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Geometry of Puiseux expansions

by Maciej Borodzik and Henryk Żołądek (Warszawa)

Abstract. We consider the space Curv of complex affine lines t 7→ (x, y) = (φ(t), ψ(t))
with monic polynomials φ, ψ of fixed degrees and a map Expan from Curv to a complex
affine space Puis with dimCurv = dim Puis, which is defined by initial Puiseux coefficients
of the Puiseux expansion of the curve at infinity. We present some unexpected relations
between geometrical properties of the curves (φ, ψ) and singularities of the map Expan.
For example, the curve (φ, ψ) has a cuspidal singularity iff it is a critical point of Expan.
We calculate the geometric degree of Expan in the cases gcd(deg φ,degψ) ≤ 2 and describe
the non-properness set of Expan.

1. Introduction. Let p, q be integers satisfying

(1.1) 1 < p < q, q/p 6∈ Z.

We consider complex parametric curves ξ : C→ C2 of the form

(1.2) x = φ(t) = tp+a1t
p−1 + · · ·+ap, y = ψ(t) = tq + b1t

q−1 + · · ·+ bq,

with

(1.3) a1 = 0.

Denote by C = ξ(C) the image of the curve ξ. The curve C has the Puiseux
expansion at infinity

(1.4) y = xq/p + c1x
(q−1)/p + · · · ,

where cj = cj(ξ) = cj(a, b) are polynomials in (a, b) = (a2, . . . , ap, b1, . . . , bq);
they are uniquely defined by the condition x1/p = t(1+o(1)) as t→∞. Any
polynomial curve in C2 can be reduced either to a curve of the form (1.2)
with conditions (1.1) and (1.3), or to a straight line t 7→ (t, 0) by a Cremona
automorphism of the plane and a shift of the time t.
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Definition 1.1. We define the space of curves Curv = Curvp,q '
Cp+q−1 as the space consisting of the parametric lines (1.2). The space
Puis = Puisp,q ' Cp+q−1 is the space of truncated Puiseux series y =
xq/p + c1x

(q−1)/p + · · ·+ cp+q−1x
(1−p)/p. The map

(1.5) ξ 7→ (c1(ξ), . . . , cp+q−1(ξ))

is called the expansion map and denoted by Expan = Expanp,q.

The expansion map is the main subject of this paper. It can be regarded
as a certain generalisation of the Lyashko–Looijenga map. Recall that the
Lyashko–Looijenga map associates to any meromorphic function on CP1 its
unordered collection of critical values and is used in the Hurwitz problem
of ramified covering of the sphere S2 (see [Lan]). Here we have two rational
functions, but of a special form, and we study one critical point, but in
greater detail.

We use the map Expan to study the singularities of the curve. The idea
to consider this map has arisen in our investigations of polynomial curves
with b1 = 1 in [BZ1] and of the Jacobian conjecture [Zol].

Definition 1.2. A curve ξ = (φ, ψ) is singular at t0 if φ̇(t0) = ψ̇(t0) = 0,
where the dot denotes the derivation with respect to t. A curve is singular
if it is singular at some point.

Remark 1.3. An intersection of smooth branches of a curve C, even
with tangency, is not regarded as a singularity in this paper.

Our first result connects singularities of curves with singularities of the
expansion map.

Theorem 1.4. A curve ξ0 ∈ Curv is a critical point of Expan if and
only if ξ0 is a singular curve. Moreover , the multiplicity of Expan at ξ0 is
infinite iff the parametrisation t 7→ ξ(t) is not one-to-one.

Theorem 1.5. Assume that ξ0 has a single singular point of type A2m.
Then the multiplicity of Expan at ξ0 is m+ 1. Moreover , if 2m+ 1 ≤ q, the
map Expan has the Morin singularity at that point.

Recall that the A2k singularity of a curve, or of a function, is defined as
x2 + yk+1 = 0, and the Morin singularity of multiplicity k is given by the
following normal form:

(1.6) (s, λ1, . . . , λn−1) 7→ (sk + λ1s
k−2 + · · ·+ λk−2s, λ1, . . . , λn−1).

Theorems 1.4 and 1.5 are proved in the next section.

Definition 1.6. A continuous map G : X → Y is proper if the preimage
of any compact subset of Y is compact. The set of points y0 ∈ Y such that
for any neighbourhood U ⊂ Y with compact closure U the inverse image
G−1(U) is not compact, is called the non-properness set S(G). In other
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words, any y0 ∈ S(G) can be approximated by points yn ∈ Y such that
there exists a sequence xn ∈ X with G(xn) = yn such that xn does not have
a convergent subsequence.

We define

(1.7) p′ = gcd(p, q), p1 =
p

p′
, q1 =

q

p′
.

Theorem 1.7. (a) If p′ = 1 then the map Expan is a proper ramified
covering of topological degree

(1.8) degtop Expanp,q =
(p+ q − 1)!

p!q!
.

(b) If p′ > 1 then the non-properness set is

(1.9) S(Expan) = {c1 = 0}.
(c) If p′ = 2 then

(1.10) degtop Expan =
(p+ q − 1)!

p!q!
− 1

2

(
(p1 + q1 − 1)!

p1!q1!

)2

.

This theorem is proved in the third section.
We finish this introduction by remarking that the map Expan can be

generalised to other types of plane curves. Namely, to affine curves of fixed
genus and fixed orders of poles (or multiplicities of parametrisation at finite
singularities) one can associate a finite number of Puiseux coefficients of the
expansions at the places at infinity (or at singularities). We plan to continue
this study in further works.

2. Local singularities. Let ξ0 = (φ0, ψ0) ∈ Curv. We would like to
describe the space ker Expan∗ at the point ξ0. To find it we consider a 1-
parameter first order perturbation of ξ0,

(2.1) ξs(t) = (φs(t), ψs(t)) = (φ0 + sφ1, ψ0 + sψ1) = ξ0 + sξ1,

where the map ξ1 = (φ1, ψ1) is polynomial and satisfies

(2.2) deg φ1 ≤ p− 2, degψ1 ≤ q − 1,

and can be regarded as an element of Tξ0Curv. Then ξ1 ∈ ker Expan∗(ξ0) iff
Expan(ξs)− Expan(ξ0) = O(s2), i.e.

(2.3) cj(s) = cj(0) +O(s2), j = 1, . . . , p+ q − 1, as s→ 0.

Let P : C2 → C2 be a polynomial map defined by

(2.4) P (t, s) = ξs(t).

Lemma 2.1. ξ1 ∈ ker Expan∗(ξ0) if and only if the Jacobian JP (t, s) of
the map P vanishes identically for s = 0.
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Proof. Consider the expansions

(2.5)
{
φs(t) = a0(s)tp + a1(s)tp−1 + · · · ,
ψs(t) = b0(s)tq + b1(s)tq−1 + · · · ,

where a0 ≡ b0 ≡ 1. The expansion of JP in powers of t gives

(2.6) JP = tp+q−1

∣∣∣∣∣pa0 a′0
qb0 b′0

∣∣∣∣∣+ · · · = 0 · tp+q−1 + · · · .

We perform the formal change

(2.7) ψs(t) 7→ ψs1(t) = ψs(t)− [φs(t)]q/p ,

where [φs(t)]q/p = tq
(
1 + q

p t
−1 + · · ·

)
is a series with coefficients polynomial

in s. We have ψs1 = c1(s)tq+p−1 + · · · . Moreover,

(2.8) JP = J(φs(t), ψs1(t)) = pc′1(s)t
p+q−2 + · · · .

We see that c′1(0) = 0 if and only if JP (t, 0) has degree less than p+ q − 2.
Assuming the latter, we apply the change ψs1 7→ψs2 = ψs1−c1(s)[φs](q−1)/p,

which has the property that J(φs, ψs2) = JP +O(s) (because c1(s)− c1(0) =
O(s2)). We have ψs2 = c2(s)tp+q−3 + · · · , so again we obtain

c′2(0) = 0 ⇔ degt JP (t, 0) < p+ q − 3,

under the assumption c′1(0) = 0. Repeating this procedure we obtain

(2.9) c′j(0) = 0, j = 1, . . . , p+ q − 1 ⇔ degt JP (t, 0) < 0.

Lemma 2.1 admits a generalisation to higher order deformations of the
form

(2.10) ξs = ξ0 + sξ1 + · · ·+ skξk,

with ξj = (φj , ψj) satisfying (2.2). We define the polynomial map P as in
(2.4) with ξs given by (2.10).

Lemma 2.2. The Puiseux coefficients cj(s), j = 1, . . . , p + q − 1, of the
curve ξs have the property

cj(s) = cj(0) +O(sk+1)

if and only if
JP (t, s) = O(sk).

Proof. This proof repeats the proof of Lemma 2.1. Under the assumption
that c1(s) − c1(0), . . . , cj(s) − cj(0) are O(sk+1), the formal change ψsj+1 =
ψsj − cj(s) [φs](q−j)/p has the property that

J(φs, ψsj+1) = J(φs, ψsj ) +O(sk).

Hence c′j = O(sk) for j = 1, . . . , p+q−1 if and only if degt
∂i

∂siJ(t, s)|s=0 < 0
for i = 0, . . . , k = 1.
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The above two lemmas have very interesting consequences, the first being
the proof of Theorem 1.4 given below.

Proof of Theorem 1.4. A point ξ0 ∈ Curv is a critical point for the map
Expan iff there exists a non-trivial element (φ1, ψ1) ∈ ker Expan∗(ξ0). By
Lemma 2.1 and formula (2.2) we should have∣∣∣∣∣φ̇0 φ1

ψ̇0 ψ1

∣∣∣∣∣ ≡ 0.

This means that

(2.11)
φ1

ψ1
(t) =

φ̇0

ψ̇0

(t)

(identity of rational functions). Recall that deg φ̇0 = p − 1 and deg ψ̇0 =
q − 1. If φ̇0 and ψ̇0 are coprime then any solution to (2.11) has the form
φ1 = χ(t)φ̇0(t), ψ1 = χ(t)ψ̇0(t), where χ is a polynomial. But comparison of
degrees shows that χ ≡ 0, i.e. ker Expan∗(ξ0) = 0.

Conversely, if gcd(φ̇0, ψ̇0) = η(t) with deg η > 0, then for any polynomial
η1 dividing η such that deg η1 > 0, the polynomials φ1 = φ̇0/η1, ψ1 = ψ̇0/η1

satisfy (2.11) and the degree bounds (2.2), so they provide an element of
ker Expan∗(ξ0). It is easy to see that all solutions of (2.11) are obtained in
this way, therefore we get the formula

(2.12) dim ker Expan∗(ξ0) = deg gcd(φ̇0, ψ̇0).

The second statement of Theorem 1.4 says that the multiplicity of Expan
at ξ0 is infinite iff the curve ξ0 is multiply covered. Recall that the multiplicity
of Expan at ξ0 is equal to the supremum of the number of preimages near ξ0
of points near Expan(ξ0) [AVG]. Moreover, µξ0Expan =∞ iff there exists a
germ of non-constant curve at ξ0 which is sent to one point. On the other
hand, the multiply covered curves have the form

(2.13) ξ(t) = ξ̃ ◦ ω(t),

where ω is a polynomial of degree d > 1 and ξ̃ is a polynomial curve (the
Lüroth theorem). Of course, in that case d | gcd(p, q).

It is clear that the curves of the form ξ̃ ◦ ω with degω > 1 represent
non-isolated critical points of the map Expan: we can vary coefficients of ω
without changing the Puiseux coefficients cj .

Assume that ξ0 is a non-isolated critical point of Expan. Take a germ
of non-constant curve (C, 0) ⊃ (U, 0) → (Curv, ξ0), s 7→ ξs, which is sent
to one point Expan(ξ0) ∈ Puis. Define a holomorphic mapping P : U × C
→ C2 : (t, s) 7→ ξs(t). By passing to the limit as k → ∞ in Lemma 2.2
we find that the conditions c1(s) ≡ c1(0), . . . , cp+q−1(s) ≡ cp+q−1(0) are
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equivalent to JP ≡ 0. But this means that the image of P is a single curve,
P (U × C) = C0 = ξ0(C). In particular, ξs(C) = C0 for any s ∈ U .

The supposition that ξ0 is primitive leads to the conclusion that the
elements ξs define different parametrisations of one rational curve C0. Each
such parametrisation defines an automorphism of C, which is of the form
t 7→ t + a. But the condition a1 = 0 (see (1.3)) means that a = 0. So
ξs(t) ≡ ξ0(t), which contradicts the assumption that the germ s 7→ ξs is
non-constant.

Corollary 2.3. The determinant det Expan∗(ξ0) is proportional to the
resultant of φ̇0 and ψ̇0.

Proof. Theorem 1.4 shows that the zero sets of det Expan∗(ξ0) and of
the resultant are the same. Since the resultant is reduced, det Expan∗(ξ0) is
a power of the resultant. An easy comparison of degrees shows that it is in
fact proportional.

Proof of Theorem 1.5. Consider first the situation when

(2.14) x = φ0(t) = (t− t0)2 + · · · , y = ψ0(t) = (t− t0)2m+1 + · · · ,
and we put t0 = 0 to simplify the notation. The assumption implies that
the polynomials φ̇0/t and ψ̇0/t are relatively prime. We shall construct a
deformation

(2.15) ξs(t) = ξ0(t) + sξ1(t) + · · ·+ sm+1ξm+1(t),

where ξ1 ∈ ker Expan∗(ξ0) \ 0, such that

cj(s) = cj(0) +O(sm+2), j = 1, . . . , p+ q − 2,

cp+q−1(s) = cp+q−1(0) + νsm+1 +O(sm+2), ν 6= 0.
(2.16)

By Lemma 2.2 we should calculate the Jacobian of the 2-dimensional map
P associated with the deformation (2.15). We have the expansion JP =
J0(t) + sJ1(t) + · · ·+ skJk(t) + · · · , where

(2.17) Jj(t) = (j + 1)

∣∣∣∣∣φ̇0 φj+1

ψ̇0 ψj+1

∣∣∣∣∣+ · · ·+
∣∣∣∣∣φ̇j φ1

ψ̇j ψ0

∣∣∣∣∣ .
The deformation (2.15) satisfies (2.16) iff

Jj ≡ 0 for j = 0, . . . ,m− 1,
Jm = const.

(2.18)

The construction of the deformation (2.15) relies on solving the equation
(2.18) inductively. Namely, for given j the equation (2.18) can be regarded
as an equation defining ξj+1 = (φj+1, ψj+1) with ξi for i ≤ j already known.
The details are the following. First, let φ1 = φ̇0/t = 2 + · · · , ψ1 = ψ̇0/t =
(2m + 1)t2m−1 + · · · . Note that deg φ1 = p − 2 and degψ1 = q − 2. The
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equation J1 ≡ 0 has the form

2

∣∣∣∣∣φ̇0 φ2

ψ̇0 ψ2

∣∣∣∣∣ = φ̇1ψ1 − ψ̇1φ1 = 2(4m2 − 1)t2m−2 + · · · .

After dividing this equation by 2t we get

(2.19) ψ2φ1 − φ2ψ1 = q2(t),

where q2 is a polynomial of degree ≤ p+q−5 and ordt=0 q2(t) = 2m−3. Since
φ1 and ψ1 are relatively prime, there exists a unique solution modulo (φ1, ψ1)
such that deg φ2 ≤ p− 2 and degψ2 ≤ q − 2 (see [War, §36]). Moreover, we
find that ψ2 = ct2m−3 + · · · as t→ 0, with c 6= 0 being a constant.

By induction we show that the equations Jj ≡ 0 for j = 0, . . . ,m − 1
have solutions φj+1, ψj+1 such that deg φj+1 ≤ p− 2, degψj+1 ≤ q − 2 and
ψj+1 ∼ t2m−2j−1 around t = 0.

For j = m we find that Jm = (m+1)t(φ1ψm+1−ψ1φm+1)−qm+1(t), where
qm+1 = φ1ψ̇m+· · · = κ+O(t) with κ 6= 0. Therefore the equation Jm ≡ 0 has
no solution. However, we can find (φm+1, ψm+1) such that Jm = −κ/(m+1),
so JP = − κ

m+1s
m +O(sm+1).

The deformation (2.15) is unique in a sense. The only non-uniqueness in
solving Jj ≡ 0 means adding a scalar multiple of ξ1 to ξj+1, which corre-
sponds to reparametrisations of parameter s. This non-uniqueness does not
influence the leading term in ψj+1.

We can interpret this result as follows:

Lemma 2.4. The maximal order ords=0 Expan(ξs) over all curve germs
(C, 0)→ (Curv, ξ0) with d

dsξ
s|s=0 6= 0 equals m+ 1.

Now we consider the general case, i.e. without assuming (2.14). We still
use t0 = 0 to simplify the notation. So we have either

(2.20) φ0 = t2 + · · · , ψ0 = β2rt
2r + · · · ,

or

(2.21) φ0 = α2rt
2r + · · · , ψ0 = t2 + · · · ;

so there exists a change of variables (in the target plane) either of the form

ψ0 7→ ψ̃0 = ψ0 − c(0)
2r φ

2r
0 − c

(0)
2r+2φ

2r+2
0 − · · · − c(0)

2mφ
m
0(2.22)

= c
(0)
2m+1t

2m+1 + · · ·

or of the form

φ0 7→ φ̃0 = φ0 − d(0)
2r ψ

2r
0 − d

(0)
2r+2ψ

2r+2
0 − · · · − d(0)

2mψ
m
0(2.23)

= d
(0)
2m+1t

2m+1 + · · · ,
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respectively. It is obvious that in both cases the Puiseux coefficients c(0)
1 ,

c
(0)
3 , . . . , c

(0)
2m−1 (d(0)

1 , d
(0)
3 , . . . , d

(0)
2m−1) in (2.22) (respectively (2.23)) form part

of a local coordinate system near ξ0 as long as 2m + 1 ≤ q = degψ (or
2m+ 1 ≤ p− 1).

Lemma 2.5. In the general case, the maximal order ords=0 Expan(ξs)
over all curve germs (C, 0)→ (Curv, ξ0) with d

dsξ
s|s=0 6= 0 equals m+ 1.

Proof. Consider the curve ξ0 = (φ0, ψ̃0) assuming the form (2.20) (the
case (2.21) is analogous). Then ξ0 is in Curvp,q if mp < q or in Curvp,eq with
q̃ = pm otherwise. The first case is straightforward, so letmp > q. Denote by
c̃j the coefficients of the Puiseux expansion of ψ̃0 in powers of φ0 at infinity.
By the proof of Lemma 2.4 there exists a deformation

φs = φ0 + sφ1 + · · ·+ sm+1φm+1,

ψ̃s = ψ̃0 + sψ̃1 + · · ·+ sm+1ψ̃m+1

(2.24)

such that c̃j(s) − c̃j(0) = O(sm+2) for j = 1, . . . , p + q̃ − 2, c̃p+eq−1(s) −
c̃p+eq−1(0) = const · sm+1 +O(sm+2). We apply the inverse change to (2.22),
thus we put

ψs = ψ̃s + c
(0)
2r · (φ

s)2r + · · ·+ c
(0)
2m · (φ

s)2m .

Then ψs = ψ0 + sψ1 + · · ·+ sm+1ψm+1 + · · · . This will be our deformation,
once we have shown that degψj(t) ≤ q − 1.

Let d = max(degψj : j = 1, . . . ,m). Assume d ≥ q. Let j0 be the
smallest non-zero integer such that degψj0 = d. The Puiseux expansion of
the curve x = φs, y = ψs is of the form

y = −c̃(0)
2m(s)xm − · · · − c̃(0)

2er (s)xer + c̃eq−d(s)xd/p + · · ·
for some r̃. On the one hand, c̃eq−d(s) = c̃eq−d(0) + O(sm+1). On the other
hand, c̃eq−d(s) = c̃eq−d(0) + const · sj0 , and j0 ≤ m. The contradiction shows
that d ≤ q − 1.

Now we pass to the determination of the singularity of the map Expan
at ξ0, under the hypothesis that ξ0 has a single singular point of type A2m.
By (2.12) the kernel of Expan∗(ξ0) is one-dimensional, so the singular point
is of corank 1. Moreover, there exist local coordinates (z, λ) ∈ (C×Cp+q−2, 0)
in the ambient space and (w, µ) ∈ (C × Cp+q−2, 0) in the target space such
that the map Expan near the point ξ0 has the form (see [AVG])

(2.25) w = f(z, λ), µ = λ.

The 1-dimensional map z 7→ w = f(z, 0) is called the genotype of (2.25). By
[Mor] the genotype of a map of corank 1 is equivalent to

(2.26) z 7→ zk+1

for some k.



Geometry of Puiseux expansions 271

Lemma 2.6. k = m.

Proof. This follows from Lemma 2.5.

Corollary 2.7. The multiplicity of Expan at ξ0 equals

(2.27) µξ0Expan = m+ 1.

The function f is a deformation of (2.26); by the Weierstrass preparation
theorem we can write

(2.28) f(z, λ) = zm+1 + α1(λ)zm−1 + · · ·+ αm−1(λ)z0,

where the αj(λ) are analytic.
Now we will show that if 2m + 1 ≤ q, the functions α1(λ), . . . , αm−1(λ)

form part of a coordinate system near ξ0. For curves ξ near ξ0 we can fix the
critical point of φ at t0 = 0. Thus we have

x = φ(t) = t2 + · · · , y = ψ(t) = β1t+ · · ·+ βqt
q.

The Puiseux expansion of C = ξ(C) at t = 0 takes the form

y = c
(0)
1 x1/2 + c

(0)
2 x+ · · · .

Assume now 2m+ 1 ≤ q. Then it is clear that the coefficients

c
(0)
1 , c

(0)
3 , . . . , c

(0)
2m−1

form part of a coordinate system in (Curv, ξ0), the coefficient c(0)
i being linear

in βi.
Define the varieties near ξ0

Σk+1 = {ξ : c(0)
1 = · · · = c

(0)
2k−1 = 0}.

Repeating the proof of Lemma 2.4 one can show that they are Boardman’s
varieties Σ1,...,1 defined as follows (see [AVG]):

Σ1 = {ξ : dimkerExpan∗(ξ) = 1},
Σ1,1 = {ξ ∈ Σ1 : dimker(Expan|Σ1)∗(ξ) = 1},

...

Σ

k︷︸︸︷
1,...,1 = {ξ ∈ Σ

k−1︷︸︸︷
1,...,1 : dimker(Expan|Σ1,...,1)∗(ξ) = 1}.

Our assumption 2m + 1 ≤ q implies that Σk+1 is a smooth variety of codi-
mension k.

In terms of the form (2.28) we have

Σ

k︷︸︸︷
1,...,1 = {(z, λ) : f ′z = f ′′z = · · · = f (k)

z = 0}.
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Hence α1(λ), . . . , αm−1(λ) in (2.28) form part of a local coordinate system
near ξ0. This proves that for 2m + 1 ≤ q the map Expan has the Morin
singularity. The proof of Theorem 1.5 is now finished.

Remark 2.8. If 2m + 1 > q, the coefficients c(0)
1 , c

(0)
3 , . . . , c

(0)
2m−1 do not

necessarily form part of a local coordinate system in Curvp,q. The sets Σ1,...,1

and Σk+1 are still identical, but do not have to be smooth. In [BZ2] we we
study the regularity properties of the sequences formed by these Puiseux
coefficients in Curv near a given point, namely the space defined by c(0)

1 =
c
(0)
3 = · · · = c

(0)
2k+1 = 0 should have codimension k in Curv or be empty.

Example 2.9. Consider the map Expan3,4. Let us find its critical points.
Using the change ψ 7→ ψ − const · φ we can assume that φ = t3 + 3at+ 3b,
ψ = t4 + ct2 + dt + e and c1 = 0. Then c2 = c − 4a, c3 = d − 4b, c4 =
e − 2a2 − 2ac2, c5 = −4ab − 2bc2 − ac3, c6 = 4

3a
3 − 2b2 + a2c2 − bc3. The

vector v = A∂a+B∂b+C∂c+D∂d+E∂e belongs to ker Expan∗ if it satisfies
C = 4A, D = 4B, E = 2(2a + c2)A, 0 = −(4b + c3)A − 2(2a + c2)B,
0 = 2(2a + c2)A − (4b + c3)B. These equations imply that ker Expan∗ is
non-trivial if and only if

(2.29) g = (4b+ c3)2 + 4a(2a+ c2)2 = 0.

On the other hand, the condition ξ̇(t0) = 0 implies t20+a = 4t30+2ct0+d = 0.
Elimination of t0 gives d2 +4a(c−2a)2 = 0, which coincides with (2.29) and
is proportional to the resultant of ẋ and ẏ.

To find Σ1,1 we add the equation dg(v) = 0. Since dcj(v) = 0, we get

4(c22 + 8ac2 + 12a2)A+ 8(4b+ c3)B = 0,

which leads to the equation c22 + 12ac2 + 20a2 = 0. We get two solutions:
(i) c2 = −2a, (ii) c2 = −10a.

The case (i) implies c = −2t20, d = 0 and a = −t20. The curve has two
singular points and ker Expan∗ is 2-dimensional, so this is not an element of
Σ1,1.

In the case (ii) we find c = 6t20, d = −16t30 and a = −t20, which means
the singularity A4. Therefore the set of curves with singularity A4 coincides
with Σ1,1.

The case of multiple singular points or one singular point with multiplic-
ity m > 2 is more difficult to handle. One can, at least in the case of one sin-
gular point, try to define an (m−1)-parameter deformation ξ = ξ0+

∑
I s

IξI
(with s = (s1, . . . , sm−1) and I a multiindex) such that cp+q−1, cp+q−2, . . .
. . . , cp+q+1−m are of fixed order in s1, . . . , sm−1, strictly greater than the
corresponding orders in c1, . . . , cp+q−m, so that the deformation would be
the genotype of the map Expan.
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Then possibly one could show the independence of the genotype from
the degrees p, q, at least in the case of quasi-homogeneous singularities. The
details are technically very complicated even in the case m = 2. The au-
thors are convinced that the local degree of the map Expan for a quasi-
homogeneous singularity φ ∼ tm, ψ ∼ tn is equal to (m + n − 1)!/m!n!
(compare (1.8)). In general, for a curve with multiple singular points, all of
them being quasi-homogeneous, a fair conjecture is that the multiplicity of
Expan is the product of the local multiplicities corresponding to individual
singular points.

3. Global properties of the map Expan. We begin by introducing a
C∗-action on the spaces Curv and Puis,

(3.1) aj 7→ λjaj , bj 7→ λjbj , ci 7→ λici.

This action is induced by the automorphism of the parameter space and
target space φ 7→ λpφ(t/λ), ψ 7→ λqψ(t/λ).

Lemma 3.1. The map Expan is equivariant with respect to these ac-
tions.

The next lemma describes curves with a very special Puiseux expansion
at infinity.

Lemma 3.2. A curve ξ0 ∈ Curv has the Puiseux expansion

(3.2) y = xq/p + αx(1−p)/p +O(x−1),

i.e. c1 = · · · = cp+q−2 = 0, cp+q−1 = α, if and only if

(3.3) R(t) := pφψ̇ − qψφ̇ ≡ p(1− q − p)α;

in particular , if α = 0 then ξ = (ωp1 , ωq1), where ω is a polynomial of degree
p′ = gcd(p, q), and for α 6= 0 the curve is non-singular.

Proof. Consider the function

H(t) = ψ(t)φ−q/p(t).

Its derivative has the form

H ′(t) =
1
p
R(t)φ−q/p−1(t).

The property (3.2) means that H(t) = 1 + αt1−p−q + · · · as t → ∞. Hence
H ′ = (1 − p − q)αt−p−q + · · · ∼ (1 − p − q)αφ−q/p−1. From this the first
statement of the lemma follows immediately.

If α = 0, then R(t) = 0, so H(t) ≡ 1, i.e. ψq = φp. If α 6= 0, then R(t)
has no zeros, so φ̇ and ψ̇ cannot have common zeros.

Recall that the non-properness set S(G) of a map G : X → Y consists of
the points y ∈ Y where the number of preimages G−1(y) jumps down (see
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Definition 1.6). If X = Y = Cn and G is a polynomial mapping, then S(G)
is either empty or a union of so-called ruled hypersurfaces (see [Jel]).

Proof of Theorem 1.7. In case p′ := gcd(p, q) = 1 we need to prove two
things: that the map Expanp,q is proper, and next that its degree is equal to
(p+ q − 1)!/p!q!. The properness follows from the C∗-equivariance and the
fact that Expan−1(0) = 0 (by Lemmas 3.1 and 3.2). Indeed, if |ξ| → ∞,
then |Expan(ξ)| → ∞, where | · | are some quasi-norms compatible with the
C∗-action.

To calculate the degree of Expan in case p′ = 1 we compute the number
of preimages of the point c∗ = (0, . . . , 0, 1). By Lemma 3.2, c∗ is a regular
value of Expan. Write φ =

∏
(t − ti), ψ =

∏
(t − sj),

∑
ti = 0 (by (1.3)).

As in the proof of Lemma 3.2 the condition Expan(ξ) = c∗ means that
H = 1 + t1−p−q + · · · , or

(3.4) logH =
∑

log
(

1− sj
t

)
− q

p

∑
log
(

1− ti
t

)
= t1−p−q + · · · .

From (3.4) we get the algebraic system∑
sj −

q

p

∑
ti = 0,

...∑
sp+q−2
j − q

p

∑
tp+q−2
i = 0,∑

sp+q−1
j − q

p

∑
tp+q−1
i = 1.

Together with
∑
ti = 0 we get p + q equations with p + q unknowns. The

product of degrees is (p + q − 1)!. Since there are no solutions at infinity
by Lemma 3.2 and all solutions are of multiplicity one, we get (p + q − 1)!
finite solutions. Moreover, for any solution, ti1 6= ti2 and sj1 6= sj2 by (3.3).
Dividing by the symmetry group Σ(p)×Σ(q), we find the degree of Expan.

The second statement of Theorem 1.7 is that for p′>1 the non-properness
set S(Expan) equals {c1 = 0}.

Consider a family {ξ̃ ◦ ω} where ξ̃ ∈ Curvp1,q1 (p1 = p/p′, q1 = q/p′) is
fixed and ω(t) = tp

′
+ γ2t

p−2 + · · · has varying coefficients γ2, . . . , γp′ . This
family is non-compact, but it is sent to one point in Puis. This shows that
the map Expan for p′ > 1 is not proper.

We know that S(Expan) 6= ∅ and that this is a hypersurface in Curv. On
the other hand, the hypersurface {c1 = 0} is the bifurcation hypersurface for
the number of double points of the curve C = ξ(C). Namely, if c1 6= 0, then
a generic curve has 1

2 [(p− 1)(q− 1)− (p′− 1)] finite double points. A generic
curve with c1 = 0 has at most 1

2 [(p − 1)(q − 1) − 2(p′ − 1)] such points, so
some double points tend to infinity as c1 → 0 (see [BZ1]).



Geometry of Puiseux expansions 275

Lemma 3.3. If an algebraic family {ξµ}, µ ∈ C \ {0}, has |ξµ| → ∞, but
Expan(ξµ)→ c0 ∈ Puis (as µ→ 0), then there are some double points of the
curve Cµ = ξµ(C) tending to infinity.

Proof. Let ξµ = (φµ, ψµ), φµ =
∏

(t − ti(µ)), ψµ =
∏

(t − sj(µ)), where
some roots of φµ, ψµ tend to infinity. We distinguish the collection of roots
with fastest escape to infinity (by algebraicity of ξ this is possible). We
assume that

t1(µ) ∼ T1µ
−A, . . . , tr ∼ Trµ−A, s1 ∼ S1µ

−A, . . . , sw ∼ Swµ−A,
A > 0 and tj(µ)µA, si(µ)µA → 0 for other roots. After renormalisation of
time by t = Tµ−A, a division of x and y by a suitable power of µ, and letting
µ→ 0, we obtain a curve of the form

(3.5) T →
(
T p−r

r∏
i=1

(T − Ti), T q−w
w∏
j=1

(T − Sj)
)
.

Moreover, we have (p− r) + (q − w) > 0.

Lemma 3.4. The limit curve (3.5) has at least one double point corre-
sponding to T = T0 and T = S0, T0S0 6= 0.

Proof. We use the Zaidenberg–Lin theorem [ZaLi]. If the curve (3.5) did
not have any double points, it could be reduced to the form x = T k, y = T l

with gcd(k, l) = 1. Since the ratio q/p = q1/p1 is not an integer, the curve
(3.5) cannot be simplified further. Since, additionally, gcd(p, q) 6= 1, the
lemma follows.

From Lemma 3.4 it follows that as µ→ 0 some pair, say t0(µ) = T0µ
−A,

s0(µ) = S0µ
−A, representing a double point of Cµ, ξ(t0(µ)) = ξ(s0(µ)) tends

to infinity. This implies a bifurcation of double point at µ = 0. By Lemma 3.3
we get c1(µ)→ 0 as µ→ 0. Therefore S(Expan) ⊂ {c1 = 0}.

There remains the last statement of Theorem 1.7, namely the calculation
of degtop Expan in the case p′ = 2. We shall prove the following general
formula:

Theorem 3.5. If p′ = 2 and c1 = · · · = c2k−1 = 0 6= c2k+1, then
Expan−1(c), where c = (c1, . . . , cp+q−1), consists of

(p+ q − 1)!
p!q!

− 2k + 1
2

(degtop Expanp1,q1)
2

points counted with multiplicities.

Proof. Assume that q1 = q/p′ is odd (the case of p1 odd is analogous).
Consider the power series

(3.6) φ(t)k/p = tk + αk,k−1t
k−1 + αk,k−2t

k−2 + · · · ,
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where αk,j = αk,j(a) are polynomials in the coefficients ai of φ(t), or equiv-
alently, symmetric homogeneous polynomials of degree k − j of the roots
t1, . . . , tp. For given Puiseux coefficients c ∈ Puis the preimages Expan−1(c)
correspond to solution to the system of algebraic equations

(3.7)

αq,−1 + c1αq−1,−1 + · · ·+ cp+q−1α1−p,−1 = 0,

αq,−2 + c1αq−1,−2 + · · ·+ cp+q−1α1−p,−2 = 0,

...

αq,−2 + c1αq−1,−1 + · · ·+ cp+q−1α1−p,−2 = 0.

Indeed, if ai satisfy this equation, then after putting bk = αq,k + c1αq−1,k +
· · ·+ cp+q−1α1−p,k we get a curve ξ = (φ, ψ) such that Expan(ξ) = c.

We will treat (3.7) as a system of equations in the roots t1, . . . , tp of
φ(t). The product of degrees is (q + 1) . . . (q + p− 1). The symmetry group
Σ(p) acts on the solutions, so the number of solutions modulo the symmetry
equals (p+ q− 1)!/p!q!. But some solutions are at infinity, therefore we have
to compute the number (with multiplicities) of solutions to (3.7) at infinity.

Let us introduce homogeneous coordinates [t0 : t1 : · · · : tp], with the
condition t1+ · · ·+tp = 0. The homogenisation of (3.7) relies on substituting
ci with citi0.

Then solutions at infinity correspond to t0 = 0, or equivalently, to c1 =
· · · = cp+q−1 = 0. Lemma 3.2 implies φ = χp1 , ψ = χq1 for a quadratic
polynomial χ (since p′ = 2), which can be rescaled to be

χ = (t− 1)(t+ 1).

This corresponds to 1
2

(
2p1
p1

)
points [0 : ν1 : · · · : νp] with νi = ±1 and∑

νi = 0. Theorem will be proved once we show that the multiplicity of
(3.7) at each such point is equal to (2k + 1)[(q1 + 1) . . . (q1 + p1 − 1)]2.

Pick P0 = [0 : 1 : · · · : 1 : −1 : · · · : −1] as one such point. Introduce local
coordinates xi = ti/t2p1 , i = 0, . . . , 2p− 1, t2p1 = 0 around P0 as follows:

x0 = γ,

xi = −1 + δi for i = 1, . . . , p1,
xi = 1 + εi for i = p1 + 1, . . . , 2p1 − 1,∑
δi +

∑
εi = 0.

Then we have

φ =
2p1∏
i=1

(t− ti) =
2p1∏
i=1

(t+ xi) = (t2 − 1)2p1
∏(

1 +
δi

t− 1

)∏(
1 +

εi
t+ 1

)
.

We compute the leading terms in δ, ε in the expansion of the polynomials
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αk,−j from (3.6). If k = 2k1, then

(3.8) φk/p = (t2 − 1)k1
∏(

1 +
δi

t− 1

)k1/p1 ∏(
1 +

εi
t+ 1

)k1/p1
.

We can easily see that the degree of the leading term is equal to k1 + 1. In
fact, the poles at t = 1 of the expansion(

1 +
δi

t− 1

)k1/p1
= 1 +

k1

p1

δi
t− 1

+ · · ·

cancel with (t2 − 1)k1 . The same holds for ε. In particular

α2k1,−1 =
(
k1/p1

k1 + 1

)[∑
δk1+1
i +

∑
εk1+1
i

]
+ · · · ,(3.9)

α2k1,−2 =
(
k1/p1

k1 + 1

)[∑
δk1+1
i −

∑
εk1+1
i

]
+ · · · .(3.10)

The dots denote terms of higher order in ε, δ. The symbol
(
a
n

)
with n ∈ N,

a ∈ R should be read as a(a− 1)(a− 2) . . . (a− n+ 1)/n!. We have also used
1
t±1 = 1

t ∓
1
t2

+ · · · .
Next ∆(1)α2k1,−1 = α2k1,−1 − α2k1,−3 is the coefficient of t−1 in the ex-

pansion of (t2 − 1)φk/p. We find that

∆(1)α2k1,−1 = const ·
[∑

δk1+2
i +

∑
εk1+2
i

]
+ · · · ,

∆(1)α2k1,−2 = const ·
[∑

δk1+2
i −

∑
εk1+2
i

]
+ · · · .

Generally,

∆(j)α2k1,−1 = const ·
[∑

δk1+j+1
i +

∑
εk1+j+1
i

]
+ · · ·

∆(j)α2k1,−2 = const ·
[∑

δk1+j+1
i −

∑
εk1+j+1
i

]
+ · · ·

∆(j)α2k1,−3 = const ·
[∑

δk1+j+1
i +

∑
εk1+j+1
i

]
+ · · · ,

(3.11)

where ∆(j)α2k1,−i = α2k1,−i −
(
j
1

)
α2k1,−i−2 +

(
j
2

)
α2k1,−i−4 + · · · ± α2k1,−i−2j

corresponds to the expansion of (t2−1)jφk/p. The leading terms in (3.7) are
linearly dependent, but the leading terms of ∆(j) are not.

If k = 2k1 + 1 is odd then

φk/2p1 = t

(
1− 1

t2

)1/2[
(t2 − 1)2k1

∏(
1 +

δi
t− 1

)k/p∏(
1 +

εi
t+ 1

)k/p]
.

We see that

αk,−(2i+1) = (−1)i
(

1/2
i− 1

)
,(3.12)

αk,−2i = O(δ, ε).(3.13)
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The system (3.7) takes now the following algebraic form:
αq,−1 + c1γαq−1,−1 + · · · = 0,
αq,−2 + c1γαq−1,−2 + · · · = 0,

...
αq,−2 + c1γαq−1,−1 + · · · = 0.

(3.14)

If c1 6= 0 then subtracting (3.14)1 from (3.14)3 we get γ = const ·
∆(1)α2q1,−1 + · · · , so γ ∼ O((δ, ε)2q1+2). (If c1 = · · · = c2k−1 = 0 6= c2k+1

then we obtain γ2k+1 = const·∆(1)α2q1,−1 in the obvious way.) We substitute
this γ (or γ2k+1) to the equation (3.14)2, (3.14)3, . . . . The leading terms in
all these equations are α2q1,−i(δ, ε) and are all of order q1 + 1. But then we
make linear combinations of odd and even equations, i.e. (3.14)3 − (3.14)5,
(3.14)3−2 · (3.14)5 +(3.14)7, . . . and (3.14)2− (3.14)4, (3.14)2−2 · (3.14)4 +
(3.14)6, . . . , to get a system of equations with leading terms ∆(j)

2q1,−3 and

∆
(j)
2q1,−2. The homogeneous part of these leading terms is proportional to∑
δq1+j+1
i ±

∑
εq1+j+1
i (see (3.11)). It is not difficult to see that δi = εi = 0

is the only solution, with multiplicity being the product of the degrees

(q1 + 1) . . . (q1 + p1 − 1)× (q1 + 1) . . . (q1 + p1 − 1).

Together with the first equation

const · c2k+1γ
2k+1 + α2q1,−1(δ, ε)

we get the required formula.

The proof of Theorem 1.7 is now complete.

By now we do not know how to calculate the degree of Expan in the
general case, the major problem being that the locus at infinity, which is
zero-dimensional if p′ = 2, has positive dimension in the general case. The
general intersection theory (see [Ful]) should be helpful, but again details
are very complicated.

We finish this work with the following two interesting results:

Proposition 3.6. We have cq+p = cq+2p = · · · = 0.

Proof. We have

cp+q =
1

2πi

�

|τ |=R

y(τ)τp−1 dτ, R→∞,

where τ = φ(t)1/p = t(1 + · · · ) and y(τ) = ψ(t). Replacing τ by t with
dτ

dt
=
(

1 +
p− 2
p

a2t
−1 + · · ·+ 1

p
ap−1t

1−p
)
· (1 + a2t

−2 + · · ·+ apt
−p)1/p−1,

we get
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cp+q =
1

2πi

�

|t|=R

ψ(t)(1 + · · ·+ ap−1pt
1−p)tp−1 dt = 0.

Analogously we prove the vanishing of cq+jp.

It is natural to ask about the dependence of the self-intersection points
of C = ξ(C) on ξ, i.e. on (a, b) ∈ Cp+q−1. The preimages of such points
are pairs (ti, si), i = 1, . . . , δmax, such that ξ(ti) = ξ(si). We have 2δmax =
(p − 1)(q − 1) − (p′ − 1) algebraic functions ti(a, b), si(a, b). The number
of these functions is larger than the number of parameters. Moreover, the
functions are invariant with respect to the changes

(3.15) (x, y) 7→ (x+ α, y + P (x)), degP < q/p.

So, we ask which collections of N = p+ q − 3− [q/p] elements from the set
(t1, s1, . . . , tδmax , sδmax) form local parameters in the space Curv/Eq, where
Eq is the the group of changes (3.15) (we can identify the space Curv/Eq
with the subset of Curvp,q given by bq−kp = 0, bq = 0, ap = 0). Any such
collection consists of k pairs and p + q − 3 − [q/p] − 2k singles; after some
renumbering it is of the form

(3.16) t1, s1, . . . , tk, sk, tk+1, . . . , tN−k.

We have the following result which we present without proof

Proposition 3.7. If k ≤ p − 2, then the functions (3.16) form a local
coordinate system near a typical point in Curv/Eq.

Example 3.8. Assume φ(t) = t2 and ψ = tq + b1t
q−1 + · · · + bq−1t,

q = 2l+1. The preimages of double points are ti, ti−1, where t2i are roots of
the polynomial λl+b2λl−1+· · ·+b2l. It is clear that t1, . . . , tl are independent
functions of b2, . . . , b2l.
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