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Hessian nilpotent polynomials
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Abstract. In the recent work [BE1], [M], [Z1] and [Z2], the well-known Jacobian con-
jecture ([BCW], [E]) has been reduced to a problem on HN (Hessian nilpotent) polynomials
(the polynomials whose Hessian matrix is nilpotent) and their (deformed) inversion pairs.
In this paper, we prove several results on HN polynomials, their (deformed) inversion pairs
as well as on the associated symmetric polynomial or formal maps. We also propose some
open problems for further study.

1. Introduction. In the recent work [BE1], [M], [Z1] and [Z2], the well-
known Jacobian conjecture (see [BCW] and [E]) has been reduced to a prob-
lem on HN (Hessian nilpotent) polynomials, i.e. the polynomials whose Hes-
sian matrix is nilpotent, and their (deformed) inversion pairs. In this paper,
we prove some properties of HN polynomials, the (deformed) inversion pairs
of HN polynomials, the associated symmetric polynomial or formal maps,
and the graphs assigned to homogeneous harmonic polynomials. Another
purpose of this paper is to draw the reader’s attention to some open prob-
lems which we believe will be interesting and important for further study of
these objects.

In this section we first discuss some background and motivation for the
study of HN polynomials and their (deformed) inversion pairs. We also fix
some terminology and notation that will be used throughout this paper.
Then we describe the arrangement of the paper.

1.1. Background and motivation. Let z = (z1, . . . , zn) be n free com-
mutative variables. We denote by C[z] (resp. C[[z]]) the algebra of poly-
nomials (resp. formal power series) of z over C. A polynomial or formal
power series P (z) is said to be HN (Hessian nilpotent) if its Hessian matrix
Hes P := (∂2P/∂zi∂zj) is nilpotent. The study of HN polynomials is mainly
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motivated by the recent progress achieved in [BE1], [M] and [Z2] on the
well-known Jacobian conjecture (JC), which we will briefly explain below.

Recall that the JC first proposed by Keller [Ke] in 1939 claims: for any

polynomial map F of C
n with Jacobian j(F ) = 1, its formal inverse map G

is also a polynomial map. Despite intense study for more than half a century,
the conjecture is still open even for the case n = 2. For more history and
known results before 2000 on the Jacobian conjecture, see [BCW], [E] and
references there. In 2003, M. de Bondt and A. van den Essen ([BE1]) and
G. Meng ([M]) independently made the following breakthrough on the JC.

Let Di := ∂/∂zi (1 ≤ i ≤ n) and D = (D1, . . . , Dn). For any P (z) ∈
C[[z]], denote by ∇P (z) the gradient of P (z), i.e.

∇P (z) := (D1P (z), . . . , DnP (z)).

We say a formal map F (z) = z − H(z) is symmetric if H(z) = ∇P (z) for
some P (z) ∈ C[[z]]. Then the symmetric reduction of the JC achieved in
[BE1] and [M] is that to prove or disprove the JC, it is enough to consider

only symmetric polynomial maps. Combining this with the classical homo-

geneous reduction achieved in [BCW] and [Y], one may further assume that
the symmetric polynomial maps have the form F (z) = z −∇P (z) with P (z)
homogeneous (of degree 4). Note that in this case the Jacobian condition
j(F ) = 1 is equivalent to the condition that P (z) is HN. For some other
recent results on symmetric polynomial or formal maps, see [BE1]–[BE5],
[EW], [M], [Wr1], [Wr2], [Z1], [Z2] and [EZ].

Based on the homogeneous reduction and the symmetric reduction of
the JC discussed above, the author showed in [Z2] that the JC is actually
equivalent to the following vanishing conjecture for HN polynomials.

Conjecture 1.1 (Vanishing Conjecture). Let ∆ :=
∑n

i=1 D2
i be the

Laplace operator on C[z]. Then, for any HN polynomial P (z) (of homoge-

neous of degree d = 4), ∆mPm+1(z) = 0 when m ≫ 0.

Furthermore, the following criterion of Hessian nilpotency for formal
power series was also proved in [Z2].

Proposition 1.2. For any P (z) ∈ C[[z]] with o(P (z)) ≥ 2, the following

statements are equivalent.

(1) P (z) is HN.

(2) ∆mPm = 0 for any m ≥ 1.

(3) ∆mPm = 0 for any 1 ≤ m ≤ n.

A crucial idea in [Z2] is to study a special formal deformation of sym-
metric formal maps. More precisely, let t be a central formal parameter. For
any P (z) ∈ C[[z]], we call F (z) = z −∇P (z) the associated symmetric map

of P (z). Let Ft(z) = z − t∇P (z). If the order o(P (z)) of P (z) with respect
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to z is greater than or equal to 2, then Ft(z) is a formal map of C[[t]][[z]]
with Ft=1(z) = F (z). Therefore, we may view Ft(z) as a formal deforma-
tion of the formal map F (z). In this case, one can also show (see [M] or
Lemma 3.14 in [Z1]) that the formal inverse map Gt(z) := F−1

t (z) of Ft(z)
exists and is also symmetric, i.e. there exists a unique Qt(z) ∈ C[[t]][[z]] with
o(Qt(z)) ≥ 2 such that Gt(z) = z + t∇Qt(z). We call Qt(z) the deformed

inversion pair of P (z). Note that, whenever Qt=1(z) makes sense, the formal
inverse map G(z) of F (z) is given by G(z) = Gt=1(z) = z +∇Qt=1(z), so in
this case we call Q(z) := Qt=1(z) the inversion pair of P (z).

Note that, under the condition o(P (z)) ≥ 2, the deformed inversion pair
Qt(z) of P (z) might not be in C[t][[z]], so Qt=1(z) may not make sense. But
if we assume further that J(Ft)(0) = 1, or equivalently, (HesP )(0) is nilpo-
tent, then Ft(z) is an automorphism of C[t][[z]], hence so is its inverse map
Gt(z). Therefore, in this case Qt(z) lies in C[t][[z]] and Qt=1(z) makes sense.
Throughout this paper, whenever the inversion pair Q(z) of a polynomial
or formal power series P (z) ∈ C[[z]] (not necessarily HN) is considered, our
assumption on P (z) will always be o(P (z)) ≥ 2 and (HesP )(0) is nilpotent.
Note that, for any HN P (z) ∈ C[[z]] with o(P (z)) ≥ 2, the condition that
(Hes P )(0) is nilpotent holds automatically.

For later purposes, let us recall the following formula derived in [Z2] for
the deformed inversion pairs of HN formal power series.

Theorem 1.3. Suppose P (z) ∈ C[[z]] with o(P (z)) ≥ 2 is HN. Then

Qt(z) =

∞∑

m=0

tm

2mm!(m + 1)!
∆mPm+1(z).(1.1)

From the equivalence of the JC and the VC discussed above, we see that
the study of HN polynomials and their (deformed) inversion pairs becomes
important and necessary, at least when the JC is concerned. Note that, due
to the identity TrHes P = ∆P , HN polynomials are just a special fam-
ily of harmonic polynomials which are among the most classical objects in
mathematics. Even though harmonic polynomials has been very well studied
since the late eighteenth century, it seems that not much is known about
HN polynomials. We believe that they deserve much more attention from
mathematicians.

1.2. Arrangement. Considering the length of this paper, we here de-
scribe its arrangement in more detail.

In Section 2, we consider the following two questions. Let P, S, T ∈ C[[z]]
with P = S + T , and Q, U, V their respective inversion pairs.

Q1: Under what conditions, P is HN iff both S and T are HN?

Q2: Under what conditions, Q = U + V ?
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We give some sufficient conditions in Theorems 2.1 and 2.7 for the two
questions above. In Section 3, we employ a recursion formula for inversion
pairs derived in [Z1] and (1.1) above to derive some estimates for the ra-
dius of convergence of inversion pairs of homogeneous HN polynomials (see
Propositions 3.1 and 3.3).

We say that P (z) ∈ C[[z]] is self-inverting if its inversion pair Q(z) is
P (z) itself. In Section 4, by using a general result on quasi-translations
proved in [B], we derive some properties of HN self-inverting formal power
series. Another purpose of that section is to draw the reader’s attention
to Open Problem 4.8 on classification of HN self-inverting polynomials or
formal power series.

In Section 5, we show in Proposition 5.1 that when the base field has
characteristic p > 0, the VC, unlike the JC, actually holds for any polyno-
mial P (z) even without the HN condition on P (z). It also holds in this case
for any HN formal power series. One interesting question (see Open Prob-
lem 5.2) is to see if the VC like the JC fails over C when P (z) is allowed to
be any HN formal power series.

In Section 6, we prove a criterion of Hessian nilpotency for homogeneous
polynomials over C (see Theorem 6.1). Considering the criterion in Propo-
sition 1.2, this criterion is somewhat surprising but its proof turns out to be
very simple.

Section 7 is mainly motivated by the following question raised by M.
Kumar ([K]) and D. Wright ([Wr3]): for a symmetric formal map F (z) =
z − ∇P (z), how to write f(z) := 1

2σ2 − P (z) (where σ2 :=
∑n

i=1 z2
i ) and

P (z) itself as formal power series in F (z)? In that section, we derive some
explicit formulas to answer this question and also the same question for σ2

(see Proposition 7.2). From those formulas, we also show in Theorem 7.4
that the VC holds for a HN polynomial P (z) iff one (hence, all) of σ2, P (z)
and f(z) can be written as a polynomial in F , where F (z) = z −∇P (z) is
the associated polynomial map of P (z).

Finally, in Section 8, we discuss a graph G(P ) assigned to each homoge-
neous harmonic polynomial P (z). The graph G(P ) was first proposed by the
author and later studied by Roel Willems in his master thesis [Wi] under the
direction of Arno van den Essen. In Subsection 8.1 we give the definition of
G(P ) for any homogeneous harmonic polynomial P (z) and discuss the con-

nectedness reduction (see Corollary 8.5) which says that to study the VC for
homogeneous HN polynomials P (z), it is enough to consider the case when
the graph G(P ) is connected. In Subsection 8.2 we consider a connection of
G(P ) with the tree expansion formula derived in [M] and [Wr2] for the inver-
sion pair Q(z) of P (z) (see also Proposition 8.9). As an application, we give
another proof for the connectedness reduction discussed in Corollary 8.5.
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Finally, we remark that even though we could have focused only on HN
polynomials, at least when only the JC is concerned, we formulate and prove
our results in the more general setting of HN formal power series whenever
possible.

Acknowledgements. The author is grateful to Professors Arno van
den Essen, Mohan Kumar and David Wright for inspiring communications
and constant encouragement. Section 7 was mainly motivated by some ques-
tions raised by Mohan Kumar and David Wright. The author would also like
to thank Roel Willems for sending his master thesis in which he has obtained
some very interesting results on the graphs G(P ) of homogeneous harmonic
polynomials. Last but not least, the author thanks the referee and the editor
for many valuable suggestions.

2. Disjoint formal power series and their deformed inversion

pairs. Let P, S, T ∈ C[[z]] with P = S + T , and Q, U , V their respective
inversion pairs. In this section, we consider the following two questions:

Q1: Under what conditions, P is HN if and only if both S and T are HN?

Q2: Under what conditions, Q = U + V ?

We give some answers to questions Q1 and Q2 in Theorems 2.1 and 2.7,
respectively. The results proved here will also be needed in Section 8 when
we consider a graph associated to homogeneous harmonic polynomials.

For question Q1 above, we have the following result.

Theorem 2.1. Let S, T ∈ C[[z]] be such that 〈∇(DiS),∇(DjT )〉 = 0 for

any 1 ≤ i, j ≤ n, where 〈·, ·〉 denotes the standard C-bilinear form on C
n.

Let P = S + T . Then:

(a) Hes(S) Hes(T ) = Hes(T ) Hes(S) = 0.
(b) P is HN iff both S and T are HN.

Note that statement (b) was first proved by R. Willems ([Wi]) in a special
setting as in Lemma 2.6 below for homogeneous harmonic polynomials.

Proof. (a) For any 1 ≤ i, j ≤ n, consider the (i, j)th entry of the product
Hes(S) Hes(T ):

n∑

k=1

∂2S

∂zi∂zk

∂2T

∂zk∂zj
= 〈∇(DiS),∇(DjT )〉 = 0.(2.1)

Hence Hes(S) Hes(T ) = 0. Similarly, we have Hes(T ) Hes(S) = 0.
(b) follows directly from (a) and the lemma below.

Lemma 2.2. Let A, B and C be n × n matrices with entries in any

commutative ring. Suppose that A = B + C and BC = CB = 0. Then A is

nilpotent iff both B and C are nilpotent.
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Proof. The (⇐) part is trivial because B and C in particular commute
with each other.

To show (⇒), note that BC = CB = 0. So for any m ≥ 1, we have

AmB = (B + C)mB = (Bm + Cm)B = Bm+1.

Similarly, we have Cm+1 = AmC. Therefore, if AN = 0 for some N ≥ 1, we
have BN+1 = CN+1 = 0.

Note that, for the (⇐) part of (b) in Theorem 2.1, we only need a weaker
condition: for any 1 ≤ i, j ≤ n,

〈∇(DiS),∇(DjT )〉 = 〈∇(DjS),∇(DiT )〉,

which ensures that Hes(S) and Hes(T ) commute.

To consider the second question Q2, let us first fix the following notation.

For any P ∈ C[[z]], let A(P ) denote the subalgebra of C[[z]] generated
by all partial derivatives of P (of any order). We also define a sequence
{Q[m](z) | m ≥ 1} by writing the deformed inversion pair Qt(z) of P (z) as

Qt(z) =
∑

m≥1

tm−1Q[m](z).(2.2)

Lemma 2.3. For any P ∈ C[[z]], we have:

(a) A(P ) is closed under the action of any differential operator on C[z]
with constant coefficients.

(b) For any m ≥ 1, we have Q[m](z) ∈ A(P ).

Proof. (a) Note that, by the definition of A(P ), a formal power series
g(z) ∈ C[[z]] lies in A(P ) iff it can be written (not necessarily uniquely)
as a polynomial in partial derivatives of P (z). Then, by the Leibniz rule,
it is easy to see that, for any g(z) ∈ A(P ), Dig(z) ∈ A(P ) (1 ≤ i ≤ n).
Repeating this argument, we see that any partial derivative of g(z) is in
A(P ). Hence (a) follows.

(b) Recall that, by Proposition 3.7 in [Z1], we have the following recurrent
formula for Q[m](z) (m ≥ 1) in general:

Q[1](z) = P (z),(2.3)

Q[m](z) =
1

2(m − 1)

∑

k,l≥1
k+l=m

〈∇Q[k](z),∇Q[l](z)〉 for any m ≥ 2.(2.4)

By using (a), the recurrent formulas above and induction on m ≥ 1, it is
easy to check that (b) holds.

Definition 2.4. For any S, T ∈ C[[z]], we say S and T are disjoint if,
for any g1 ∈ A(S) and g2 ∈ A(T ), we have 〈∇g1,∇g2〉 = 0.
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This terminology will be justified in Section 8 when we consider a graph
G(P ) associated to homogeneous harmonic polynomials P .

Lemma 2.5. Let S, T ∈ C[[z]]. Then S and T are disjoint iff , for any

α, β ∈ N
n, we have

〈∇(DαS),∇(DβT )〉 = 0.(2.5)

Proof. The (⇒) part is trivial. Conversely, for any g1 ∈ A(S) and g2 ∈
A(T ) (i = 1, 2), we need to show

〈∇g1,∇g2〉 = 0.

But this can be easily checked by first reducing to the case where g1 and
g2 are monomials in partial derivatives of S and T , respectively, and then
applying the Leibniz rule and (2.5).

Examples of disjoint polynomials or formal power series are given in the
following lemma, which will also be needed later in Section 8.

Lemma 2.6. Let I1 and I2 be two finite subsets of C
n such that , for

any αi ∈ Ii (i = 1, 2), we have 〈α1, α2〉 = 0. Denote by Ai (i = 1, 2) the

completion of the subalgebra of C[[z]] generated by hα(z) := 〈α, z〉 (α ∈ Ii),
i.e. Ai is the set of all formal power series in hα(z) (α ∈ Ii) over C. Then,
for any Pi ∈ Ai (i = 1, 2), P1 and P2 are disjoint.

Proof. First, by a similar argument to the proof of Lemma 2.3(a), it is
easy to check that Ai (i = 1, 2) is closed under the action of any differential
operator with constant coefficients. Secondly, since each Ai is a subalgebra
of C[[z]], we have A(Pi) ⊂ Ai (i = 1, 2).

Therefore, to show that P1 and P2 are disjoint, it will be enough to show
that, for any gi ∈ Ai (i = 1, 2), we have 〈∇g1,∇g2〉 = 0. But this can be
easily checked by first reducing to the case when gi (i = 1, 2) are monomials
in hα(z) (α ∈ Ii), and then applying the Leibniz rule and the following
identity: for any α, β ∈ C

n,

〈∇hα(z),∇hβ(z)〉 = 〈α, β〉.

Now, for question Q2, we have the following result.

Theorem 2.7. Let P, S, T ∈ C[[z]] with order at least 2, and Qt, Ut, Vt

their respective deformed inversion pairs. Assume that P = S + T and S, T
are disjoint. Then:

(a) Ut and Vt are also disjoint , i.e. for any α, β ∈ N
n,

〈∇DαUt(z),∇DβVt(z)〉 = 0.

(b) We further have

(2.6) Qt = Ut + Vt.
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Proof. (a) follows directly from Lemmas 2.3(b) and 2.5.
(b) Let Q[m], U[m] and V[m] (m ≥ 1) be defined as in (2.2). Hence it is

enough to show

Q[m] = U[m] + V[m](2.7)

for any m ≥ 1. We use induction on m ≥ 1. When m = 1, (2.7) follows
from the condition P = S + T and (2.3). For any m ≥ 2, by (2.4) and the
induction assumption, we have

Q[m] =
1

2(m − 1)

∑

k,l≥1
k+l=m

〈∇Q[k],∇Q[l]〉

=
1

2(m − 1)

∑

k,l≥1
k+l=m

〈∇U[k] + ∇V[k],∇U[l] + ∇V[l]〉

(noting that, by Lemma 2.3, U[j] ∈ A(S) and V[j] ∈ A(T ), 1 ≤ j ≤ m:)

=
1

2(m − 1)

∑

k,l≥1
k+l=m

〈∇U[k],∇U[l]〉 +
1

2(m − 1)

∑

k,l≥1
k+l=m

〈∇V[k],∇V[l]〉

(applying the recursion formula (2.4) to both U[m] and V[m]:)

= U[m] + V[m].

As will be pointed out later in Remark 8.11, one can also prove this
theorem by using a tree expansion formula for inversion pairs, which was
derived in [M] and [Wr2], in the setting of Lemma 2.6.

From Theorems 2.1, 2.7 and (1.1), (2.2), it is easy to see that we have
the following corollary.

Corollary 2.8. Let Pi ∈ C[[z]] (1 ≤ i ≤ k) be pairwise disjoint. Set

P =
∑k

i=1 Pi. Then:

(a) P is HN iff each Pi is HN.

(b) Suppose that P is HN. Then, for any m ≥ 0,

(2.8) ∆mPm+1 =
k∑

i=1

∆mPm+1
i .

Consequently , if the VC holds for each Pi, then it also holds for P .

3. Local convergence of deformed inversion pairs of homoge-

neous HN polynomials. Let P (z) be a formal power series which is con-
vergent near 0 ∈ C

n. Then the associated symmetric map F (z) = z − ∇P
is a well-defined analytic map from an open neighborhood of 0 ∈ C

n to C
n.
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If we further assume that JF (0) = In×n, then the formal inverse G(z) =
z +∇Q(z) of F (z) is also locally well-defined analytic map. So the inversion
pair Q(z) of P (z) is also locally convergent near 0 ∈ C

n. In this section,
we use formulas (2.4), (1.1) and the Cauchy estimates to derive some esti-
mates for the radius of convergence of inversion pairs of homogeneous HN
polynomials (see Propositions 3.1 and 3.3).

First let us fix the following notation.

For any a ∈ C
n and r > 0, we denote by B(a, r) (resp. S(a, r)) the open

ball (resp. sphere) centered at a ∈ C with radius r > 0. The unit sphere
S(0, 1) will also be denoted by S2n−1. Furthermore, we let Ω(a, r) be the
polydisk centered at a ∈ C

n with radius r > 0, i.e. Ω(a, r) := {z ∈ C
n |

|zi − ai| < r, 1 ≤ i ≤ n}. For any subset A ⊂ C
n, we will use Ā to denote

the closure of A in C
n.

For any polynomial P (z) ∈ C[z] and a compact subset D ⊂ C
n, we let

|P |D be the maximum value of |P (z)| over D. In particular, when D is the
unit sphere S2n−1, we also write |P | = |P |D, i.e.

|P | := max{|P (z)| | z ∈ S2n−1}.(3.1)

Note that, for any r ≥ 0 and a ∈ B(0, r), we have Ω(a, r) ⊂ B(a, r) ⊂
B(0, 2r). Combining this with the well-known maximum principle for holo-
morphic functions, we get

|P |Ω(a,r) ≤ |P |B(a,r) ≤ |P |B(0,2r) = |P |S(0,2r).(3.2)

For the inversion pair Q of a homogeneous polynomial P without the
HN condition, we have the following estimate for the radius of convergence
at 0 ∈ C

n.

Proposition 3.1. Let P (z) be a non-zero homogeneous polynomial (not

necessarily HN ) of degree d ≥ 3 and r0 = (n2d−1|P |)1/(2−d). Then the

inversion pair Q(z) converges over the open ball B(0, r0).

To prove the proposition, we need the following lemma.

Lemma 3.2. Let P (z) be any polynomial and r > 0. Then, for any

a ∈ B(0, r) and m ≥ 1, we have

|Q[m](a)| ≤
nm−1|P |mS(0,2r)

2m−1r2m−2
.(3.3)

Proof. We use induction on m ≥ 1. First, when m = 1, by (2.3) we have
Q[1] = P . Then (3.3) follows from the fact that B(a, r) ⊂ B(0, 2r) and from
the maximum principle for holomorphic functions.
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Assume (3.3) holds for any 1 ≤ k ≤ m−1. Then, by the Cauchy estimates
of holomorphic functions (see e.g. Theorem 1.6 in [R]), we have

|(DiQ[k])(a)| ≤
1

r
|Q[k]|Ω(0,r)

≤
nk−1|P |kB(0,2r)

2k−1r2k−1
.(3.4)

By (2.4) and (3.4), we have

|Q[m](a)| ≤
1

2(m − 1)

∑

k,l≥1
k+l=m

|〈∇Q[k],∇Q[l]〉|

≤
1

2(m − 1)

∑

k,l≥1
k+l=m

n
nk−1|P |kS(0,2r)

2k−1r2k−1

nl−1|P |lS(0,2r)

2l−1r2l−1

=
nm−1|P |mS(0,2r)

2m−1r2m−2
.

Proof of Proposition 3.1. By (2.2), we know that,

Q(z) =
∑

m≥1

Q[m](z).(3.5)

To show the proposition, it is enough to show that the infinite series above
converges absolutely over B(0, r) for any r < r0.

First, for any m ≥ 1, let Am be the RHS of (3.3). Note that, since P is
homogeneous of degree d ≥ 3, we have

|P |mB(0,2r) = ((2r)d|P |S2n−1)m = (2r)dm|P |m.(3.6)

Therefore, for any m ≥ 1,

Am = 2(d−1)m+1nm−1r(d−2)m+2|P |m,(3.7)

and by Lemma 3.2,

|Q[m](a)| ≤ Am for any a ∈ B(0, r).(3.8)

Since 0 < r < r0 = (n2d−1|P |)2−d, it is easy to see that

lim
m→∞

Am+1

Am
= n2d−1rd−2|P | < 1.

Therefore, by the comparison test, the series in (3.5) converges absolutely
and uniformly over B(0, r).

Note that the estimate in Proposition 3.1 depends on the number n of
variables. Next we show that, with the HN condition on P , an estimate
independent of n can be obtained as follows.

Proposition 3.3. Let P (z) be a homogeneous HN polynomial of degree

d ≥ 4 and set r0 := (2d+1|P |)1/(2−d). Then the inversion pair Q(z) of P (z)
converges over the open ball B(0, r0).
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Note that, when d = 2 or 3, by Wang’s theorem ([Wa]), the JC holds in
general. Hence it also holds for the associated symmetric map F (z) = z−∇P
when P (z) is HN. Therefore Q(z) in this case is also a polynomial of z and
converges over the whole space C

n.
To prove the proposition above, we first need the following two lemmas.

Lemma 3.4. Let P (z) be a homogeneous polynomial of degree d ≥ 1 and

r > 0. For any a ∈ B(0, r), m ≥ 0 and α ∈ N
n, we have

|(DαPm+1)(a)| ≤
α!

r|α|
(2r)d(m+1)|P |m+1.(3.9)

Proof. First, by the Cauchy estimates and (3.2), we have

|(DαPm+1)(a)| ≤
α!

r|α|
|Pm+1|

Ω(a,r)
≤

α!

r|α|
|Pm+1|

B(0,2r)
.(3.10)

On the other hand, by the maximum principle and the condition that P
is homogeneous of degree d ≥ 3, we have

|Pm+1|
B(0,2r)

= |P |m+1

B(0,2r)
= |P |m+1

S(0,2r)
= ((2r)d|P |)m+1(3.11)

= (2r)d(m+1)|P |m+1.

Then, combining (3.10) and (3.11), we get (3.9).

Lemma 3.5. For any m ≥ 1, we have

∑

α∈Nn

|α|=m

α! ≤ m!

(
m + n − 1

m

)
=

(m + n − 1)!

(n − 1)!
.(3.12)

Proof. First, for any α ∈ N
n with |α| = m, we have α! ≤ m! since(m

α

)
= m!

α! is always a positive integer. Therefore,
∑

α∈N
n

|α|=m

α! ≤ m!
∑

α∈N
n

|α|=m

1.

Secondly,
∑

α∈Nn, |α|=m 1 is just the number of distinct α ∈ N
n with

|α| = m, which is the same as the number of distinct monomials in n free
commutative variables of degree m. Since the latter is well-known to be(m+n−1

m

)
, we have

∑

α∈N
n

|α|=m

α! ≤ m!

(
m + n − 1

m

)
=

(m + n − 1)!

(n − 1)!
.

Proof of Proposition 3.3. By (1.1), we know that

Q(z) =
∑

m≥1

∆mPm+1

2mm!(m + 1)!
.(3.13)
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To show the proposition, it is enough to show that the infinite series above
converges absolutely over B(0, r) for any r < r0.

We first give an upper bound for the general term in (3.13) over B(0, r).
We have

∆mPm+1 =
( n∑

i=1

D2
i

)m
Pm+1 =

∑

α∈N
n

|α|=m

m!

α!
D2αPm+1.(3.14)

Therefore,

|∆mPm+1(a)| ≤
∑

α∈N
n

|α|=m

m!

α!
|D2αPm+1(a)|

(applying Lemma 3.4 with α replaced by 2α:)

≤
∑

α∈N
n

|α|=m

m!

α!

(2α)!

r2m
(2r)d(m+1)|P |m+1

(noting that (2α)! ≤ [(2α)!!]2 = 22m(α!)2:)

≤
∑

α∈N
n

|α|=m

m!

α!

22m(α!)2

r2m
(2r)d(m+1)|P |m+1

= m!22m+d(m+1)rd(m+1)−2m|P |m+1
∑

α∈N
n

|α|=m

α!

(applying Lemma 3.5:)

=
m!(m + n − 1)!22m+d(m+1)rd(m+1)−2m|P |m+1

(n − 1)!
.

Therefore, for any m ≥ 1, we have
∣∣∣∣

∆mPm+1

2mm!(m + 1)!

∣∣∣∣ ≤
2m+d(m+1)rd(m+1)−2m|P |m+1(m + n − 1)!

(m + 1)!(n − 1)!
.(3.15)

For any m ≥ 1, let Am be the right hand side of (3.15). Then, by a straight-
forward calculation,

Am+1

Am
=

m + n

m + 2
2d+1rd−2|P |.(3.16)

Since r < r0 = (2d+1|P |)1/(2−d), it is easy to see that

lim
m→∞

Am+1

Am
= 2d+1rd−2|P | < 1.
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Therefore, by the comparison test, the series in (3.13) converges absolutely
and uniformly over B(0, r).

4. Self-inverting formal power series. Note that, by the definition
of inversion pair, Q ∈ C[[z]] is the inversion pair of P ∈ C[[z]] iff P is
the inversion pair of Q. In other words, the relation that Q and P are the
inversion pairs of each other is in some sense a duality relation. Naturally,
one may ask which P (z) are self-dual or self-inverting In this section, we
discuss this special family of polynomials or formal power series.

Another purpose of this section is to draw the reader’s attention to the
problem of classification of HN self-inverting polynomials (see Open Problem
4.8). Even though the classification of HN polynomials seems to be out of
reach at present, we believe that the classification of (HN) self-inverting
polynomials is much more approachable.

Definition 4.1. A formal power series P (z) ∈ C[[z]] with o(P (z)) ≥ 2
and (HesP )(0) nilpotent is said to be self-inverting if its inversion pair
is P (z).

Following the terminology introduced in [B], we say a formal map F (z) =
z − H(z) with H(z) ∈ C[[z]]×n and o(H(z)) ≥ 1 is a quasi-translation if
j(F )(0) 6= 0 and its formal inverse map is given by G(z) = z + H(z).

Therefore, for any P (z) ∈ C[[z]] with o(P (z)) ≥ 2 and (HesP )(0)
nilpotent, P (z) is self-inverting iff the associated symmetric formal map
F (z) = z −∇P (z) is a quasi-translation.

The following general result has been proved in Proposition 1.1 of [B]
for polynomial quasi-translations.

Proposition 4.2. A formal map F (z) = z − H(z) with o(H) ≥ 1 and

JH(0) nilpotent is a quasi-translation if and only if JH · H = 0.

The proof in [B] works equally well for formal quasi-translations under
the condition that JH(0) is nilpotent. Since it has also been shown in Propo-
sition 1.1 of [B] that, for any polynomial quasi-translation F (z) = z−H(z),
JH(z) is always nilpotent, the condition that JH(0) is nilpotent in the
proposition above does not put any extra restriction for the case of polyno-
mial quasi-translations.

From Proposition 4.2, we immediately have the following criterion for
self-inverting formal power series.

Proposition 4.3. For any P (z) ∈ C[[z]] with o(P ) ≥ 2 and (Hes P )(0)
nilpotent , P (z) is self-inverting if and only if 〈∇P,∇P 〉 = 0.

Proof. Since o(P ) ≥ 2 and (HesP )(0) is nilpotent, by Proposition 4.2
we know that P (z) is self-inverting iff J(∇P ) ·∇P = (Hes P ) ·∇P = 0. But,
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on the other hand, it is easy to check that, for any P (z) ∈ C[[z]], we have
the following identity:

(Hes P ) · ∇P =
1

2
∇〈∇P,∇P 〉.

Therefore, (Hes P ) · ∇P = 0 iff ∇〈∇P,∇P 〉 = 0, and iff 〈∇P,∇P 〉 = 0
because o(〈∇P,∇P 〉) ≥ 2.

Corollary 4.4. For any P (z) ∈ C[[z]] with o(P ) ≥ 2 and (Hes P )(0)
nilpotent , if P (z) is self-inverting , then so is Pm(z) for any m ≥ 1.

Proof. For any m ≥ 2, we have o(Pm(z)) ≥ 2m > 2 and (HesP )(0) = 0.
Hence the corollary follows immediately from Proposition 4.3 and the fol-
lowing general identity:

〈∇Pm,∇Pm〉 = m2P 2m−2〈∇P,∇P 〉.(4.1)

Corollary 4.5. For any harmonic P (z) ∈ C[[z]] with o(P ) ≥ 2 and

(Hes P )(0) nilpotent , P (z) is self-inverting iff ∆P 2 = 0.

Proof. This follows immediately from Proposition 4.3 and the following
general identity:

∆P 2 = 2(∆P )P + 2〈∇P,∇P 〉.(4.2)

Proposition 4.6. Let P (z) be a harmonic self-inverting formal power

series. Then, for any m ≥ 1, Pm is HN.

Proof. First, we use induction on m ≥ 1 to show that ∆Pm = 0 for any
m ≥ 1.

The case of m = 1 is our assumption. For any m ≥ 2, consider

∆Pm = ∆(P · Pm−1) = (∆P )Pm−1 + P (∆Pm−1) + 2〈∇P,∇Pm−1〉

= (∆P )Pm−1 + P (∆Pm−1) + 2(m − 1)Pm−2〈∇P,∇P 〉.

Then, by the induction assumption and Proposition 4.3, we get ∆Pm = 0.

Secondly, for any fixed m ≥ 1 and d ≥ 1, we have

∆d[(Pm)d] = ∆d−1(∆P dm) = 0.

Then, by the criterion in Proposition 1.2, Pm is HN.

Example 4.7. Note that, in Section 5.2 of [Z2], a family of self-inverting
HN formal power series has been constructed as follows.

Let Ξ be any non-empty subset of C
n such that, for any α, β ∈ Ξ,

〈α, β〉 = 0. Let A be the completion of the subalgebra of C[[z]] generated by
hα(z) := 〈α, z〉 (α ∈ Ξ), i.e. A is the set of all formal power series in hα(z)
(α ∈ Ξ) over C. Then it is straightforward to check (see Section 5.2 of [Z2]
for details) that any P (z) ∈ A is HN and self-inverting.
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It is unknown if all HN self-inverting polynomials or formal power series
can be obtained by the construction above. More generally, we believe the
following open problem is worth investigating.

Open Problem 4.8.

(a) Decide whether or not all self-inverting polynomials or formal power

series are HN.

(b) Classify all HN self-inverting polynomials and formal power series.

Finally, let us point out that, for any self-inverting P (z) ∈ C[[z]], the
deformed inversion pair Qt(z) (not just Q(z) = Qt=1(z)) is also P (z).

Proposition 4.9. Let P (z) ∈ C[[z]] with o(P ) ≥ 2 and (Hes P )(0) nilpo-

tent. Then P (z) is self-inverting if and only if Qt(z) = P (z).

Proof. First, let us make the following observations.
Let t be a formal central parameter and Ft(z) = z − t∇P (z) as before.

Since o(P ) ≥ 2 and (HesP )(0) is nilpotent, we have j(Ft)(0) = 1. Therefore,
Ft(z) is an automorphism of the algebra C[t][[z]] of formal power series of z
over C[t]. Since the inverse map of Ft(z) is given by Gt(z) = z + t∇Qt(z),
we see that Qt(z) ∈ C[t][[z]]. Therefore, for any t0 ∈ C, Qt=t0(z) makes
sense and lies in C[[z]]. Furthermore, by the uniqueness of inverse maps,
it is easy to see that the inverse map of Ft0 = z − t0∇P of C[t][[z]] is
given by Gt0(z) = z + t0∇Qt=t0 . Therefore the inversion pair of t0P (z) is
t0Qt=t0(z).

With the notation and observations above, by choosing t0 = 1, we have
Qt=1(z) = Q(z), and the (⇐) part of the proposition follows immediately.
Conversely, for any t0 ∈ C, we have 〈∇(t0P ),∇(t0P )〉 = t20〈∇P,∇P 〉. Then,
by Proposition 4.3, t0P (z) is self-inverting and its inversion pair t0Qt=t0(z) is
t0P (z). Therefore, Qt=t0(z) = P (z) for any t0 ∈ C

×. But on the other hand,
Qt(z) ∈ C[t][[z]] as pointed out above, i.e. the coefficients of all monomials
of z in Qt(z) are polynomials of t, hence we must have Qt(z) = P (z), which
is the (⇒) part of the proposition.

5. The vanishing conjecture over fields of positive characteris-

tic. It is well-known that the JC may fail when F (z) is not a polynomial
map (e.g. F1(z1, z2) = e−z1, F2(z1, z2) = z2e

z1). It also fails badly over fields
of positive characteristic even in the one variable case (e.g. F (x) = x − xp

over a field of characteristic p > 0). However, the situation for the VC
over fields of positive characteristic is dramatically different from the JC
even though these two conjectures are equivalent to each other over fields of
characteristic zero. Actually, as we will show in the proposition below, the
VC over fields of positive characteristic holds for any polynomials (not even
necessarily HN) and also for any HN formal power series.
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Proposition 5.1. Let k be a field of characteristic p > 0. Then:

(a) For any polynomial P (z) ∈ k[z] (not necessarily homogeneous nor

HN ) of degree d ≥ 1, ∆mPm+1 = 0 for any m ≥ d(p − 1)/2.
(b) For any HN formal power series P (z) ∈ k[[z]], i.e. ∆mPm = 0 for

any m ≥ 1, we have ∆mPm+1 = 0 for any m ≥ p − 1.

In other words, over fields of positive characteristic, the VC holds even
for HN formal power series P (z) ∈ k[[z]]; while for polynomials, it holds
even without the HN condition or any other conditions.

Proof. The main reason that the proposition above holds is because
of the following simple fact due to the Leibniz rule and positivity of the
characteristic of the base field k: for m ≥ 1, u(z), v(z) ∈ k[[z]] and any
differential operator Λ on k[z], we have

Λ(umpv) = umpΛv.(5.1)

Now let P (z) be any polynomial or formal series as in the proposition.
For any m ≥ 1, write m+1 = qmp+rm with qm, rm ∈ Z and 0 ≤ rm ≤ p−1.
Then by (5.1), we have

∆mPm+1 = ∆m(P qmpP rm) = P qmp∆mP rm .(5.2)

If P (z) is a polynomial of degree d ≥ 1, we have ∆mP rm = 0 when
m ≥ d(p − 1)/2, since in this case 2m > deg(P rm). If P (z) is a HN formal
power series, we have ∆mP rm = 0 when m ≥ p−1 ≥ rm. Therefore, (a) and
(b) follow from (5.2) and the observations above.

An interesting question is whether or not the VC fails (as the JC does)
for any HN formal power series P (z) ∈ C[[z]] but P (z) 6∈ C[z]. To the best
of our knowledge, no such counterexample has been given yet. We here state
it as an open problem.

Open Problem 5.2. Find a HN formal power series P (z) ∈ C[[z]] but

P (z) 6∈ C[z], if any , such that the VC fails for P (z).

Note that the crucial fact used in the proof of Proposition 5.1 is that
any differential operator Λ of k[z] commutes with the multiplication by the
pth power of any element of k[[z]]. By a parallel argument, it is easy to see
that the following more general result holds.

Proposition 5.3. Let k be a field of characteristic p > 0 and Λ a differ-

ential operator on k[z]. Let f ∈ k[[z]]. Assume that , for any 1 ≤ m ≤ p− 1,
there exists Nm > 0 such that ΛNmfm = 0. Then Λmfm+1 = 0 when m ≫ 0.

In particular , if Λ strictly decreases the degree of polynomials, then, for

any polynomial f ∈ k[z], we have Λmfm+1 = 0 when m ≫ 0.
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6. A criterion of Hessian nilpotency for homogeneous polyno-

mials. Recall that 〈·, ·〉 denotes the standard C-bilinear form on C
n. For

any β ∈ C
n, we set hβ(z) := 〈β, z〉 and βD := 〈β, D〉.

The main result of this section is the following criterion of Hessian
nilpotency for homogeneous polynomials. Considering the criterion given
in Proposition 1.2, it is somewhat surprising but the proof turns out to be
very simple.

Theorem 6.1. For any β ∈ C
n and homogeneous polynomial P (z) of

degree d ≥ 2, set Pβ(z) := βd−2
D P (z). Then

Hes Pβ = (d − 2)!(HesP )(β).(6.1)

In particular , P (z) is HN iff , for any β ∈ C
n, Pβ(z) is HN.

To prove the theorem, we need first the following lemma.

Lemma 6.2. Let β ∈ C
n and P (z) ∈ C[z] homogeneous of degree N ≥ 1.

Then

βN
D P (z) = N ! P (β).(6.2)

Proof. Since both sides of (6.2) are linear in P (z), we may assume P (z)
is a monomial, say P (z) = za for some a ∈ N

n with |a| = N . Then

βN
D P (z) =

( n∑

i=1

βiDi

)N
za =

n∑

k∈Nn

|k|=N

N !

k!
βkDkza

=
N !

a!
βaDaza = N !βa = N !P (β).

Proof of Theorem 6.1. We have

Hes Pβ(z) =

(
∂2(βd−2

D P )

∂zi∂zj
(z)

)

n×n

=

(
βd−2

D

∂2P

∂zi∂zj
(z)

)

n×n

(applying Lemma 6.2 to ∂2P
∂zi∂zj

(z):)

= (d − 2)!

(
∂2P

∂zi∂zj
(β)

)

n×n

= (d − 2)!(HesP )(β).

Let {ei | 1 ≤ i ≤ n} be the standard basis of C
n. Applying the theorem

above to β = ei (1 ≤ i ≤ n), we obtain the following corollary, which was
first proved by M. Kumar [K].

Corollary 6.3. For any homogeneous HN polynomial P (z) ∈ C[z] of

degree d ≥ 2, Dd−2
i P (z) (1 ≤ i ≤ n) are also HN.
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The reason that we think the criteria given in Theorem 6.1 and Corollary
6.3 are interesting is that Pβ(z) = βd−2

D P (z) is homogeneous of degree 2, and
it is much easier to decide whether a homogeneous polynomial of degree 2 is
HN or not. More precisely, for any homogeneous polynomial U(z) of degree 2,
there exists a unique symmetric n × n matrix A such that U(z) = zτAz.
Then it is easy to check that Hes U(z) = 2A. Therefore, U(z) is HN iff the
symmetric matrix A is nilpotent.

We end this section with an open question concerning the criterion given
in Proposition 1.2. To state it, we need to sketch the proof, given in [Z2].

For any m ≥ 1, we set

um(P ) = TrHesm(P ),(6.3)

vm(P ) = ∆mPm.(6.4)

For any k ≥ 1, we define Uk(P ) (resp. Vk(P )) to be the ideal in C[[z]]
generated by {um(P ) | 1 ≤ m ≤ k} (resp. {vm(P ) | 1 ≤ m ≤ k}) and
all their partial derivatives of any order. Then it has been shown (in a
more general setting) in Section 4 of [Z2] that Uk(P ) = Vk(P ) for any
k ≥ 1.

It is well-known in linear algebra that if um(P (z)) = 0 when m ≫ 0,
then Hes P is nilpotent and um(P ) = 0 for any m ≥ 1. A natural question
is whether or not this is also the case for the sequence {vm(P ) | m ≥ 1}.
More precisely, we believe the following conjecture proposed in [Z2] is worth
investigating.

Conjecture 6.4. Let P (z) ∈ C[[z]] with o(P (z)) ≥ 2. If ∆mPm(z) = 0
for m ≫ 0, then P (z) is HN.

7. Some results on symmetric polynomial maps. Let P (z) be any
formal power series with o(P (z)) ≥ 2 and (HesP )(0) nilpotent, and F (z)
and G(z) as before. Set

σ2 :=
n∑

i=1

z2
i ,(7.1)

f(z) :=
1

2
σ2 − P (z).(7.2)

Mohan Kumar [K] and David Wright [Wr3] asked how to write P (z) and f(z)
in terms of F (z). More precisely, the problem is to find U(z), V (z) ∈ C[[z]]
such that

U(F (z)) = P (z),(7.3)

V (F (z)) = f(z).(7.4)
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In this section, we first derive in Proposition 7.2 some explicit formulas
for U(z) and V (z), and also for W (z) ∈ C[[z]] such that

W (F (z)) = σ2(z).(7.5)

We then show in Theorem 7.4 that, when P (z) is a HN polynomial, the
VC holds for P or equivalently, the JC holds for the associated symmetric
polynomial map F (z) = z −∇P , iff one of U , V , W is a polynomial.

Let t be a central parameter and Ft(z) = z− t∇P . Let Gt(z) = z + t∇Qt

be the formal inverse of Ft(z) as before. We set

ft(z) :=
1

2
σ2 − tP (z),(7.6)

Ut(z) := P (Gt(z)),(7.7)

Vt(z) := ft(Gt(z)),(7.8)

Wt(z) := σ2(Gt(z)).(7.9)

Note first that, under the conditions that o(P (z)) ≥ 2 and (HesP )(0) is
nilpotent, we have Gt(z) ∈ C[t][[z]]×n as mentioned in the proof of Proposi-
tion 4.9. Therefore, Ut(z), Vt(z), Wt(z) ∈ C[t][[z]], and Ut=1(z), Vt=1(z) and
Wt=1(z) all make sense. Secondly, from the definitions above,

Wt(z) = 2Vt(z) + 2tUt(z),(7.10)

Ft(z) = ∇ft(z),(7.11)

ft=1(z) = f(z).(7.12)

Lemma 7.1. With the notations above, we have

P (z) = Ut=1(F (z)),(7.13)

f(z) = Vt=1(F (z)),(7.14)

σ2(z) = Wt=1(F (z)).(7.15)

In particular , f(z), P (z) and σ2(z) lie in C[F ] iff Ut=1(z), Vt=1(z) and

Wt=1(z) lie in C[z].

In other words, by setting t = 1, Ut, Vt and Wt will give us U , V and W
in (7.3)–(7.5), respectively.

Proof. From the definitions of Ut(z), Vt(z) and Wt(z) (see (7.7)–(7.9)),
we have

P (z) = Ut(Ft(z)), ft(z) = Vt(Ft(z)), σ2(z) = Wt(Ft(z)).

By setting t = 1 in the equations above and noticing that Ft=1(z) = F (z),
we get (7.13)–(7.15).

For Ut(z), Vt(z) and Wt(z), we have the following explicit formulas in
terms of the deformed inversion pair Qt of P .
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Proposition 7.2. For any formal power series P (z) ∈ C[[z]] (not nec-

essarily HN ) with o(P (z)) ≥ 2 and (Hes P )(0) nilpotent , we have

Ut(z) = Qt + t
∂Qt

∂t
,(7.16)

Vt(z) =
1

2
σ2 + t

(
z

∂Qt

∂z
− Qt

)
,(7.17)

Wt(z) = σ2 + 2tz
∂Qt

∂z
+ 2t2

∂Qt

∂t
.(7.18)

Proof. Note first that, (7.18) follows directly from (7.16), (7.17) and
(7.10).

To show (7.16), by [Z1, (3.4) and (3.6)], we have

Ut(z) = P (Gt) = Qt +
t

2
〈∇Qt,∇Qt〉 = Qt + t

∂Qt

∂t
.(7.19)

To show (7.17), we consider

Vt(z) = ft(Gt)

=
1

2
〈z + t∇Qt(z), z + t∇Qt(z)〉 − tP (Gt)

=
1

2
σ2 + t〈z,∇Qt(z)〉 +

t2

2
〈∇Qt,∇Qt〉 − tP (Gt)

(by (7.19), substituting Qt + t
2〈∇Qt,∇Qt〉 for P (Gt):)

=
1

2
σ2 + t〈z,∇Qt(z)〉 − tQt(z)

=
1

2
σ2 + t

(
z

∂Qt

∂z
− Qt

)
.

When P (z) is homogeneous and HN, we have the following more explicit
formulas which in particular give solutions to the questions raised by Mohan
Kumar and David Wright.

Corollary 7.3. For any homogeneous HN polynomial P (z) of degree

d ≥ 2, we have

Ut(z) =
∞∑

m=0

tm

2m(m!)2
∆mPm+1(z),(7.20)

Vt(z) =
1

2
σ2 +

∞∑

m=0

(dm − 1)tm+1

2mm!(m + 1)!
∆mPm+1(z) ,(7.21)

Wt(z) = σ2 +

∞∑

m=0

(dm + m)tm+1

2m−1m!(m + 1)!
∆mPm+1(z),(7.22)

where dm = deg(∆mPm+1) = d(m + 1) − 2m (m ≥ 0).
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Proof. We give a proof for (7.20). (7.21) can be proved similarly, and
(7.22) follows directly from (7.20), (7.21) and (7.10).

By combining (7.16) and (1.1), we have

Ut(z) =
∞∑

m=0

tm∆mPm+1(z)

2mm!(m + 1)!
+

∞∑

m=1

mtm∆mPm+1(z)

2mm!(m + 1)!

= P (z) +
∞∑

m=1

tm

2m(m!)2
∆mPm+1(z) =

∞∑

m=0

tm

2m(m!)2
∆mPm+1(z).

A consequence of the proposition above is the following result on sym-
metric polynomial maps.

Theorem 7.4. For any HN polynomial P (z) (not necessarily homogene-

ous) with o(P ) ≥ 2, the following statements are equivalent :

(1) The VC holds for P (z).
(2) P (z) ∈ C[F ].
(3) f(z) ∈ C[F ].
(4) σ2(z) ∈ C[F ].

Note that the equivalence of (1) and (3) was first proved by Mohan
Kumar ([K]) by a different method.

Proof. Note first that, by Lemma 7.1, it is enough to show that ∆mPm+1

= 0 when m ≫ 0 iff one of Ut(z), Vt(z), Wt(z) is a polynomial in t with
coefficients in C[z]. Secondly, when P (z) is homogeneous, the statement
above follows directly from (7.20)–(7.22).

To show the general case, for any m ≥ 0 and Mt(z) ∈ C[t][[z]], we denote
by [tm](Mt(z)) the coefficient of tm when we write Mt(z) as a formal power
series in t with coefficients in C[[z]]. Then, from (7.16)–(7.18) and (1.1), it is
straightforward to check that the coefficients of tm (m ≥ 1) in Ut(z), Vt(z)
and Wt(z) are

(7.23) [tm](Ut(z)) =
∆mPm+1

2m(m!)2
,

(7.24) [tm](Vt(z)) =
1

2m−1(m − 1)!m!

(
z

∂

∂z
(∆m−1Pm) − ∆m−1Pm

)
,

(7.25) [tm](Wt(z))

=
1

2m−2(m − 1)!m!

(
z

∂

∂z
(∆m−1Pm) + (m − 1)∆m−1Pm

)
.

From (7.23), we immediately have (1)⇔(2). To show the equivalences
(1)⇔(3) and (1)⇔(4), note first that o(P ) ≥ 2, so o(∆m−1Pm) ≥ 2 for
any m ≥ 1. On the other hand, for any h(z) ∈ C[z] with o(h(z)) ≥ 2,
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we have h(z) = 0 iff (z ∂
∂z − 1)h(z) = 0 iff (z ∂

∂z + (m − 1))h(z) = 0 for
some m ≥ 1. This is simply because, for any monomial zα (α ∈ N

n), we
have (z ∂

∂z − 1)zα = (|α| − 1)zα and (z ∂
∂z + (m− 1))zα = (|α|+ (m− 1))zα.

From this general fact, we see that (1)⇔(3) follows from (7.24), and (1)⇔(4)
from (7.25).

8. A graph associated with homogeneous HN polynomials. In
this section, we would like to draw the reader’s attention to a graph G(P )
assigned to each homogeneous harmonic polynomials P (z). The graph G(P )
was first proposed by the author and later studied by R. Willems in his mas-
ter thesis [Wi] under the direction of A. van den Essen. The introduction
of the graph G(P ) is mainly motivated by a criterion of Hessian nilpotency
given in [Z2] (see also Theorem 8.2 below), via which one hopes more neces-
sary or sufficient conditions for a homogeneous harmonic polynomial P (z) to
be HN can be obtained or described in terms of the graph structure of G(P ).

We first give the definition of the graph G(P ) for any homogeneous har-
monic polynomial P (z) and discuss the connectedness reduction (see Corol-
lary 8.5), i.e. a reduction of the VC to the homogeneous HN polynomials P
such that G(P ) is connected. We then consider a connection of G(P ) with
the tree expansion formula derived in [M] and [Wr2] for the inversion pair
Q(z) of P (z) (see Proposition 8.9). As an application, we give another proof
for the connectedness reduction given in Corollary 8.5.

8.1. Definition and connectedness reduction. For any β ∈ C
n, set hβ(z)

:= 〈β, z〉 and βD := 〈β, D〉, where 〈·, ·〉 is the standard C-bilinear form
on C

n. Let X(C) denote the set of all isotropic elements of C
n, i.e. of all

α ∈ C
n such that 〈α, α〉 = 0.

Recall that we have the following fundamental theorem on homogeneous
harmonic polynomials.

Theorem 8.1. For any homogeneous harmonic polynomial P (z) of de-

gree d ≥ 2, we have

P (z) =

k∑

i=1

cih
d
αi

(z)(8.1)

for some ci ∈ C
× and αi ∈ X(Cn) (1 ≤ i ≤ k).

Note that, replacing αi in (8.1) by c
−1/d
i αi, we may also write P (z) as

P (z) =
k∑

i=1

hd
αi

(z)(8.2)

with αi ∈ X(Cn) (1 ≤ i ≤ k).
For the proof of Theorem 8.1, see, for example, [I] and [Wi].
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We fix a homogeneous harmonic polynomial P (z) ∈ C[z] of degree d ≥ 2,
and assume that P (z) is given by (8.2) for some αi ∈ X(Cn) (1 ≤ i ≤ k).
We may and will always assume that {hd

αi
(z) | 1 ≤ i ≤ k} are linearly

independent in C[z].
Recall the following matrices introduced in [Z2]:

AP = (〈αi, αj〉)k×k,(8.3)

ΨP = (〈αi, αj〉h
d−2
αj

(z))k×k.(8.4)

Then we have the following criterion of Hessian nilpotency for homogeneous
harmonic polynomials. For its proof, see Theorem 4.3 in [Z2].

Theorem 8.2. Let P (z) be as above. Then, for any m ≥ 1, we have

Tr Hesm(P ) = (d(d − 1))m TrΨm
P .(8.5)

In particular , P (z) is HN if and only if the matrix ΨP is nilpotent.

A simple remark on the criterion above is as follows.
Let B be the k × k diagonal matrix with the ith (1 ≤ i ≤ k) diagonal

entry being hαi
(z). For any 1 ≤ j ≤ k, set

ΨP ;j := BjAP Bd−2−j = (hj
αi
〈αi, αj〉h

d−2−j
αj

).(8.6)

Then, by repeatedly applying the fact that, for any two k × k matrices C
and D, CD is nilpotent iff so is DC, it is easy to see that Theorem 8.2 can
also be restated as follows.

Corollary 8.3. Let P (z) be given by (8.2) with d ≥ 2. Then, for any

1 ≤ j ≤ d − 2 and m ≥ 1, we have

Tr Hesm(P ) = (d(d − 1))m TrΨm
P ;j .(8.7)

In particular , P (z) is HN if and only if the matrix ΨP ;j is nilpotent.

Note that, when d is even, we may choose j = (d − 2)/2. So P is HN iff
the symmetric matrix

ΨP ;(d−2)/2(z) = (h(d−2)/2
αi

(z)〈αi, αj〉h
(d−2)/2
αj

(z))(8.8)

is nilpotent.
Motivated by the criterion above, we assign a graph G(P ) to any homo-

geneous harmonic polynomial P (z) as follows.
We fix an expression as in (8.2) for P (z). The set of vertices of G(P ) is

the set of positive integers [k] := {1, . . . , k}. The vertices i and j of G(P )
are connected by an edge iff 〈αi, αj〉 6= 0. We thus get a finite graph.

Furthermore, we may also label edges of G(P ) by assigning 〈αi, αj〉 or

(h
(d−2)/2
αi 〈αi, αj〉h

(d−2)/2
αi ), when d is even, to the edge connecting vertices

i, j ∈ [k]. We then get a labeled graph whose adjacency matrix is exactly
AP or ΨP,(d−2)/2 (depending on the labels we choose for the edges of G(P )).

Naturally, one may also ask the following (open) questions.
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Open Problem 8.4.

(a) Find necessary or sufficient conditions on the (labeled) graph G(P )
such that the homogeneous harmonic polynomial P (z) is HN.

(b) Find necessary or sufficient conditions on the (labeled) graph G(P )
such that the VC holds for the homogeneous HN polynomial P (z).

First, let us point out that, to approach the open problems above, it
is enough to focus on homogeneous harmonic polynomials P such that the
graph G(P ) is connected.

Indeed, suppose that G(P ) has r ≥ 2 connected components. Let [k] =⊔r
i=1 Ii be the corresponding partition of the set of vertices. For each 1 ≤

i ≤ r, we set Pi(z) :=
∑

α∈Ii
hd

α(z).

Note that, by Lemma 2.6, the polynomials Pi (1 ≤ i ≤ r) are pairwise
disjoint, so Corollary 2.8 applies to the sum P =

∑r
i=1 Pi. In particular, we

have,

(a) P is HN iff each Pi is HN.

(b) if the VC holds for each Pi, then it also holds for P .

Therefore, we have the following connectedness reduction.

Corollary 8.5. To study homogeneous HN polynomials P or the VC

for homogeneous HN polynomials P , it is enough to consider the case when

G(P ) is connected.

Note that property (a) above was first proved by R. Willems ([Wi]) by
using the criterion in Theorem 8.2. (b) had been proved by the author by a
different argument, and with the author’s permission, it was also included
in [Wi].

Finally, let us point out that R. Willems ([Wi]) has proved the following
very interesting results on Open Problem 8.4.

Theorem 8.6 ([Wi]). Let P be a homogeneous HN polynomial as in

(8.2) with d ≥ 4. Let l(P ) be the dimension of the vector subspace of C
n

spanned by {αi | 1 ≤ i ≤ k}. Then

(1) If l(P ) = 1, 2, k−1 or k, then the graph G(P ) is totally disconnected

(i.e. it has no edges).
(2) If l(P ) = k − 2 and G(P ) is connected , then G(P ) is the complete

bi-graph K(4, k − 4).
(3) In the case of (1) and (2) above, the VC holds.

Furthermore, it has also been shown in [Wi] that, for any homogeneous
HN polynomial P , the graph G(P ) cannot be a path or cycle of any positive
length. For more details, see [Wi].
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8.2. Connection with the tree expansion formula for inversion pairs.

First let us recall the tree expansion formula derived in [M], [Wr2] for the
inversion pair Q(z).

Let T denote the set of all trees, i.e. of all connected and simply connected
finite simple graphs. For each tree T ∈ T, denote by V (T ) and E(T ) the
sets of all vertices and edges of T , respectively. Then we have the following
tree expansion formula for inversion pairs.

Theorem 8.7 ([M], [Wr2]). Let P ∈ C[[z]] with o(P ) ≥ 2 and Q its

inversion pair. For any T ∈ T, set

QT,P =
∑

ℓ:E(T )→[n]

∏

v∈V (T )

Dadj(v),ℓP,(8.9)

where adj(v) is the set {e1, . . . , es} of edges of T adjacent to v, and Dadj(v),ℓ

= Dℓ(e1) · · ·Dℓ(es). Then the inversion pair Q of P is given by

Q =
∑

T∈T

1

|Aut(T )|
QT,P .(8.10)

Now we assume P (z) is a homogeneous harmonic polynomial d ≥ 2 of
the form (8.2). It is easy to see that then

QT,P =
∑

f :V (T )→[k]

∑

ℓ:E(T )→[n]

∏

v∈V (T )

Dadj(v),ℓh
d
αf(v)

(z).(8.11)

The role played by the graph G(P ) is to restrict the maps f : V (T ) →
V (G(P )) (= [k]) in (8.11) to a special family of maps. To be more precise,
let Ω(T,G(P )) be the set of maps f : V (T ) → [k] such that, for any distinct

adjacent vertices u, v ∈ V (T ), f(u) and f(v) are distinct and adjacent in

G(P ). Then we have the following lemma.

Lemma 8.8. For any f : V (T ) → [k] with f 6∈ Ω(T,G(P )), we have
∑

ℓ:E(T )→[n]

∏

v∈V (T )

Dadj(v),ℓh
d
αf(v)

(z) = 0.(8.12)

Proof. Let f : V (T ) → [k] as in the lemma. Since f 6∈ Ω(T,G(P )),
there exist distinct adjacent v1, v2 ∈ V (T ) such that either f(v1) = f(v2) or
f(v1) and f(v2) are not adjacent in the graph G(P ). In any case, we have
〈αf(v1), αf(v2)〉 = 0.

Next we consider the contributions to the RHS of (8.11) from the vertices
v1 and v2. Denote by e the edge of T connecting v1 and v2, and {e1, . . . , er}
(resp. {ẽ1, . . . , ẽs}) the set of edges connected with v1 (resp. v2) besides the
edge e. Then, for any ℓ : E(T ) → [n], the factor in the RHS of (8.11) coming
from the vertices v1 and v2 is the product

(Dℓ(e)Dℓ(e1) · · ·Dℓ(er)h
d
αf(v1)

(z))(Dℓ(e)Dℓ(ẽ1) · · ·Dℓ(ẽs)h
d
αf(v2)

(z)).(8.13)
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Define an equivalence relation for maps ℓ : E(T ) → [n] by setting ℓ1 ∼ ℓ2

iff ℓ1, ℓ2 have the same value at each edge of T except e. Then, by summing
of the terms in (8.13) over each equivalence class, we get the factor

〈∇Dℓ(e1) · · ·Dℓ(er)h
d
αf(v1)

(z), ∇Dℓ(ẽ1) · · ·Dℓ(ẽs)h
d
αf(v2)

(z)〉.(8.14)

Note that Dℓ(e1) · · ·Dℓ(er)h
d
αf(v1)

(z) and Dℓ(ẽ1) · · ·Dℓ(ẽs)h
d
αf(v2)

(z) are

constant multiples of some integral powers of hαf(v1)
(z) and hαf(v2)

(z), re-

spectively. Therefore, 〈αf(v1), αf(v2)〉 (= 0) appears as a multiplicative con-
stant factor in the term in (8.14), which makes the term zero. Hence the
lemma follows.

An immediate consequence of the lemma above is the following proposi-
tion.

Proposition 8.9. With the setting and notation as above, we have

QT,P =
∑

f∈Ω(T,G(P ))

∑

ℓ:E(T )→[n]

∏

v∈V (T )

Dadj(v),ℓh
d
αf(v)

(z).(8.15)

Remark 8.10.

(a) For any f ∈ Ω(T,G(P )), {f−1(j) | j ∈ Im(f)} gives a partition of
V (T ) since no two distinct vertices in f−1(j) (j ∈ Im(f)) can be
adjacent. In other words, f is nothing but a proper coloring for the
tree T , which is also subject to certain more conditions from the
graph structure of G(P ). It is interesting to see that the coloring
problem for graphs also plays a role in the inversion problem for
symmetric formal maps.

(b) It would be interesting to derive more results from the graph G(P )
via the formulas in (8.10) and (8.15).

Remark 8.11. By similar arguments to those in the proof of Lemma
8.8, one can get another proof for Theorem 2.7 in the setting of Lemma 2.6.

Finally, as an application of Proposition 8.9 above, we give another proof
for the connectedness reduction given in Corollary 8.5.

Let P be as in (8.2) with inversion pair Q. Suppose that there exists a
partition [k] = I1⊔I2 with Ii 6= ∅. Let Pi =

∑
α∈Ii

hd
α(z) (i = 1, 2) and Qi the

inversion pair of Pi. Then P = P1+P2 and G(P1)⊔G(P2) = G(P ). Therefore,
to prove the connectedness reduction, it is enough to show Q = Q1 + Q2.
But this follows immediately from (8.10), (8.15) and the following lemma.

Lemma 8.12. Let P , P1 and P2 be as above. Then, for any tree T ∈ T,
we have

Ω(T,G(P )) = Ω(T,G(P1)) ⊔ Ω(T,G(P2)).
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Proof. For any f ∈ Ω(T,G(P )), f preserves the adjacency of vertices of
G(P ). Since T is a connected graph, so is Im(f) ⊂ V (G(P )), being a (full)
subgraph of G(P ). Therefore, Im(f) ⊂ V (G(P1)) or Im(f) ⊂ V (G(P2)).
Hence Ω(T,G(P )) ⊂ Ω(T,G(P1)) ⊔ Ω(T,G(P2)). The other inclusion is ob-
vious.
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