that

∥∥∥z(t)− h(t)−
t�
0

T (t− s)f(s, z(s)) ds
∥∥∥ ≤ ε

for all t ∈ I and z ∈ Kε. In fact, for ti−1 < t ≤ ti using (2.9) we have

z(t)− h(t)−
t�
0

T (t− s)f(s, q(s)) ds =
t�
0

T (t− s)[f(s, y(s))− f(s, q(s))] ds

+ δ

i−1∑

k=1

uk + (t− ti−1)ui,

and employing now (2.12) and the choice of δ we can establish the estimate
∥∥∥z(t)− h(t)−

t�
0

T (t− s)f(s, q(s)) ds
∥∥∥

≤
∥∥∥
t�
0

T (t− s)[f(s, y(s))− f(s, q(s))] ds
∥∥∥+

∥∥∥δ
i−1∑

k=1

uk + (t− ti−1)ui
∥∥∥

≤ 2Mτε1,

which shows our assertion.
Finally, collecting Steps 1 to 6 and applying Corollary 1.1 we complete

the proof.

When a(t) = t we obtain the classical semilinear ACP

x′(t) = Ax(t) + f(t, x(t)), 0 ≤ t ≤ τ.(2.16)

However, in this case we can establish the result without the stronger con-
dition (H-7). From now on, we denote by S the set of mild solutions of
(2.16), (2.2).

Theorem 2.3. Assume that f is continuous, conditions (H-1)–(H-3) are
fulfilled and S is compact. Then S is connected.

Proof. Since the argument is very similar to that used in the proof of
the preceding theorem we only present the main aspects. Moreover, we keep
the terminology introduced in the previous proof.

From Theorem 2.1 we know that S is nonempty. Since S(I) is compact
we can take N = sup{‖f(s, x)‖ : s ∈ I, x ∈ S(I)}. Applying (H-3) we infer
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that there exists R > 0 such that ‖x‖∞ ≤ R for all x ∈ S and

‖h‖∞ + 2NMτ +M

τ�
0

γR(s) ds ≤ R.

In this case we take as U an absolutely convex set such that

τco{T (t)f(s, x) : s, t ∈ I, x ∈ S(I)} ⊆ U.
We define z(·) by (2.9) where the elements uk are chosen so that

i∑

k=1

(tk − tk−1)uk ∈ 2U and
∥∥∥

i∑

k=1

(tk − tk−1)uk
∥∥∥ ≤ 2NMτ.

It is easy to see that ‖z(t)‖ ≤ R, t ∈ I.
Defining V, K0, K as in the proof of Theorem 2.2 we find that K is

relatively compact.
Proceeding by induction we define ui by (2.15). In this case p(s) = x(s),

and for ti−1 < s ≤ ti, we obtain y(s) = z(a(ti−1)) = z(ti−1) = x(ti−1). This
allows us to conclude the proof proceeding as in Theorem 2.2.
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