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On the Euler characteristic of the links of a set
determined by smooth definable functions

by Krzysztof Jan Nowak (Kraków)

Abstract. The purpose of this paper is to carry over to the o-minimal settings some
results about the Euler characteristic of algebraic and analytic sets. Consider a polyno-
mially bounded o-minimal structure on the field R of reals. A (C∞) smooth definable
function ϕ : U → R on an open set U in Rn determines two closed subsets

W := {u ∈ U : ϕ(u) ≤ 0}, Z := {u ∈ U : ϕ(u) = 0}.

We shall investigate the links of the sets W and Z at the points u ∈ U , which are well
defined up to a definable homeomorphism. It is proven that the Euler characteristic of
those links (being a local topological invariant) can be expressed as a finite sum of the
signs of global smooth definable functions:

χ(lk(u;W )) =

rX
i=1

sgnσi(u),
1

2
χ(lk(u;Z)) =

sX
i=1

sgn ζi(u).

We also present a version for functions depending smoothly on a parameter. The analytic
case of these formulae has been worked out by Nowel. As an immediate consequence, the
Euler characteristic of each link of the zero set Z is even. This generalizes to the o-minimal
setting a classical result of Sullivan about real algebraic sets.

1. Preliminaries. Throughout this paper we deal with a polynomially
bounded o-minimal structure R on the field R of reals. For rudiments of
o-minimal geometry we refer the reader to e.g. [11]. Polynomial bounded-
ness implies many properties typical of the classical semi- and subanalytic
geometry, as for instance the Łojasiewicz inequality or regular separation
(see e.g. [18, 19, 6, 12]). We have at our disposal even a stronger version of
the inequality with parameter.
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Łojasiewicz inequality with parameter. Consider two definable
functions f, g : A → R on a set A ⊂ Rm

u × Rn
x. Assume that all sections

Au := {x ∈ Rn : (u, x) ∈ A}, u ∈ Rm, are compact and that all functions

fu, gu : Au → R, fu(x) := f(u, x), gu(x) := g(u, x),

are continuous. If {f = 0} ⊂ {g = 0}, then there exist a finite number of
exponents λ1, . . . , λk > 0 and definable functions c1, . . . , ck : Rm → (0,∞)
such that

|f(u, x)| ≥ ci(u)|g(u, x)|λi , (u, x) ∈ A,
for some i = 1, . . . , k.

We may regard the functions f above as a definable family of functions
fu with parameter u.

Define the Łojasiewicz exponent λ(0; f) of a continuous definable function
germ

f : (Rn, 0)→ R at 0 ∈ Rn

as the infimum of the set Λ of those exponents λ > 0 for which there exists
a constant c > 0 such that

|f(x)| ≥ cdist(x, {f = 0})λ

in the vicinity of 0 ∈ Rn; here dist(x, V ) denotes the distance of a point x
from a set V ; we put dist(x, ∅) = 1. The set Λ is not empty by the Łojasiewicz
inequality. We always have λ(0; f) ∈ Λ; moreover, λ(0; f) belongs to the
exponent field K of a polynomially bounded structure R (K consists of
those exponents r ∈ R for which the power function tr is definable in R).

Consider now a definable family f = (fu)u∈B of continuous function
germs (Rn, 0) → R at 0 ∈ Rn with parameter set B ⊂ Rm. In other words,
f : A→ R is a definable function on a set A ⊂ B×Rn such that every section
Au, u ∈ B, is a neighbourhood of 0 ∈ Rn, and every function fu : Au → R
is continuous. We shall need the following

Theorem on Łojasiewicz exponents of a definable family.
Under the above assumptions, the family of Łojasiewicz exponents λ(0; fu),
u ∈ B, is finite, and a fortiori bounded.

It is well known (cf. [25]) that the R-algebra D(U) of smooth definable
functions on an open connected subset U of Rn is quasi-analytic, i.e. each
function f ∈ D(U) is uniquely determined by its Taylor series at any point
u ∈ U . A definable open set U may be endowed with the Zariski topology
induced by the algebra D(U); the Zariski closed subsets of U are the zero
sets of families of functions from D(U).

We shall show in the Appendix that, for a polynomially bounded struc-
tureR, U with the above smoothly definable Zariski topology is a noetherian
space. This is a crucial fact which enables noetherian induction, in analogy to
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algebraic geometry. Actually, our line of reasoning adapts to the o-minimal
setting the induction procedure worked out by Nowel [26] for the case of
analytic sets associated with noetherian families, and based on a technique
developed by Tougeron and El Khadiri [14]. Let us mention, however, that
the analytic Zariski topology with respect to the R-algebra A(U) of analytic
definable functions on U remains noetherian even for o-minimal structures
R that are not polynomially bounded (see Appendix).

To investigate Euler characteristic, we shall apply herein, as in papers
[35, 36, 27, 26], the two formulae below.

Khimshiashvili’s Formula (cf. [17]). If f : (Rn, 0) → (R, 0) is a
smooth function germ with isolated critical point at 0 ∈ Rn, then the gra-
dient ∇f = (∂f/∂x1, . . . , ∂f/∂xn) has an isolated zero at 0 ∈ Rn, and

χ(lk(0; {f ≤ 0})) = 1− deg0(∇f),

where deg0 denotes local topological degree at 0 ∈ Rn.

We say that a smooth map germ F = (f1, . . . , fn) : (Rn, 0)→ Rn is finite
or has an algebraically isolated zero at 0 ∈ Rn if one of the four equivalent
(via Nakayama’s lemma) conditions holds:

(i) the ideal (f1, . . . , fn) contains some power of the maximal ideal of
the local ring C∞0 (Rn) of smooth function germs at 0 ∈ Rn;

(ii) the local algebra of F ,

Q(F ) := C∞0 (Rn)/(f1, . . . , fn),

is a finite-dimensional real vector space;
(iii) the ideal (T0f1, . . . , T0fn) generated by the Taylor series of the germs

fi contains some power of the maximal ideal of the formal power
series ring R[[x1, . . . , xn]];

(iv) the factor R-algebra R[[x1, . . . , xn]]/(T0f1, . . . , T0fn) is a finite-di-
mensional real vector space.

Remark. In view of the preparation theorems (the formal version and
the Malgrange version for differentiable algebras; see for instance [20]), the
above conditions imply that the algebras R[[x1, . . . , xn]] and C∞0 (Rn) are—
via the homomorphisms induced by F = (f1, . . . , fn)—finite modules over
R[[x1, . . . , xn]] and C∞0 (Rn), respectively.

Consider a finite smooth map germ F = (f1, . . . , fn) : (Rn, 0) → (Rn, 0)
with Jacobian J . We have, of course, the canonical isomorphism

Q(F ) ∼= R[[x1, . . . , xn]]/(T0f1(x), . . . , T0fn(x)).

For any linear form φ : Q→ R, one can define a symmetric bilinear form Φ
on Q by putting

Φ : Q×Q→ R, Φ(p, q) := φ(pq).
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Eisenbud–Levin Formula (cf. [13] or [3, Part I, Chap. 5]). The residue
class J of J in the local algebra Q(F ) is non-zero and the bilinear form Φ is
non-degenerate iff φ(J) 6= 0. Moreover , if φ(J) > 0, then

deg0(F ) = signΦ.

2. Local degree of a definable family of smooth map germs. We
keep the notation from the previous section. Consider a definable family
F = (f1, . . . , fn) = (Fu)u∈U of smooth map germs (Rn, 0) → Rn with an
open parameter set U ⊂ Rm. In other words, F : A → Rn is a smooth
definable map on an open neighbourhood A of the set U × {0} ⊂ U × Rn,
F ∈ D(A)n. Suppose that V is an irreducible Zariski closed subset of U , and
the map germs

Fu = (f1,u, . . . , fn,u) : (Rn, 0)→ (Rn, 0), u ∈ V,

have an isolated zero at 0 ∈ Rn. Let Λ be the family of Łojasiewicz exponents
for the families (f1,u)u∈V , . . . , (fn,u)u∈V (which is a finite set of positive real
numbers), and take k0 := maxΛ. It is clear that for every u ∈ V there is a
constant cu > 0 for which

‖Fu(x)‖ ≥ cu‖x‖k0

in the vicinity of zero. Therefore—following [36, 26]—we shall modify the
family F by adding the map (axk1, . . . , ax

k
n) with any a ∈ R, a 6= 0, and

k ∈ N, k > k0, without changing its local topological degree at zero for
u ∈ V :

deg0 Fu(x) = deg0Gu(x) for u ∈ V,

where
G(u, x) = F (u, x) + a(xk1, . . . , x

k
n);

instead, we may obviously consider the family

G(u, x) = aF (u, x) + (xk1, . . . , x
k
n).

For all but a finite number of a ∈ R, the germs Gu(x) are finite (or, in
other words, have an algebraically isolated zero at 0 ∈ Rn

x) for all u from a
Zariski open and dense subset of V , i.e. for u ∈ V \ Σ where Σ is a proper
Zariski closed subset of V . We now sketch a proof. We first recall a direct
consequence of Nakayama’s lemma (cf. [37, Chap. II.5]):

Claim. Let A be a local ring whose maximal ideal m is finitely generated ,
and let M be a finite A-module. Then

lengthM ≤ h iff lengthM/mh+1M ≤ h.

Remark. If A contains a field k canonically isomorphic to the residue
field A/m, then lengthM = dimkM .
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For a finite smooth map germ G = (g1, . . . , gn) : (Rn, 0) → (Rn, 0) we
thus get the following equivalences:

dimR R[[x]]/(T0g1, . . . , T0gn) > h

iff
dimR R[[x]]/(mh+1 + (T0g1, . . . , T0gn)) > h

iff
dimR(mh+1 + (T0g1, . . . , T0gn))/mh+1 < dimR R[[x]]/mh+1 − h

iff the collection of partial derivatives (∂g|α|i /∂xα(0)), i = 1, . . . , n, |α| ≤ h,
satisfies a polynomial equation.

Hence, for our definable family G(u, x), we get the equivalence

dimRC
∞
0 (Rn)/(g1,u, . . . , gn,u) > h

iff the collection of partial derivatives (∂g|α|i /∂xα(u, 0)), i = 1, . . . , n, |α| ≤ h,
satisfies a polynomial equation iff P (u, a) = 0 for a certain smooth definable
function

P (u, a) =
d∑
j=0

ϕj(u)aj

which depends polynomially on a.
But for a = 0 we have

dimR C∞0 (Rn)/(g1,u, . . . , gn,u) = dimR R[[x]]/(xk1, . . . , x
k
n) = kn,

whence the function ϕ0(u) has no zero on V whenever h ≥ kn. Take h ≥ kn
and fix any u0 ∈ V . Then the polynomial P (u0, a) has at most d ze-
roes a1, . . . , ad. Consequently, P (u0, a) 6= 0 for every a ∈ R distinct from
a1, . . . , ad. Therefore Σ := {u ∈ V : P (u, a) = 0} is a proper Zariski closed
subset of V , and thus we obtain the desired conclusion:

dimRC
∞
0 (Rn)/(g1,u, . . . , gn,u) ≤ h

whenever u ∈ V \Σ.
At this stage we can prove the following

Theorem. Suppose that V is an irreducible Zariski closed subset of U ,
and the map germs

Fu = (f1,u, . . . , fn,u) : (Rn, 0)→ (Rn, 0), u ∈ V,
have an isolated zero at 0 ∈ Rn. Then there exists a proper Zariski closed sub-
set Σ of V such that the local topological degree deg0 Fu(x) is over V \Σ the
sum of the signs of a finite number of smooth definable functions σ1, . . . , σs ∈
D(U):

deg0 Fu(x) = sgnσ1(u) + · · ·+ sgnσs(u) for u ∈ V \Σ.
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Proof. Similarly to papers [27, 26], the proof makes use of the Eisenbud–
Levin formula and an elementary but powerful formal division algorithm of
Grauert–Hironaka (cf. [7, 15, 5]).

For a Zariski closed subset V of U , let

I(V ) := {f ∈ D(U) : f |V ≡ 0} and D(V ) := D(U)/I(V ).

Obviously, the set V is irreducible iff the ideal I(V ) is prime iff the R-algebra
D(V ) is an integral domain.

Keeping the foregoing notation, G = (g1, . . . , gn) : A → Rn is the modi-
fied definable family of smooth map germs at 0 ∈ Rn. By means of evaluation
homomorphisms, one may look at D(U)[[x]] as a family of formal power se-
ries rings R[[x]]. Consider the ideal I ⊂ D(V )[[x]] generated by the Taylor
series T0g1,u(x), . . . , T0gn,u(x), u ∈ V .

Denote by N(I) the Hironaka diagram of initial exponents for I and put

∆(I) := Nn \N(I).

Generally, the division algorithm says that there is a function τ(u) ∈ D(V )
such that each f ∈ A(V )[[x]] can be represented in a unique fashion in the
form

f = q + r with q, r ∈ D(V )[1/τ ][[x]], q ∈ I, supp(r) ⊂ ∆(I).

The division algorithm is compatible with evaluation homomorphisms at the
points of the Zariski open set {u ∈ V : τ(u) 6= 0}, i.e.

N(Iu) = N(I), ∆(Iu) = ∆(I) if u ∈ V, τ(u) 6= 0,

and fu = qu + ru is the result of the algorithm carried out at a point u ∈ V
with τ(u) 6= 0. If ∆(Iu) is a finite set for u in a Zariski open and dense subset
of V , then so are ∆(I) and ∆(Iu) = ∆(I) for all u ∈ V , τ(u) 6= 0. Therefore
D(V )[1/τ ][[x]]/(I · D(V )[1/τ ][[x]]) and R[[x]]/Iu are finite free modules over
D(V )[1/τ ] and R, respectively, with a basis which consists of the monomials
xα with α ∈ ∆(I) = ∆(Iu), provided that u ∈ V , τ(u) 6= 0.

In our case, the map germs Gu at 0 ∈ Rn are finite for u from a Zariski
open and dense subset of V , and thus the set ∆(I) is finite of some cardinal-
ity s. Hence, after enlarging the singular set Σ by the zero set of the function
τ ∈ D(V ), the local algebras Q(Gu) = R[[x]]/Iu are finite-dimensional real
vector spaces with basis xα, α ∈ ∆(I).

The division algorithm carried out for the Jacobian J of G with respect
to the variables x yields a unique representation of the form J = q+r, where

qu ∈ (T0g1,u(x), . . . , T0gn,u(x)) if τ(u) 6= 0

and
r =

∑
α∈∆

rα(u)xα, rα ∈ D(V )[1/τ ].



Euler characteristic of the links of a set 237

The functions rα, α ∈ ∆(I), have no common zero in V \ Σ because Ju 6=
0 ∈ Q(Gu) for u ∈ V \Σ.

Consider now the family of linear forms

φu : Q(Gu)→ R, φu(xα) = rα(u),

for α ∈ ∆(I) and u ∈ V \Σ. Since φu(Ju) =
∑

α∈∆ r
2
α > 0 for all u ∈ V \Σ,

it follows from the Eisenbud–Levin formula that for all u ∈ V \Σ the local
topological degrees deg0Gu coincide with the signatures of the symmetric
bilinear forms Φu(p, q) := φu(pq). By means of linear transformations over
the quotient field of the integral domain D(V ), the matrix of the bilinear
forms Φu can be reduced over the set V to the diagonal form with some
quotients θ1, . . . , θs on the diagonal. Enlarging again the singular set Σ by
the zero sets of the denominators of the quotients and multiplying the di-
agonal matrix by the squares of those denominators, we may assume that
θ1, . . . , θs ∈ D(V ). Then

deg0 Fu = deg0Gu = signΦu = θ1(u) + · · ·+ θs(u)

for all u ∈ V \Σ. To complete the proof, it suffices to take for σ1(u), . . . , σs(u)
∈ D(U) any representatives of the functions θ1, . . . , θs ∈ D(V ).

Via a routine noetherian induction (cf. [26]), one can easily obtain

Corollary. Let F = (f1, . . . , fn) = (Fu)u∈U be a definable family of
smooth map germs (Rn, 0)→ Rn with an open parameter set U ⊂ Rm. Sup-
pose the map germ Fu has an isolated zero for every u from a Zariski closed
subset V of U . Then the local topological degree deg0 Fu(x) is over V the
sum of the signs of a finite number of smooth definable functions σ1, . . . , σs ∈
D(U):

deg0 Fu(x) = sgnσ1(u) + · · ·+ sgnσs(u) for u ∈ V.

3. Euler characteristic of the links of the sets W and Z. Through-
out this section, we shall deal with a definable family f = (fu)u∈U of smooth
function germs

fu : (Rn, 0)→ R
with an open parameter set U ⊂ Rm. Let

V := {u ∈ U : fu(0) = 0},
Wu := {x ∈ Rn : fu(x) ≤ 0}, Zu := {x ∈ Rn : fu(x) = 0},
Sε := {x ∈ Rn : x2

1 + · · ·+ x2
n = ε}, Lu,ε := Wu ∩ Sε.

We shall regard Wu both as a definable set in the vicinity of 0 ∈ Rn and as
a germ at zero. After Szafraniec [35] (see also [26]), we apply the following
modification g = (gu)u∈U of the definable family f :

gu(x) := fu(x)− (x2
1 + · · ·+ x2

n)
k.
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Put
Yu := {x ∈ Rn : gu(x) ≤ 0}, Mu,ε := Yu ∩ Sε.

Proposition. There exists k(f) > 0 such that for every integer k >
k(f) and every u ∈ V , for all sufficiently small ε > 0 (i.e. for all ε ∈ (0, εk,u)
with some εk,u > 0) the following assertion holds: 0 is a regular value of the
restriction gu|Sε, Lu,ε is a deformation retract of Mu,ε, and the modification
gu has an isolated (if any) critical point at the origin.

Proof. Fix a u ∈ V and an ε > 0. We first observe that the set

Σu,ε := {x ∈ Sε : fu(x) > 0, x is a critical point of fu|Sε}
is closed in Sε, or equivalently, that no accumulation point of Σu,ε lies in
Zu ∩ Sε. Indeed, suppose a point a ∈ Zu ∩ Sε were an accumulation point
of Σu,ε. The curve selection lemma implies that we could find a definable
C1 curve

γ : [0, η)→ Sε for which γ(0) = a and γ((0, η)) ⊂ Σu,ε.
Since d

dt (fu ◦γ)(t) = 0, the function fu would be constant on our curve, and
thus fu(γ(t)) = fu(γ(0)) = 0 for all t ∈ (0, η), which is a contradiction.

Therefore, for all ε > 0 small enough, we have

ϕu(ε) := inf{fu(x) : x ∈ Σu,ε} = min{fu(x) : x ∈ Σu,ε} > 0.

Hence and by piecewise uniform asymptotics (see e.g. [12]), there exist
finitely many real numbers λ1, . . . , λs > 0 such that for all u ∈ V and
for all sufficiently small (depending on u) ε > 0 we have

ϕu(ε) = c · ελi + o(ελi) as ε→ 0+

for some i = 1, . . . , s and c = c(u) > 0. Now, if we take

k(f) := max{λ1, . . . , λs} and k > k(f),

then 0 is a regular value of gu|Sε for all ε > 0 small enough, because the
restrictions fu|Sε and gu|Sε have the same critical points on the spheres Sε.
Moreover, fu|Sε and gu|Sε have no critical points on Mu,ε \ Lu,ε.

Next, we are to show that the modification gu has an isolated (if any)
critical point at the origin. Otherwise, again by the curve selection lemma,
we could find a non-constant definable C1 curve

γ : [0, η)→ Rn with γ(0) = 0

which consists of only critical points of gu. Since d
dt (gu ◦ γ)(t) = 0, the

function gu would be constant on our curve, and thus gu would vanish on γ.
But the points of the curve γ are critical points of the restrictions gu|Sε as
well, and consequently, 0 would be a critical value of the restrictions gu|Sε
for all ε > 0 small enough—contrary to what we have already shown.
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Finally, through piecewise linearization of definable functions (cf. [32,
Chap. II] and also [30, 31]), the set Lu,ε is a deformation retract of its
neighbourhood

{x ∈ Sε : fu(x) ≤ c}
for some small c > 0. Since fu|Sε has no critical points on

Mu,ε \ Lu,ε = {x ∈ Sε : fu(x) ≤ εk} \ {x ∈ Sε : fu(x) ≤ 0},
we can—using integration of vector fields—homotopically deform the level
surface {x ∈ Sε : f(x) = c} into {x ∈ Sε : f(x) = εk} by pushing it
at constant vertical speed along the gradient curves of the function fu|Sε.
More precisely, we push the level surface along the trajectories of the gradient
field ∇f/|∇f | 2 with respect to a fixed riemannian metric on Sε. Notice
that the trajectories of the vector fields ∇f/|∇f | 2 and ∇f differ merely in
parametrization. Consequently, Lu,ε = {x ∈ Sε : fu(x) ≤ 0} is a deformation
retract of Mu,ε = {x ∈ Sε : fu(x) ≤ εk}, which completes the proof of the
proposition.

Corollary. If k > k(f), then

χ(lk(0;Wu)) = 1− deg0(∇gu) for each u ∈ V.

This follows immediately from Khimshiashvili’s formula. Here we set
deg0(∇gu) = 0 if 0 is not a critical point of gu, i.e. if ∇gu(0) 6= 0.

Hence, and by the Corollary to the Theorem from Section 2, we obtain

Theorem 1. The Euler characteristic of each link , χ(lk(0;Wu)) for
u∈U , is the sum of the signs of a finite number of smooth definable functions
σ1, . . . , σr ∈ D(U):

χ(lk(0;Wu)) = sgnσ1(u) + · · ·+ sgnσr(u) for u ∈ U.

Proof. This is straightforward, because deg0(∇gu) is the sum of the signs
of a finite number of functions from D(U) if u ∈ V , and if u ∈ U \V we have

χ(lk(0;Wu)) =
{

0 for n even,
1− sgn fu(0) for n odd.

Remarks. (1) We shall apply Theorem 1 to a modification g of the
definable family f of the form

gu(x) = fu(x)− c(x2
1 + · · ·+ x2

n)
k, c ∈ R;

we may regard g as a definable family with parameter set U × R. Thus the
Euler characteristic

χ(lk(0; {x ∈ Rn : fu(x) ≤ c(x2
1 + · · ·+ x2

n)
k))

is a finite sum of the signs of smooth definable functions σi(u, c) ∈ D(U×R),
i = 1, . . . , s.
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(2) Working with links, we actually deal with closed definable subsets of
the spheres Sε, which are triangulable (see e.g. [32, Chap. II]). Therefore we
have at our disposal such tools of algebraic topology as exact Mayer–Vietoris
sequence (because every triad under consideration is excisive) or Alexander
duality (for singular homology and cohomology); see e.g. [33].

(3) Clearly, the foregoing proposition holds true for modifications g of
the definable family f of the form

gu(x) = fu(x)− c (x2
1 + · · ·+ x2

n)
k with c > 0,

provided that the integer k satisfies k > k(f). Thus, for any c > 0, we get

χ(lk(0; {x ∈ Rn : fu(x) ≤ c (x2
1 + · · ·+ x2

n)
k})) = χ(lk(0;Wu)).

(4) By Alexander duality, we have, for any c > 0, the equality

χ({x ∈ Sε : fu(x) ≤ −c (x2
1 + · · ·+ x2

n)
k})

= χ(Sε)− χ({x ∈ Sε : fu(x) > −c (x2
1 + · · ·+ x2

n)
k}).

Since, similarly to what we saw before, the set

W ′u := {x ∈ Sε : fu(x) ≥ 0}

is a deformation retract of the set

{x ∈ Sε : fu(x) > −c (x2
1 + · · ·+ x2

n)
k}

for all ε > 0 small enough, we get the equality

χ(lk(0; {x ∈ Rn : fu(x) ≤ −c (x2
1 + · · ·+ x2

n)
k})) = χ(Sε)− χ(lk(0;W ′u))

whenever c > 0.
Concluding, we see that

χ(lk(0;Wu)) =
∑
i

lim
c→0+

sgnσi(u, c),

χ(lk(0;W ′u)) = χ(Sε)−
∑
i

lim
c→0+

sgnσi(u,−c).

At this stage we can generalize Theorem 1 as follows.

Theorem 2. There exist a finite number of smooth definable functions
ξ1, . . . , ξs ∈ D(U) such that
1
2
(χ(lk(0;Wu))±χ(lk(0;W ′u))) = sgn ξ1(u)+· · ·+sgn ξs(u) for every u ∈ U.

Proof. It suffices to show that, for every smooth definable function σ(u, c)
∈ D(U × R), the function

1
2
( lim
c→0+

sgnσ(u, c) + lim
c→0+

sgnσ(u,−c))
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is such a finite sum of signs. Put F0 := U , and for k ≥ 1,

Fk :=
{
u ∈ U : σ(u, 0) = ∂

σ

∂c
(u, 0) = · · · = ∂k−1

∂ck−1(u, 0)
= 0
}
.

The decreasing sequence (Fk) of Zariski closed subsets of U stabilizes (see
the appendix), i.e. FK = FK+1 = FK+2 = · · · for an integer K > 0. Then

1
2

( lim
c→0+

sgnσ(u, c) + lim
c→0+

sgnσ(u,−c))

=
{

0 if u ∈ (F0 \ F1) ∪ (F2 \ F3) ∪ (F4 \ F5) ∪ · · · ,
1 if u ∈ (F1 \ F2) ∪ (F3 \ F4) ∪ (F5 \ F6) ∪ · · · ,

and the latter function can be expressed as a desired finite sum of signs; the
detailed verification is left to the reader.

Corollary. Half of the Euler characteristic χ(lk(0;Zu)) is the sum of
the signs of some smooth definable functions ζ1, . . . , ζs ∈ D(U):

1
2
χ(lk(0;Zu)) = sgn ζ1(u) + · · ·+ sgn ζs(u) for u ∈ U.

Proof. Since Zu = Wu ∩W ′u, this follows immediately from the Mayer–
Vietoris sequence applied to the triad (Sε,Wu ∩ Sε,W ′u ∩ Sε).

Now we shall consider one smooth definable function ϕ ∈ D(U) on an
open set U ⊂ Rn and the two sets determined by ϕ:

W := {u ∈ U : ϕ(u) ≥ 0}, Z := {u ∈ U : ϕ(u) = 0}.
The function f induces the following definable family f = (fu)u∈U of smooth
function germs:

fu : (Rn, 0)→ Rn, fu(x) := ϕ(u+ x).

Clearly, the germs at u ∈ U of the sets W and Z are the translations by the
vector u of the germs Wu and Zu at the origin (determined by the family f).
We may therefore summarize the foregoing theorems as follows.

Theorem 3. The Euler characteristic χ(lk(u;W )) is the sum of the
signs of some smooth definable functions σ1, . . . , σr ∈ D(U):

χ(lk(u;W )) = sgnσ1(u) + · · ·+ sgnσr(u) for u ∈ U ;

half of the Euler characteristic χ(lk(u;Z)) is the sum of the signs of some
smooth definable functions ζ1, . . . , ζs ∈ D(U):

1
2
χ(lk(u;Z)) = sgn ζ1(u) + · · ·+ sgn ζs(u) for u ∈ U.

Theorems 1, 2 and 3 are o-minimal analogues of Nowel’s results [26] about
analytic sets and functions. Finally, we state a parametric version of these
formulae:
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Let U and T be open subsets of Rn and Rm, respectively. Suppose ϕ(u, t)
is a smooth definable function on U × T . For t ∈ T put

Wt := {u ∈ U : ϕ(u, t) ≥ 0}, Zt := {u ∈ U : ϕ(u, t) = 0}.

Then the Euler characteristic χ(lk(u;Wt)) is the sum of the signs of some
smooth definable functions σ1, . . . , σr ∈ D(U × T ):

χ(lk(u;Wt)) = sgnσ1(u, t) + · · ·+ sgnσr(u, t) for u ∈ U, t ∈ T ;

half of the Euler characteristic χ(lk(u;Zt)) is the sum of the signs of some
smooth definable functions ζ1, . . . , ζs ∈ D(U × T ):

1
2
χ(lk(u;Zt)) = sgn ζ1(u, t) + · · ·+ sgn ζs(u, t) for u ∈ U, t ∈ T.

4. Appendix: smoothly definable Zariski topology is noethe-
rian. As previously, we fix a polynomially bounded, o-minimal structure
R on the field R of reals. A definable leaf in Rn is a definable, connected,
locally closed subset of Rn that is a smooth submanifold in Rn. We begin by
decomposing the set Z into finitely many definable leaves.

Theorem. Let M be a definable, locally closed , smooth submanifold in
an affine space Rn and f : M → R a smooth definable function. Then the
set Z = Z(f) := {x ∈M : f(x) = 0} is a finite union of definable leaves.

Proof. We proceed by induction on the dimension m of the ambient
manifold M . The case m = 1 is obvious, so suppose m > 1. Consider the
linear projections

π = πl1,...,lm : M → Rm, π(x) = πl1,...,lm(x) := (xl1 , . . . , xlm).

Then the sets

U = Ul1,...,lm ⊂M, 1 ≤ l1 < · · · < lm ≤ n,

of those points at which the mappings π are local diffeomorphisms onto the
image are definable open subsets of M . Since the sets U cover M , it suffices
to decompose every set Z∩U into definable leaves. For simplicity of notation,
we shall assume that U is a definable open subset of Rm; we may also assume
that U is connected and f 6≡ 0. Put

Z1 :=
{
x ∈ U :

∂f

∂xi
(x) = 0 for all i = 1, . . . ,m

}
;

then Z1 is a definable closed subset of U .
Clearly, Z ∩ (U \Z1) is a smooth definable submanifold of codimension 1

in U \Z1, and thus it decomposes into finitely many definable leaves. So we
have to decompose Z ∩ Z1. Put
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Z2 :=
{
x ∈ U :

∂2f

∂xi1∂xi2
(x) = 0 for all i1, i2 = 1, . . . ,m

}
;

then

U \ Z2 :=
{
x ∈ U :

∂2f

∂xi1∂xi2
(x) 6= 0 for some i1, i2 = 1, . . . ,m

}
,

and thus Z1 \Z2 is contained in a finite union of smooth definable subman-
ifolds of codimension 1, closed in the open subsets{

x ∈ U :
∂2f

∂xi1∂xi2
(x) 6= 0

}
.

By induction hypothesis, Z ∩ Z1 ∩ (U \ Z2) decomposes into finitely many
definable leaves. So we have to decompose Z ∩ Z1 ∩ Z2. We now repeat this
process. The proof will be finished once we show that

Z ∩ Z1 ∩ · · · ∩ Zk = ∅

for a sufficiently large k, where

Zk :=
{
x ∈ U :

∂kf

∂xi1 . . . ∂xik
(x) = 0 for all i1, . . . , ik = 1, . . . ,m

}
.

But the above intersection is the set of those points x ∈ U at which the
function f is k-flat, and therefore our assertion follows from the fact that
the structure R is polynomially bounded (cf. [25]).

We shall associate with any decomposition of Z into finitely many defin-
able leaves the multi-index µ = (µm, µm−1, . . . , µ0) ∈ Nm+1, where µi is the
number of leaves of dimension i.

Denote by µ(Z) the smallest (with respect to the lexicographical or-
dering) among the multi-indices of such decompositions. Now we are in a
position to achieve the main goal of the Appendix.

Corollary. The smoothly definable Zariski topology on a definable open
subset U of Rm is noetherian.

Proof. It suffices to show that every descending sequence of Zariski closed
sets of the form

Zn = Z(fn) := {x ∈ U : fn(x) = 0}, fn ∈ D(U), n ∈ N,

stabilizes. Since the algebra D(U) of smooth definable functions on U is
quasianalytic, we can easily deduce that µ(Z(f)) < µ(Z(g)) for any two
functions f, g ∈ D(U) such that Z(f) ⊂ Z(g) and Z(f) 6= Z(g). Hence our
assertion follows immediately.
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Remarks. (1) The same proofs remain valid for the case of analytic
definable submanifolds and functions, even though we drop the assumption
that the structure R is polynomially bounded. (The condition of polynomial
boundedness plays an essential role only in the fact that a smooth definable
function which is infinitely flat at a point must vanish.) Consequently, the
analytic Zariski topology on the set U with respect to the R-algebra A(U)
of analytic definable functions remains noetherian for arbitrary o-minimal
structures R (see also [38] for some analytical background to topological
noetherianity). If the o-minimal structure R is not polynomially bounded,
the function exp is definable (the dichotomy principle; cf. [23, 12]). Then the
set of Łojasiewicz exponents for a definable family f = (fu)u∈U of analytic
function germs at zero is a definable subset of R contained in Q, and thus it is
a finite set as well. Taking the above into account, we see that the theorems
and proofs of this paper still hold for the case of analytic definable functions
in arbitrary o-minimal structures.

(2) The R-algebras D(U) under consideration may contain much more
than only real-analytic functions. In particular, D(U) may embrace power
functions with real exponents (cf. [24]) or quasianalytic Denjoy–Carleman
classes (cf. [29]).

(3) Finally, it is worth pointing out that research concerning topologi-
cal invariants of algebraic and analytic sets has been conducted by many
mathematicians, for instance in [1, 2, 4, 8–10, 21, 22, 26–28, 34–36].
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