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Starlikeness of polynomials and finite Blaschke products

by Alan Gluchoff and Frederick Hartmann (Villanova, PA)

Abstract. The radius of starlikeness for polynomial mappings and finite Blaschke
products with zeroes distributed at equal angles around a circle centered at the origin,
as well as with zeroes concentrated at a single point, are considered, and sharp bounds
are obtained. Results expressing the radius of starlikeness of an arbitrary polynomial or
Blaschke product in terms of the magnitudes of the zeroes are also given. These are also
sharp.

1. Introduction. Let f(z) = a1z + a2z
2 + · · · be analytic on the unit

disk D = {z : |z| < 1} of the complex plane, and let r < 1. The question
of the radius of starlikeness of f , that is, the largest value of r for which
Dr = {z : |z| < r} is mapped in a one-to-one manner onto a region starlike
with respect to the origin, has been a question of interest beginning with [1],
in which the author considered primarily polynomial mappings. Others con-
tributed much to the calculation of r and related radii of univalence and
convexity for polynomials, sometimes expressing the values in terms of the
zeroes and critical points; [2] contains a survey of this work. These results
appear to deal mainly with a single configuration of the zeroes, namely that
in which the nontrivial zeroes are concentrated at a single point.

In this paper we deal with the case of polynomials and finite Blaschke
products whose zeroes are distributed at equal angles around a circle cen-
tered at the origin of radius less than 1. Even for these relatively straightfor-
ward configurations the calculation of r can be quite complicated. We give
sharp upper and lower bounds on r for these cases, and compare the values
for polynomials and finite Blaschke products. We also give other results for
an arbitrary polynomial and Blaschke product which express r in terms of
the magnitudes of the nontrivial zeroes; these bounds are also sharp.
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2. Radius of starlikeness for polynomials. Define the radius of star-

likeness for f(z) to be the largest value of r for which the disk Dr = {z :
|z| < r} is mapped one-to-one to a starlike region by f . We assume that the
polynomial Pn(z) has n zeroes located on the circle {z : |z| = ̺, 0 < ̺ ≤ 1}
and a single zero at the origin and write

Pn(z) = z

n
∏

k=1

(

1 − z

zk

)

= z

n
∏

k=1

(

1 − z

̺eiθk

)

.

The polynomial Pn maps Dr = {z : |z| < r} one-to-one to a starlike re-
gion if and only if ℜ{zP ′

n(z)/Pn(z)} > 0 for z ∈ Dr. Using logarithmic
differentiation one has

(1) ℜ
{

zP ′

n(z)

Pn(z)

}

= 1 + ℜ
{ n

∑

k=1

z

z − zk

}

.

One can easily compute, using (1), the radius of starlikeness for two
extreme cases.

Fact 1. Let Pn(z) = z(1 − z/̺)n (i.e. Pn(z) has all of its nontrivial

zeroes at the point z = ̺). Then the radius of starlikeness for Pn is ̺/(n + 1).

Fact 2. Let Pn(z) = z(1 − zn/̺n), (i.e. Pn(z) has its nontrivial zeroes

evenly distributed about the circle of radius ̺). Then the radius of starlike-

ness for Pn is ̺(n + 1)−1/n.

We require the following three technical lemmas:

Lemma 1. φ(r) = r/(r − ̺), 0 < r ≤ ̺ ≤ 1, is a decreasing function

of r.

Proof. We have
∂φ(r)

∂r
= − ̺

(r − ̺)2
.

Lemma 2. The function

φ(r) =
r

r − ̺
− r̺

r̺ − 1
, 0 < r ≤ ̺ ≤ 1,

is a decreasing function of r.

Proof. Indeed,

∂φ(r)

∂r
= −̺(1 − r2)(1 − ̺2)

(̺ − r)2(r̺ − 1)2
.

Lemma 3. For n = 1, 2, . . . and 0 < r < ̺ ≤ 1 one has

rn

rn − ̺n
− rn̺n

rn̺n − 1
≥ r

r − ̺
− r̺

r̺ − 1
.
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Proof. For n = 1 the statement is an identity. The case n = 2 follows
from the identity

r2

r2 − ̺2
− r2̺2

r2̺2 − 1
− r

r − ̺
+

r̺

r̺ − 1
=

̺r(r2 + 1)(̺ − 1)(̺ + 1)

(r̺ − 1)(̺ − r)(r̺ + 1)(̺ + r)
.

For n ≥ 3 and 0 < r < ̺ ≤ 1 consider

rn̺n

1 − rn̺n
− rn

̺n − rn
≥ r̺

1 − r̺
− r

̺ − r

⇔ rn(̺2n − 1)

(1 − rn̺n)(̺n − rn)
≥ r(̺2 − 1)

(1 − r̺)(̺ − r)

⇔ rn(̺2n − 1)

(1 − rn̺n)(̺n − rn)
≥ r(̺2 − 1)

∑n−1
k=0(r̺)k

∑n−1
k=0 rk̺n−k−1

[(1 − r̺)
∑n−1

k=0(r̺)k][(̺ − r)
∑n−1

k=0 rk̺n−k−1]

⇔ rn(̺2n − 1)

(1 − rn̺n)(̺n − rn)
≥ r(̺2 − 1)

∑n−1
k=0(r̺)k

∑n−1
k=0 rk̺n−k−1

(1 − rn̺n)(̺n − rn)

⇔ rn(̺2n − 1) ≥ r(̺2 − 1)

n−1
∑

k=0

(r̺)k
n−1
∑

k=0

rk̺n−k−1

⇔ rn(̺2 − 1)
(

n−1
∑

k=0

̺2k
)

− r(̺2 − 1)

n−1
∑

k=0

(r̺)k
n−1
∑

k=0

rk̺n−k−1 ≥ 0

⇔ r(̺2 − 1)
[

rn−1
n−1
∑

k=0

̺2k −
n−1
∑

k=0

(r̺)k
n−1
∑

k=0

rk̺n−k−1
]

≥ 0

⇔ r(̺2−1)
[

rn−1
n−1
∑

k=0

̺2k+rn−1−
[

n−1
∑

k=0

(r̺)k
]

rn−1−
n−1
∑

k=0

(r̺)k
n−2
∑

k=0

rk̺n−k−1
]

≥0

⇔ r(̺2 − 1)
[

rn−1
n−1
∑

k=0

̺2k −
[

n−1
∑

k=1

(r̺)k
]

rn−1 −
n−1
∑

k=0

(r̺)k
n−2
∑

k=0

rk̺n−k−1
]

≥ 0

⇔ r̺(̺2−1)
[

rn−1
n−1
∑

k=0

̺2k−1−
n−1
∑

k=1

rk̺k−1rn−1−
n−1
∑

k=0

(r̺)k
n−2
∑

k=0

rk̺n−k−2
]

≥ 0.

Now every term in the first sum (within the square brackets) is canceled by
a term in the product of two sums, leaving only a negative expression within
the brackets. This gives the desired result.

The following theorem can be traced back to [1]; several authors have
discovered more modern proofs (see [2, p. 10] for references). We include the
theorem for the sake of completeness.

Theorem 1. Let Pn(z)=z
∏n

k=1(1−z/̺eiθk) and r < rmin := ̺/(n + 1).
Then Pn maps the disk of radius r about the origin univalently to a starlike

region.
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Proof. We have

0 = 1 + n
rmin

rmin − ̺
= 1 +

n
∑

k=1

rmin

rmin − ̺

< 1 +

n
∑

k=1

r

r − ̺
= 1 +

n
∑

k=1

min
t∈[0,2π]

ℜ
{

reit

reit − ̺eiθk

}

≤ ℜ
{

zP ′

n(z)

Pn(z)

}∣

∣

∣

∣

z=reit

.

Hence Pn(z) is starlike on the disk of radius r.

Theorem 2. Let Pn(z)=z
∏n

k=1(1−z/̺eiθk) and r>rmax :=̺(n+1)−1/n.

Then Pn maps the disk of radius r about the origin to a nonstarlike region.

Proof. We have

0 = 1 + n
rn
max

rn
max − ̺n

> 1 + n
rmax

rmax − ̺
[Lemma 1]

> 1 + n
r

r − ̺
= 1 +

n
∑

k=1

min
t∈[0,2π]

ℜ
{

reit

reit − ̺eiθk

}

[Lemma 1]

= min
t∈[0,2π]

ℜ
{

zP ′

n(z)

Pn(z)

}
∣

∣

∣

∣

z=reit

.

Hence Pn fails to map the disc of radius r about the origin univalently to a
starlike region.

Corollary 1. The radius of starlikeness, r, for Pn(z) satisfies

̺

n + 1
≤ r ≤ ̺

(n + 1)1/n

and this result is sharp.

It is an interesting but difficult problem to find the radius of starlikeness
as a function of the distribution of the zeroes on the circle of radius ̺, even
for a polynomial with n = 2. We consider the case of two zeroes on the circle
of radius ̺ and without loss of generality may assume that the zeroes are
z1 = ̺eiθ and z2 = ̺e−iθ. Then

P2(z) = z

(

1 − z

̺eiθ

)(

1 − z

̺e−iθ

)

= z(z2 − 2̺ cos(θ)z + ̺2).

Theorem 3. Let P2(z) = z(z2 − 2̺ cos(θ)z + ̺2). Then the radius of

starlikeness, r(θ, ̺), of P2(z) is given by

r(θ, ̺) =



















̺

(

2

3
cos(θ) − 1

3

√

4 cos2(θ) − 3

)

if 0 ≤ θ < arccos
(

2
5

√
5
)

;

̺

√

9 cos2(θ) − 8

25 cos2(θ) − 24
if arccos

(

2
5

√
5
)

≤ θ ≤ π/2.
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Proof. We have

(2) ℜ
{

zP ′

2(z)

P2(z)

}∣

∣

∣

∣

z=reit

=

8r2̺2 cos2(t)+3r4−(10r3̺ + 6r̺3) cos(θ) cos(t)+8r2̺2 cos2(θ)+̺4−4r2̺2

4r2̺2 cos2(t)+r4−(4r3̺+4r̺3) cos(θ) cos(t)+4r2̺2 cos2(θ)+̺4−2r2̺2
.

(2) has a global minimum of zero at an interior point of [0, 2π] if
arccos

(

2
5

√
5
)

≤ θ ≤ π/2, in which case

r = ̺

√

9 cos2(θ) − 8

25 cos2(θ) − 24
.

(2) has a global minimum of zero at t = 0 and t = 2π if 0 ≤ θ < arccos
(

2
5

√
5
)

,
in which case

r = ̺

(

2

3
cos(θ) − 1

3

√

4 cos2(θ) − 3

)

.

Figure 1 shows the radius of starlikeness a function of θ ∈ [0, 2π] for
̺ = 1. Even the case of three zeroes on the circle of radius ̺ for a polyno-
mial with real coefficients presents an intractable problem. Without loss of
generality we may assume that P3(z) = z(1−z)(1−z/̺e−iθ)(1−z/̺eiθ). We
have obtained an implicit relation between r and θ, but have been unable
to find an explicit functional relation from this implicit form like that in
Theorem 3. Numerical and graphical calculations do, however, confirm the
results of Theorems 1 and 2.
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0.55
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Fig. 1
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A theorem for a more general kind of polynomials giving a sufficient
condition for radius of starlikeness is:

Theorem 4. Let Pn(z) = z
∏n

k=1(1 − z/zk) where zk = ̺ke
iθk and

0 < ̺1 ≤ · · · ≤ ̺n. Then Pn(z) maps Dr = {z : |z| < r} univalently onto a

starlike region when

r <
̺1

1 +
∑n

k=1 ̺1/̺k
.

Proof. We have ℜ[zP ′

n(z)/Pn(z)] = 1+
∑n

k=1 ℜ[z/(z−zk)] and if z = reit,
zk = ̺ke

iθk , 0 < ̺1 ≤ · · · ≤ ̺n, then

1 +

n
∑

k=1

ℜ
[

z

z − zk

]

> 1 +

n
∑

k=1

r

r − ̺k
= 1 −

n
∑

k=1

r/̺k

1 − r/̺k
.

But r/̺k ≤ r/̺1, which implies (r/̺k)/(1 − r/̺k) ≤ (r/̺k)/(1 − r/̺1).
Therefore

ℜ
[

zP ′

n(z)

Pn(z)

]

≥ 1 −
n

∑

k=1

r/̺k

1 − r/̺1
= 1 − r

n
∑

k=1

̺1/̺k

̺1 − r
≥ 0

if and only if |z| ≤ r < ̺1/(1 +
∑n

k=1 ̺1/̺k).

Remark. If ̺1 = · · · = ̺n then ̺1/(1 +
∑n

k=1 ̺1/̺k) = ̺1/(n + 1) so
the result is sharp in the sense that there is a configuration of the zk’s for
which ̺1/(1 +

∑n
k=1 ̺1/̺k) gives the exact answer. [See Fact 1.]

3. Radius of starlikeness for finite Blaschke products. We con-
sider finite Blaschke products of the following kind:

(3) Bn(z) = z
n

∏

k=1

z − zk

1 − zkz
,

where the zk’s lie in the unit disk. For sufficiently small r, Bn maps Dr = {z :
|z| < r} to a starlike region. The largest value of r for which Dr is mapped
to a starlike region is called the radius of starlikeness for Bn. Logarithmic
differentiation gives, for |zk| ≤ 1,

(4) ℜ
{

zB′

n(z)

Bn(z)

}

= 1 + ℜ
{ n

∑

k=1

z

z − zk
− zzk

zzk − 1

}

.

We assume that Bn(z) has n zeroes located on the circle {z : |z| = ̺, 0 <
̺ < 1} and a single zero at the origin and write

Bn(z) = z
n

∏

k=1

z − ̺eiθk

1 − ̺e−iθkz
.

We consider as before two special cases: the case where there is a zero of
order n at the point z = ̺ so that Bn(z) = z

( z−̺
1−̺z

)n
, and the case where
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there are n zeroes evenly distributed around the circle of radius ̺ so that
Bn(z) = z zn

−̺n

1−̺nzn . Using (4) one can obtain the following results:

Fact 3. If

Bn(z) = z

(

z − ̺

1 − ̺z

)n

then the radius of starlikeness r(̺, n) for Bn(z) is

(5) r(̺, n) =
1 + ̺2 + n(1 − ̺2) −

√

(1 − ̺2)((n + 1)2 − ̺2(n − 1)2)

2̺
.

Fact 4. If

Bn(z) = z
zn − ̺n

1 − ̺nzn

then the radius of starlikeness r(̺, n) for Bn(z) is

(6) r(̺, n)

=

(

(1 + n) + ̺2n(1 − n) −
√

̺4n(n − 1)2 − 2̺2n(1 + n2) + (n + 1)2

2̺n

)1/n

.

Theorem 5. Let

Bn(z) = z

n
∏

k=1

z − ̺eiθk

1 − ̺e−iθkz

and 0 < r ≤ r∗ where

r∗ =
1 + ̺2 + n(1 − ̺2) −

√

(1 − ̺2)((n + 1)2 − ̺2(n − 1)2)

2̺
.

Then Bn maps Dr univalently onto a starlike region.

Proof. We have

0 = 1 +
nr∗

r∗ − ̺
− nr∗̺

r∗̺ − 1
= 1 +

n
∑

k=1

(

r∗

r∗ − ̺
− r∗̺

r∗̺ − 1

)

≤ 1 +
n

∑

k=1

(

r

r − ̺
− r̺

r̺ − 1

)

[Lemma 2]

= 1 +
n

∑

k=1

min
t∈[0,2π]

ℜ
{

reit

reit − ̺eiθk

− reit̺eiθk

reit̺eiθk − 1

}

= ℜ
{

zB′

n(z)

Bn(z)

}∣

∣

∣

∣

z=reit

.

Theorem 6. Let Bn(z) be as in Theorem 5, and r∗ < r where

r∗=

(

(1 + n) + ̺2n(1 − n) −
√

̺4n(n − 1)2 − 2̺2n(1 + n2) + (n + 1)2

2̺n

)1/n

.

Then Bn fails to map Dr univalently onto a starlike region.
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Proof. Indeed,

0 = 1 + n
rn
∗

rn
∗
− ̺n

− n
rn
∗
̺n

rn
∗
̺n − 1

> 1+n

[

rn

rn − ̺n
− rn̺n

rn̺n − 1

]

[Lemma 2]

= 1 +

n
∑

k=1

(

rn

rn − ̺n
− rn̺n

rn̺n − 1

)

≥ 1 +

n
∑

k=1

(

r

r − ̺
− r̺

r̺ − 1

)

[Lemma 3]

= 1 +
n

∑

k=1

min
t∈[0,2π]

ℜ
{

reit

reit − ̺eiθk

− reit̺eiθk

reit̺eiθk − 1

}

= ℜ
{

zB′

n(z)

Bn(z)

}∣

∣

∣

∣

z=reit

.

Corollary 2. The radius of starlikeness r for Bn(z) satisfies r∗ ≤ r
≤ r∗ and this result is sharp.

There is a relation among the various radii of starlikeness just developed.
It is a straightforward but tedious computation to show (see Theorems 1, 2,
5 and 6 for notation) that rmin ≤ r∗ and rmax ≤ r∗. Note: These inequalities
are in accord with the condition for starlikeness of polynomials and Blaschke
products given in [3]: for B(z) as in (3) one knows that B is starlike in
{z : |z| < r} if and only if

θ − π/2 < arg

[

1

reiθ − 0
+

n−1
∑

k=1

1

reiθ − zk

+
n−1
∑

k=1

−1

reiθ − z∗k

]

< θ + π/2

for all θ, where z = reiθ, z∗k = 1/zk. For polynomials P (z) = z
∏n−1

k=1

(

1− z
zk

)

the condition is the same except the second sum is omitted. The condition
has the following physical interpretation: if unit masses are placed at the
zk’s (including zero) with repulsive force at reiθ of magnitude 1/|reiθ − zk|,
and unit masses are placed at the z∗k’s with attractive force of magnitude
1/|reiθ − z∗k| at reiθ, then the starlikeness of B (or P ) in {z : |z| < r} is
equivalent to the requirement that the sum of the forces directed at reiθ

points in a direction outward from the boundary |z| = r at any θ. Thus the
presence of z∗k makes it seem plausible that the radius of starlikeness for B
is larger than that of P .

A theorem of a more general nature for finite Blaschke products (see by
comparison Theorem 4) is the following:

Theorem 7. Let Bn(z) be as in (3) with zk = ̺ke
iθk , G =

√
̺1̺n and

0 < ̺1 ≤ · · · ≤ ̺n < 1. Then Bn(z) is starlike univalent on the disk of

radius r where r < r∗ = 2̺1/(An +
√

Bn), with

An := 1 + G2 +
n

∑

k=1

(1 − ̺2
k)

(

G

̺k

)2
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and

Bn :=

[

(1 + G)2 +

n
∑

k=1

(1 − ̺2
k)

(

G

̺k

)2][

(1 − G)2 +

n
∑

k=1

(1 − ̺2
k)

(

G

̺k

)2]

.

Proof. We have

(7) ℜ
[

zB′(z)

B(z)

]

= 1 +
n

∑

k=1

̺k − 1

zkz + zk/z − (1 + ̺2
k)

.

Now zkz + zk/z maps {z : |z| = r} to an ellipse with real axis intersections
−̺k(r + 1/r) and ̺k(r + 1/r) and it follows that

ℜ
[

̺k − 1

zkz + zk/z − (1 + ̺2
k)

]

≥ ̺2
k − 1

̺k(r + 1/r) − (1 + ̺k)
,(8)

ℜ
[

zB′(z)

B(z)

]

> 1 −
n

∑

k=1

r(1 − ̺2
k)

(1 − r̺k)(̺k − r)
.(9)

Thus

1 −
n

∑

k=1

r(1 − ̺2
k)

(1 − r̺k)(̺k − r)
= 1 − r

n
∑

k=1

(1 − ̺2
k)(1/̺k)

(1 − r̺k)(1 − ̺kr)

≥ 1 − r
n

∑

k=1

(1 − ̺2
k)(1/̺k)

(1 − r̺1)(1 − ̺kr)
= 1 − r

n
∑

k=1

(1 − ̺2
k)(1/̺2

k)

(1 − r/̺1)(1/̺k − r)

≥ 1 − r
n

∑

k=1

(1 − ̺2
k)(1/̺2

k)

(1 − r/̺1)(1/̺n − r)
= 1 − r

n
∑

k=1

(1 − ̺2
k)[G(̺1, ̺n)/̺k]

2

(̺1 − r)(1 − ̺nr)
.

where G(̺1, ̺n) =
√

̺1̺n. Define

Σ =
n

∑

k=1

(1 − ̺2
k)

[

G(̺1, ̺n)

̺k

]2

> 0

and note Σ is not a function of r. The function

g(r) =
rΣ

(1 − r̺n)(̺1 − r)

increases continuously from 0 to +∞ on the interval (0, ̺1). One finds that
the value r∗ for which 1 − g(r) ≥ 0 when 0 ≤ r < r∗ < ̺1 is

r∗ =
2̺1

1 + G2 + Σ +
√

[(1 + G)2 + Σ][(1 − G)2 + Σ]
.

The result then follows.

Notes. 1. r∗ is seen to depend on the geometric mean of ̺1 and ̺n and
the set {G/̺k}n

k=1, which measures the placement of the ̺k relative to G.
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2. Routine limit calculations show that if

B(z) = z
∞
∏

k=1

|zk|
zk

z − zk

1 − zkz
,

then B is starlike on r < r∗∗ where r∗∗ = 2̺1/(A∞ +
√

B∞) with

A∞ := 1 + G2 +
∞

∑

k=1

(1 − ̺2
k)

(

G

̺k

)2

,

B∞ :=

[

(1 + G)2 +

∞
∑

k=1

(1 − ̺2
k)

(

G

̺k

)2][

(1 − G)2 +

∞
∑

k=1

(1 − ̺2
k)

(

G

̺k

)2]

.
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