Peak points for domains in \mathbb{C}^n

by Armen Edigarian (Kraków)

Abstract. We give a necessary and sufficient condition for the existence of a weak peak function by using Jensen type measures. We also show the existence of a weak peak function for a class of Reinhardt domains.

1. Introduction. Let X be a topological space and let \mathscr{S} be a subset of the set C(X) of all continuous complex-valued functions $X \to \mathbb{C}$. We say that a point $\zeta \in X$ is an \mathscr{S} -peak point if there exists a function $f \in \mathscr{S}$ such that $f(\zeta) = 1$ and |f| < 1 on $X \setminus \{\zeta\}$. Usually, one takes for X a compact set in \mathbb{C} and for \mathscr{S} a uniform algebra on X (see e.g. [5, Chapter II]). The basic problem is to determine a necessary and sufficient condition for a point to be a peak point.

Let X be any subset of \mathbb{C}^n . In complex analysis it is quite natural to study peak points of the family $\mathscr{A}(X) = C(X) \cap \mathcal{O}(\operatorname{int} X)$. In particular, take a bounded domain $D \subset \mathbb{C}^n$ and take $X = \overline{D}$. Then a boundary point $\zeta \in \partial D$ is a peak point if it is a peak point for the set $\mathscr{A}(X)$. However, in our paper we study the case $X = D \cup \{\zeta\}$ (here, D is not necessarily bounded), where ζ is a boundary point of D. The question is: when is ζ a peak point for $\mathscr{A}(D \cup \{\zeta\})$? To distinguish from the standard "peak point" we use the notion of "weak peak point" (see [8]).

The main result of the paper is the following characterization (cf. [5, Theorem II.11.3]).

THEOREM 1.1. Let $D \subset \mathbb{C}^n$ be any domain and let $\zeta \in \partial D$. The following conditions are equivalent:

- (1) ζ is a weak peak point.
- (2) There exists no Borel probability measure μ with compact support in

²⁰¹⁰ Mathematics Subject Classification: Primary 32T40; Secondary 47B65.

Key words and phrases: peak point, Edwards' theorem, positive linear functional, Jensen measure, Reinhardt domains.

 $D \cup \{\zeta\} \text{ such that } \mu(\{\zeta\}) = 0 \text{ and}$ $|f(\zeta)| \le \int_{D} |f(w)| \, d\mu(w) \quad \text{ for any } f \in \mathscr{A}(D \cup \{\zeta\}).$

(3) There exists no Borel probability measure μ with compact support in D ∪ {ζ} such that μ({ζ}) = 0 and

$$f(\zeta) = \int_D f(w) \, d\mu(w) \quad \text{for any } f \in \mathscr{A}(D \cup \{\zeta\}),$$

i.e., there exists no Borel probability representing measure μ with $\mu(\zeta) = 0$.

- (4) There exists a sequence of functions $f_N \in \mathscr{A}(D \cup \{\zeta\})$ such that
 - (a) $||f_N||_D \le 1$ for any $N \ge 1$;
 - (b) $f_N(\zeta) \to 1$ when $N \to \infty$;
 - (c) for any compact set $K \in D$ there exist an $\eta \in (0, 1)$ and a $k \in \mathbb{N}$ such that $||f_N||_K \leq 1 - \eta$ for any $N \geq k$.
- (5) For any bounded set $W \subset \mathbb{C}^n$ there exists a sequence of functions $f_N \in \mathscr{A}(D \cup \{\zeta\})$ such that
 - (a) $||f_N||_{D\cap W} \le 1$ for any $N \ge 1$;
 - (b) $f_N(\zeta) \to 1$ when $N \to \infty$;
 - (c) for any compact set $K \Subset D \cap W$ there exist an $\eta \in (0,1)$ and a $k \in \mathbb{N}$ such that $||f_N||_K \le 1 \eta$ for any $N \ge k$.

The implications $(1) \Rightarrow (2) \Rightarrow (3)$ and $(4) \Rightarrow (5) \Rightarrow (2)$ are immediate.

As a direct corollary of our result we get the following family of domains where weak peak functions exist.

COROLLARY 1.2. Assume that a domain $D \subset \mathbb{C}^n$ can be described as

$$D = \left\{ z \in \mathbb{C}^n : \sum_{j=1}^m \phi_j(|f_j(z) + \overline{g_j}(z)|) + \sum_{\ell=1}^k \psi_\ell\big(\Re(h_\ell(z))\big) < 0 \right\},\$$

where $f_j, g_j, h_\ell \in \mathcal{O}(\mathbb{C}^n)$ and ϕ_j, ψ_ℓ are convex functions. Then any boundary point of D is a weak peak point.

2. Non-compact version of Edwards' theorem. This part of the paper is motivated by [6] and we use methods developed in that paper. For the convenience of the reader, we repeat the main points from [6] without proofs, thus making our exposition self-contained.

Let X be a topological space and let $C_{\mathbb{R}}(X)$ be the set of all real-valued continuous functions on X. Note that $C_{\mathbb{R}}(X)$ is a real vector space. We say that a function $\mathscr{H}: C_{\mathbb{R}}(X) \to [-\infty, +\infty)$ is a *superlinear* operator if

- (1) $\mathscr{H}(\alpha f) = \alpha \mathscr{H}(f)$ for any $f \in C_{\mathbb{R}}(X)$ and any $\alpha \ge 0$;
- $(2) \ {\mathscr H}(f+g) \geq {\mathscr H}(f) + {\mathscr H}(g) \ \text{for any} \ f,g \in C_{\mathbb R}(X).$

Note that any linear operator is superlinear. Moreover, if $\mathcal{H}_1, \mathcal{H}_2$ are superlinear operators, then $\min\{\mathcal{H}_1, \mathcal{H}_2\}$ is also a superlinear operator. In this way we get superlinear operators which are not linear. As an example, for a fixed $x \in X$ the operator $\mathcal{H}_x(\phi) = \phi(x)$ is (super)linear.

We have the following version of the Hahn–Banach theorem (see e.g. [6, Theorem 2.4]).

THEOREM 2.1. Let Z be a linear space and let M be a vector subspace of Z. If $\mathscr{H}: Z \to [-\infty, +\infty)$ is a superlinear functional and $\ell: M \to \mathbb{R}$ is a linear functional such that $\ell \geq \mathscr{H}$ on M, then there is a linear functional $\mathscr{L}: Z \to \mathbb{R}$ such that $\ell = \mathscr{L}$ on M and $\mathscr{L} \geq \mathscr{H}$ on Z.

In particular, we get a relation between positive superlinear operators and positive linear operators.

PROPOSITION 2.2. Let X be a topological space and let

$$\mathscr{H}: C_{\mathbb{R}}(X) \to [-\infty, +\infty)$$

be a positive superlinear operator. Then

(2.1)

 $\mathscr{H}(\phi) = \inf \{ \mathscr{L}(\phi) : \mathscr{L} \text{ is a positive linear operator on } C_{\mathbb{R}}(X), \mathscr{L} \geq \mathscr{H} \}.$

Proof. Fix $\phi \in C_{\mathbb{R}}(X)$. Since $\mathscr{H}(\phi) + \mathscr{H}(-\phi) \leq 0$, we may find an $a \in \mathbb{R}$ such that $-\mathscr{H}(-\phi) \geq a \geq \mathscr{H}(\phi)$. Consider a real linear subspace $M = \{t\phi : t \in \mathbb{R}\} \subset C_{\mathbb{R}}(X)$ and a linear functional $\ell : M \ni t\phi \mapsto ta \in \mathbb{R}$. Note that $\ell \geq \mathscr{H}$ on M. Indeed, $\ell(t\phi) = ta \geq \mathscr{H}(t\phi)$ for any $t \in \mathbb{R}$. For if t > 0 then this is equivalent to $a \geq \mathscr{H}(\phi)$, and if t < 0 then it is equivalent to $-a \geq \mathscr{H}(-\phi)$. Hence by Theorem 2.1 there exists a linear functional $\mathscr{L} : C_{\mathbb{R}}(X) \to \mathbb{R}$ such that $\ell = \mathscr{L}$ on M and $\mathscr{L} \geq \mathscr{H}$ on $C_{\mathbb{R}}(X)$.

If $\mathscr{H}(\phi) \in \mathbb{R}$ then we take $a = \mathscr{H}(\phi)$ and get the equality (2.1). If $\mathscr{H}(\phi) = -\infty$, we may take the sequence $a_n = -n$ and get a sequence $\{\mathscr{L}_n\}_{n\geq 1}$ of linear functionals such that $\mathscr{L}_n \geq \mathscr{H}$ for any $n \geq 1$ and $\mathscr{L}_n(\phi) \to -\infty$ when $n \to \infty$.

We say that a subset $\mathscr{S} \subset C_{\mathbb{R}}(X)$ is a *wedge* if $\alpha f + \beta g \in \mathscr{S}$ for any $f, g \in \mathscr{S}$ and any $\alpha, \beta \geq 0$ (see e.g. [1]). We assume moreover that any wedge \mathscr{S} contains the constants.

For any $\phi \in C_{\mathbb{R}}(X)$ we consider its envelope related to a point $x \in X$ and a wedge $\mathscr{S} \subset C_{\mathbb{R}}(X)$ defined by

$$\Phi_{x,\mathscr{S}}(\phi) = \sup\{\psi(x) : \psi \in \mathscr{S}, \, \psi \le \phi\}.$$

Note that $\Phi_{x,\mathscr{S}}(\phi) \leq \phi(x)$ and that $\Phi_{x,\mathscr{S}}: C_{\mathbb{R}}(X) \to [-\infty, +\infty)$ is a positive superlinear operator. Here, *positivity* means $\Phi_{x,\mathscr{S}}(\phi) \geq 0$ for any $\phi \in C_{\mathbb{R}}(X)$ such that $\phi \geq 0$. Actually, we have $\Phi_{x,\mathscr{S}}(\phi) = \phi(x)$ for any $\phi \in \mathscr{S}$.

For a wedge \mathscr{S} and a point $x \in X$ we study the set $J_{x,\mathscr{S}}(X)$ of all Jensen measures, i.e., the set of all Borel probability measures μ with compact support in X such that $\psi(x) \leq \int \psi \, d\mu$ for any $\psi \in \mathscr{S}$.

In 1965 Edwards [3] proved the following result.

THEOREM 2.3. Let X be a compact topological space and let $\mathscr{S} \subset C_{\mathbb{R}}(X)$ be a wedge. Assume that ϕ is a lower semicontinuous function on X. Then for any $x \in X$ we have

$$\Phi_{x,\mathscr{S}}(\phi) = \min\left\{\int \phi \, d\mu : \mu \in J_{x,\mathscr{S}}(X)\right\}.$$

Recently Gogus, Perkins, and Poletsky [6] proved the following noncompact version of Edwards' theorem.

THEOREM 2.4. Let X be a locally compact σ -compact Hausdorff space and let $\mathscr{S} \subset C_{\mathbb{R}}(X)$ be a wedge. Assume that ϕ is a continuous function on X. Then for any $x \in X$ we have $\Phi_{x,\mathscr{S}}(\phi) \equiv -\infty$ or

$$\Phi_{x,\mathscr{S}}(\phi) = \min\left\{\int \phi \, d\mu : \mu \in J_{x,\mathscr{S}}(X)\right\}.$$

Our main aim in this section is to extend this result to a more general class of spaces. In the next sections we show applications of our results.

There is an extensive literature on the study of positive linear functionals on $C_{\mathbb{R}}(X)$ (see e.g. [2], [7], and [10]) (¹). Let X be a normal topological space and let $\mathscr{L} : C_{\mathbb{R}}(X) \to \mathbb{R}$ be a positive linear functional. We say that \mathscr{L} has a *compact support* (in X) if there exists a compact set $K \subset X$ such that $\mathscr{L}(\phi) = 0$ for any $\phi \in C_{\mathbb{R}}(X)$ such that $\phi = 0$ on K.

We prove

THEOREM 2.5. Let X be a normal topological space and let $\mathscr{S} \subset C_{\mathbb{R}}(X)$ be a wedge. Assume that any positive linear functional on $C_{\mathbb{R}}(X)$ has a compact support. If $x \in X$ is a fixed point, then for any $\phi \in C_{\mathbb{R}}(X)$ we have $\Phi_{x,\mathscr{S}}(\phi) = -\infty$ or

$$\Phi_{x,\mathscr{S}}(\phi) = \inf \left\{ \int \phi \, d\mu : \mu \in J_{x,\mathscr{S}} \right\}.$$

According to [6], on any locally compact σ -compact Hausdorff space any positive linear functional has a compact support. Hence, Theorem 2.5 is a generalization of the result of Gogus, Perkins, and Poletsky.

We also need the following version of the Riesz representation theorem.

PROPOSITION 2.6. Let X be a normal topological space and let \mathscr{L} : $C_{\mathbb{R}}(X) \to \mathbb{R}$ be a positive linear functional with compact support. Then there

 $^(^{1})$ The author is grateful to Piotr Niemiec and Jan Stochel for the references on linear functionals.

exists a Borel finite measure μ with support in X such that

$$\mathscr{L}(\phi) = \bigvee \phi(x) \, d\mu(x) \quad \text{for any } \phi \in C_{\mathbb{R}}(X).$$

Proof. Assume that $K \subset X$ is a compact set such that $\mathscr{L}(\phi) = 0$ whenever $\phi \in C_{\mathbb{R}}(X)$ with $\phi = 0$ on K. Let us define a positive linear operator $\widetilde{\mathscr{L}}: C_{\mathbb{R}}(K) \to \mathbb{R}$. Fix $\phi \in C_{\mathbb{R}}(K)$. From the normality of X and the Tietze extension theorem there exists $\phi \in C_{\mathbb{R}}(X)$ such that $\phi = \phi$ on K. We set $\widetilde{\mathscr{L}}(\phi) = \mathscr{L}(\phi)$. Now we use the classical Riesz representation theorem for the operator $\widetilde{\mathscr{L}}$ and get μ .

Proof of Theorem 2.5. From Propositions 2.2 and 2.6 we get

(2.2)
$$\Phi_{x,\mathscr{S}}(\phi) = \min\left\{\int \phi \, d\mu : \mu \text{ is a Borel finite measure with compact} \\ \text{support in } X \text{ such that } \int \psi \, d\mu \ge \Phi_{x,\mathscr{S}}(\psi) \text{ for any } \psi \in C_{\mathbb{R}}(X) \right\}.$$

Hence,

(2.3)
$$\Phi_{x,\mathscr{S}}(\phi) \ge \inf\left\{\int \phi \, d\mu : \mu \text{ is a Borel finite measure with compact} \\ \text{support in } X \text{ such that } \int \psi \, d\mu \ge \psi(x) \text{ for any } \psi \in \mathscr{S} \right\}$$

The inequality " \leq " is immediate. \blacksquare

Let us show an example of a set X as in Proposition 2.6.

THEOREM 2.7. Let $\Omega \subset \mathbb{R}^n$ be a domain and let $K \subset \partial \Omega$ be a compact set. Then any positive linear functional \mathscr{L} defined on $C_{\mathbb{R}}(X)$ has a compact support, where $X = \Omega \cup K$.

Proof. Take sequences R_m, r_m such that $R_m > r_m > R_{m+1}$ and $R_m \to 0$ (e.g. $R_m = 1/3^m$ and $r_m = 2/3^{m+1}$). Consider functions $\chi_m \in C^{\infty}(\mathbb{R})$ such that $0 \leq \chi_m \leq 1$ having the following properties:

$$\chi_1(t) = \begin{cases} 1, & t \ge R_1, \\ 0, & t \le r_1, \end{cases}$$

and for any $m \geq 2$,

$$\chi_m(t) = \begin{cases} 1 - \sum_{j=1}^{m-1} \chi_j(t), & t \ge R_m, \\ 0, & t \le r_m. \end{cases}$$

Note that $\sum_{m=1}^{\infty} \chi_m(t) = 1$ for t > 0. Moreover, $\chi_m(t) = 0$ for $t \ge R_{m-1}$ and $t \le r_m, m > 1$.

We set $\widetilde{\chi}_m(x) = \chi_m(\operatorname{dist}(x, K)), x \in \mathbb{R}^n$. It is easy to see that $\widetilde{\chi}_m$ is in $C(\mathbb{R}^n)$. Define $A_1 = \{x \in \Omega : \operatorname{dist}(x, K) \ge r_1\}$ and $A_m = \{x \in \Omega : r_m \le \operatorname{dist}(x, K) \le R_{m-1}\}, m \ge 2$. Note that $A_m, m \ge 2$, are (relatively) closed sets in Ω and that $\widetilde{\chi}_m = 0$ for $x \in \mathbb{R}^n \setminus A_m$. Moreover, $\bigcup_{m=1}^{\infty} A_m = \Omega$. We want to show that for any $m \ge 1$ there exists a compact set $K_m \subset A_m$

with the following property: $\mathscr{L}(\phi) = 0$ whenever $\phi \in C_{\mathbb{R}}(X), \phi \geq 0$, and $\phi = 0$ on $(X \setminus A_m) \cup K_m$.

Let us show that for any $m \ge 1$ there exists a j = j(m) such that $\mathscr{L}(\phi) = 0$ whenever $\phi \in C_{\mathbb{R}}(X), \phi \ge 0$, and $\phi = 0$ on $(\Omega \setminus A_m) \cup K_{mj}$, where

$$K_{mj} = \{ x \in A_m : \operatorname{dist}(x, \mathbb{R}^n \setminus \Omega) \ge 1/j, \, \|x\| \le j \}.$$

Note that K_{mj} are compact sets. We also have $\bigcup_{j=1}^{\infty} K_{mj} = A_m$ for any $m \ge 1$.

Assume for a while that for any $j \geq 1$ there exists a $\phi_j \in C_{\mathbb{R}}(X)$ such that $\phi_j \geq 0$ on X, $\phi_j = 0$ on $(X \setminus A_m) \cup K_{mj}$, and $\mathscr{L}(\phi_j) \neq 0$. Without loss of generality we may assume that $\mathscr{L}(\phi_j) = 1$. Consider $\phi = \sum_{j=1}^{\infty} \phi_j$. Note that $\phi \in C_{\mathbb{R}}(X)$. Moreover, $\mathscr{L}(\phi) \geq \sum_{j=1}^{N} \mathscr{L}(\phi_j) = N$ for any $N \in \mathbb{N}$. Hence, $\mathscr{L}(\phi) = +\infty$, a contradiction.

Now consider the set

$$L = \bigcup_{j=1}^{\infty} K_{mj(m)} \cup K.$$

Note that L is compact. It suffices to show that $\mathscr{L}(\phi) = 0$ for any $\phi \in C_{\mathbb{R}}(X)$ such that $\phi = 0$ on L. First let us prove this for $\phi \ge 0$. So, fix a $\phi \in C_{\mathbb{R}}(X)$ such that $\phi \ge 0$ and $\phi = 0$ on L. Fix an $\epsilon > 0$. Since $\phi = 0$ on K, there exists a $\delta > 0$ such that $\phi < \epsilon$ on $\{z \in \Omega : \operatorname{dist}(z, K) \le \delta\}$. We have

$$\phi = \sum_{m=1}^{\infty} \phi \widetilde{\chi}_m = \sum_{m=1}^{m_0} \phi \widetilde{\chi}_m + \sum_{m=m_0+1}^{\infty} \phi \widetilde{\chi}_m$$

Further, $\phi \tilde{\chi}_m = 0$ on $(X \setminus A_m) \cup K_{mj(m)}$. Hence, $\mathscr{L}(\phi \tilde{\chi}_m) = 0$. Set $\tilde{\phi} = \sum_{m=m_0+1}^{\infty} \phi \tilde{\chi}_m$. For sufficiently large m_0 we have $\tilde{\phi} = 0$ on $\{z \in \Omega : \text{dist}(z, K) > \delta\}$. Therefore, $0 \le \tilde{\phi} \le \epsilon$ on Ω . So

$$\mathscr{L}(\phi) = \sum_{m=1}^{m_0} \mathscr{L}(\phi \widetilde{\chi}_m) + \mathscr{L}(\widetilde{\phi}) = \mathscr{L}(\widetilde{\phi}) \le \epsilon \mathscr{L}(1).$$

Since $\epsilon > 0$ was arbitrary, we get $\mathscr{L}(\phi) = 0$.

If ϕ is not positive, take $\phi = \phi_+ - \phi_-$, where $\phi_+ = \max\{\phi, 0\}$ and $\phi_- = \phi_+ - \phi$. Then $\mathscr{L}(\phi) = \mathscr{L}(\phi_+) - \mathscr{L}(\phi_-) = 0$.

COROLLARY 2.8. Let $\Omega \subset \mathbb{R}^n$ be a domain and let $\zeta \in \partial \Omega$ be a boundary point. Assume that $\mathscr{S} \subset C_{\mathbb{R}}(\Omega \cup \{\zeta\})$ is a wedge. Then for any $\phi \in C_{\mathbb{R}}(\Omega \cup \{\zeta\})$ we have $\Phi_{\zeta,\mathscr{S}}(\phi) = -\infty$ or

$$\Phi_{\zeta,\mathscr{S}}(\phi) = \inf \left\{ \int \phi \, d\mu : \mu \in J_{\zeta,\mathscr{S}} \right\}.$$

In particular, if $J_{\zeta,\mathscr{S}} = \{\delta_{\zeta}\}$ then $\Phi_{\zeta,\mathscr{S}}(\phi) = \phi(\zeta)$ for any $\phi \in C_{\mathbb{R}}(\Omega \cup \{\zeta\})$.

Proof of Theorem 1.1. The implication $(3) \Rightarrow (4)$ follows from Corollary 2.8. Indeed, consider a wedge $\mathscr{S} = \{\Re f : f \in \mathscr{A}(D \cup \{\zeta\})\} \subset C_{\mathbb{R}}(D \cup \{\zeta\})$. Now, fix a compact set $K \subset D$ and a continuous function ϕ such that $\phi \leq 0$ on D, $\phi(\zeta) = 0$, and $\phi = -1$ on K. Then we get a sequence $g_N \in \mathscr{A}(D \cup \{\zeta\})$ such that $\Re g_N \leq 0$ on D, $\Re g_N \leq -1$ on K, and $\Re g_N(\zeta) \to 0$ when $N \to \infty$. Set $f_N = e^{g_N}$.

It remains to show $(4) \Rightarrow (1)$. We use the method of [9].

Set $\epsilon_N = 1/4^N$. Then there is a sequence of functions $f_N \in \mathscr{A}(D \cup \{\zeta\})$, $N \ge 1$, such that $f_N(\zeta) \to 1$ as $N \to \infty$ and $|f_N| < 1$ on $D, N \ge 1$. Taking a subsequence of $\{f_N\}_{N\ge 1}$ if necessary, we may assume that $\zeta \in U_N$, where $U_N = \{z \in D \cup \{\zeta\} : |f_N(z) - 1| < \epsilon_N\}$. Set

(2.4)
$$h(z) = \sum_{N=1}^{\infty} \frac{1}{2^N} \cdot \frac{1 + \epsilon_N + f_N(z)}{1 + \epsilon_N - f_N(z)}.$$

Note that $\zeta \in U_N$ and that h is a well-defined holomorphic function in D. Indeed, fix a compact set $K \Subset D$. Then there exist an $\eta \in (0, 1)$ and a $k \in \mathbb{N}$ such that $||f_N||_K \leq 1 - \eta$ for any $N \geq k$. Hence, $\left|\frac{1+\epsilon_N+f_N(z)}{1+\epsilon_N-f_N(z)}\right| \leq \frac{3-\eta}{\eta}$ for $z \in K$ and $N \geq k$, so the series in (2.4) is locally uniformly convergent.

It is easy to check that for any $\epsilon > 0$,

$$\Re\left(\frac{1+z}{1-z}\right) > \frac{1}{\epsilon} \iff \left|z - \frac{1}{1+\epsilon}\right| < \frac{\epsilon}{1+\epsilon}.$$

We have

$$\Re h(z) \ge \frac{1}{2^N} \cdot \Re \left(\frac{1 + \frac{f_N(z)}{1 + \epsilon_N}}{1 - \frac{f_N(z)}{1 + \epsilon_N}} \right) \ge 2^N \quad \text{for } z \in U_N.$$

Set $F = \frac{h-1}{h+1}$. Then $|F-1| = \frac{2}{|h+1|} \le \frac{2}{|\Re h+1|} \le \frac{2}{2^N+1}$ on U_N . Hence F is in $\mathscr{A}(D \cup \{\zeta\})$ and $F(\zeta) = 1$.

Proof of Corollary 1.2. Fix a $\zeta \in \partial D$ and assume that μ is a representing measure at ζ . If $c := \mu(\{\zeta\}) \in [0, 1)$, then without loss of generality we may assume that $\mu(\{\zeta\}) = 0$. Indeed, it suffices to replace μ by $\tilde{\mu} = \frac{\mu - c\delta_{\zeta}}{1 - c}$. Then

$$f_j(\zeta) = \int_D f_j(z) \, d\mu(z), \quad g_j(\zeta) = \int_D g_j(z) \, d\mu(z), \quad h_i(\zeta) = \int_D h_i(z) \, d\mu(z).$$

By Jensen's inequality we have

$$\begin{split} \phi_j(|f_j(\zeta) + \overline{g_j}(\zeta)|) &\leq \int_D \phi_j(|f_j(z) + \overline{g_j}(z)|) \, d\mu(z), \\ \psi_i(\Re h_i(\zeta)) &\leq \int_D \psi_i(\Re h_i(z)) \, d\mu(z). \end{split}$$

Hence,

(2.5)
$$0 = \sum_{j=1}^{m} \phi_j(|f_j(\zeta) + \overline{g_j}(\zeta)|) + \sum_{i=1}^{k} \psi_i(\Re(h_i(\zeta)))$$
$$\leq \int_D \left(\sum_{j=1}^{m} \phi_j(|f_j(z) + \overline{g_j}(z)|) + \sum_{i=1}^{k} \psi_i(\Re(h_i(z)))\right) d\mu(z) < 0,$$

a contradiction. So, we get c = 1.

EXAMPLE 2.9. Any boundary point of the domain

$$D = \{(z_1, z_2, z_3) \in \mathbb{C}^3 : 2|z_3 + \overline{z}_2^2| + |z_3|^2 + |z_1^4 - z_2^3| < 1\}$$

is a weak peak point. Note that for any $(z_1, z_2, z_3) \in D$ and any $t \in [0, 1]$ we have $(t^3z_1, t^4z_2, t^8z_3) \in D$. Therefore, D is indeed a domain.

3. Peak points on Reinhardt domains. Let us start with the following very special, however important case.

PROPOSITION 3.1. Let $\alpha_1, \ldots, \alpha_n \ge 0$ be any numbers and let

$$D = \{z \in \mathbb{C}^n : |z_1|^{\alpha_1} \cdot \ldots \cdot |z_n|^{\alpha_n} < 1\}.$$

Then any boundary point of D is a weak peak point.

Proof. Without loss of generality we may assume that $\alpha_1, \ldots, \alpha_n > 0$. Fix a boundary point $\zeta \in \partial D$. We are going to use condition (5) of Theorem 1.1. Fix an $R > \|\zeta\|$. We want to show that there exists a sequence of polynomials f_N such that

- $||f_N||_{D\cap\mathbb{D}^n_B} \leq 1$ for any $N \geq 1$;
- $f_N(\zeta) \to \mathring{1}$ when $N \to \infty$;
- for any compact set $K \in D \cap \mathbb{D}_R^n$ there exist an $\eta \in (0, 1)$ and a $k \in \mathbb{N}$ such that $||f_N||_K \leq 1 \eta$ for any $N \geq k$.

Fix a compact set $K \subset D \cap \mathbb{D}_R^n$ and an $\epsilon > 0$. There exist $\beta_1, \ldots, \beta_n \in \mathbb{Z}$ and a $q \in \mathbb{N}, q \geq 2$, such that sign $\beta_j = \text{sign } \alpha_j$ and

$$|q\alpha_j - \beta_j| \le \epsilon$$
 for any $j = 1, \dots, n$.

Set $f_{\epsilon}(z) = z_1^{\beta_1} \cdot \ldots \cdot z_n^{\beta_n}, z \in \mathbb{C}^n$. Let us estimate $\sup_{z \in D \cap \mathbb{D}^n} |f_{\epsilon}(z)|$.

First we want to show that there exists a $\delta \in (0, 1)$ such that for any $z \in D \cap \mathbb{D}^n_R$ with $\min\{|z_1|, \ldots, |z_n|\} \leq \delta$ we have

$$|z_1|^{\beta_1}\cdot\ldots\cdot|z_n|^{\beta_n}\leq (1/2)^q.$$

It suffices to have

(3.1) $\delta^{\min\{\beta_1,\dots,\beta_n\}} R^{\beta_1+\dots+\beta_n-\min\{\beta_1,\dots,\beta_n\}} \le (1/2)^q.$

We see that for small enough $\delta > 0$ the inequality (3.1) holds.

If $|z_1|, \ldots, |z_n| \geq \delta$ then

(3.2)
$$|f_{\epsilon}(z)| = (|z_1|^{\alpha_1} \cdot \ldots \cdot |z_n|^{\alpha_n})^q |z_1|^{\beta_1 - q\alpha_1} \cdot \ldots \cdot |z_n|^{\beta_n - q\alpha_n} \\ \leq (|z_1|^{\alpha_1} \cdot \ldots \cdot |z_n|^{\alpha_n})^q (\max\{R, 1/\delta\})^{n\epsilon}.$$

We have

 $|f_{\epsilon}(\zeta)| = |\zeta_1|^{\beta_1 - \alpha_1 q} \cdot \ldots \cdot |\zeta_n|^{\beta_n - \alpha_n q}.$

Hence, $|f_{\epsilon}(\zeta)| \to 1$ when $\epsilon \to 0$. We see that condition (5) of Theorem 1.1 is fulfilled. So, ζ is a weak peak point of D.

A domain $D \subset \mathbb{C}^n$ is called *Reinhardt* if $(\lambda_1 z_1, \ldots, \lambda_n z_n) \in D$ for all points $z = (z_1, \ldots, z_n) \in D$ and any $|\lambda_1| = \cdots = |\lambda_n| = 1$. Let

$$V_j = \{ z \in \mathbb{C}^n : z_j = 0 \}, \quad j = 1, \dots, n_j$$

and $V = \bigcup_{j=1}^{n} V_j$. The following result is well-known (see e.g. [11]).

THEOREM 3.2. Let $D \subset \mathbb{C}^n$ be a Reinhardt domain. Then D is pseudoconvex if and only if the set

$$\log D := \{x \in \mathbb{R}^n : (e^{x_1}, \dots, e^{x_n}) \in D\}$$

is convex and for any $j \in \{1, \ldots, n\}$,

(3.3) if
$$D \cap V_j \neq \emptyset$$
 and $(z', z_j, z'') \in D$ then $(z', \lambda z_j, z'') \in D$ for any $\lambda \in \overline{\mathbb{D}}$.

In particular, if D is a pseudoconvex domain and $D \cap V_i \neq \emptyset$ for some $j \in \{1, \ldots, n\}$, then $\pi_j(D) = D \cap V_j$ is a pseudoconvex domain in \mathbb{C}^{n-1} (after natural identification), where

 $\pi_i: \mathbb{C}^n \ni z \mapsto (z_1, \dots, z_{i-1}, 0, z_{i+1}, \dots, z_n) \in V_i.$

For Reinhardt domains, which satisfy Fu's condition (see (3.4) below), we have the following result (cf. [4], [12]).

THEOREM 3.3. Let $D \subset \mathbb{C}^n$ be a pseudoconvex Reinhardt domain such that for any $j \in \{1, \ldots, n\}$,

(3.4)
$$if \overline{D} \cap V_j \neq \emptyset \ then \ D \cap V_j \neq \emptyset.$$

Then any $\zeta \in \partial D$ is a weak peak point.

Proof. Note that $0 \notin \partial D$. For if $0 \in \partial D$ then from (3.3) and (3.4) we deduce that D is a complete Reinhardt domain, a contradiction.

Fix a boundary point $\zeta \in \partial D$. First assume that $\zeta_1 \cdot \ldots \cdot \zeta_n \neq 0$. Without loss of generality, we may assume that for some $m \in \{0, 1, ..., n\}$ we have

- $D \cap V_j \neq \emptyset, \ j = 1, \dots, m;$ $\overline{D} \cap V_j = \emptyset, \ j = m + 1, \dots, n.$

These conditions imply that

• if $z \in D$ then $(\lambda_1 z_1, \ldots, \lambda_m z_m, z_{m+1}, \ldots, z_n) \in D$ for any $\lambda_1, \ldots, \lambda_m \in \overline{\mathbb{D}}$;

• there exists a $\delta_0 \in (0, 1)$ such that for any $z \in D$ we have $|z_j| > \delta_0$ for $j = m + 1, \ldots, n$.

Since $\log D$ is convex, there exist $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ such that

$$\alpha_1 x_1 + \dots + \alpha_n x_n < \alpha_1 \log |\zeta_1| + \dots + \alpha_n \log |\zeta_n|$$
 for any $x \in \log D$.

Note that $\alpha_1, \ldots, \alpha_m \geq 0$. We have $D \subset G$ and $\zeta \in \partial G$, where

(3.5)
$$G := \{ z \in \mathbb{C}^n : |z_1|^{\alpha_1} \cdot \ldots \cdot |z_n|^{\alpha_n} < |\zeta_1|^{\alpha_1} \cdot \ldots \cdot |\zeta_n|^{\alpha_n} \}$$

$$\cap \{ z \in \mathbb{C}^n : |z_j| > \delta_0, \ j = m+1, \ldots, n \}.$$

Hence, it suffices to show that ζ is a weak peak point of any domain \widetilde{G} such that $D \subset \widetilde{G}$ and $\zeta \in \partial \widetilde{G}$. Without loss of generality we may assume that $\alpha_j \neq 0$ for any $j = 1, \ldots, n$. Moreover, we may assume that $|\zeta_1|^{\alpha_1} \cdot \ldots \cdot |\zeta_n|^{\alpha_n} = 1$. Indeed, consider

(3.6)
$$\widetilde{G} := \{ z \in \mathbb{C}^n : |z_1|^{\alpha_1} \cdot \ldots \cdot |z_n|^{\alpha_n} < |\zeta_1|^{\alpha_1} \cdot \ldots \cdot |\zeta_n|^{\alpha_n} \}$$
$$\cap \{ z \in \mathbb{C}^n : |z_j/\zeta_j| > \delta_1, \ j = m+1, \ldots, n \},$$

where $\delta_1 > 0$ is sufficiently small, such that $G \subset \widetilde{G}$. Note that $\zeta \in \partial \widetilde{G}$. Now, we use the linear mapping

$$L: \mathbb{C}^n \ni (z_1, \ldots, z_n) \mapsto (z_1/\zeta_1, \ldots, z_n/\zeta_n) \in \mathbb{C}^n$$

and proceed to show the existence of a peak function for the domain $L(\widetilde{G})$.

Let us show that we may assume $\alpha_1, \ldots, \alpha_n > 0$, and hence the result follows from Proposition 3.1. Indeed, consider the domain

$$H = \{ z \in \mathbb{C}^n : |z_1|^{|\alpha_1|} \cdot \ldots \cdot |z_n|^{|\alpha_n|} < 1 \}.$$

Note that $(\zeta_1^{\epsilon_1}, \ldots, \zeta_n^{\epsilon_n})$, where $\epsilon_j = \operatorname{sign} \alpha_j$, $j = 1, \ldots, n$, is a boundary point of H. If f is a peak function for H, then $f \circ \psi$ is a peak function for G, where

$$\psi: \mathbb{C}^m \times (\mathbb{C}_*)^{n-m} \ni z \mapsto (z_1, \dots, z_m, z_{m+1}^{\epsilon_{m+1}}, \dots, z_n^{\epsilon_n}) \in \mathbb{C}^n.$$

Now assume that $\zeta \in \partial D$ and that $\zeta_1 \cdot \ldots \cdot \zeta_n = 0$. Then there are $1 \leq j_1 < \cdots < j_k \leq m$ such that $\zeta_{j_s} = 0$ for $s = 1, \ldots, k$, and $z_{\ell} \neq 0$ for $\ell \notin \{j_1, \ldots, j_k\}$. Consider the projection

 $\pi : \mathbb{C}^n \ni (z_1, \ldots, z_n) \mapsto (z_1, \ldots, z_{j_1-1}, z_{j_1+1}, \ldots, z_{j_k-1}, z_{j_k+1}, \ldots, z_n) \in \mathbb{C}^{n-k}$ and the domain $\widetilde{D} = \pi(D)$. Note that \widetilde{D} is pseudoconvex and $\pi(\zeta) \in \partial \widetilde{D}$. Hence, $\pi(\zeta)$ is a weak peak point for $\partial \widetilde{D}$, and therefore ζ is a weak peak point for ∂D .

EXAMPLE 3.4. Using Sibony's ideas we show that there exist a domain $D \subset \mathbb{C}^2$ and a boundary point such that there exists a weak peak function, but peak functions do not exist.

Let $D \Subset \mathbb{C}^N$ be a bounded domain and let $\phi_n : \mathbb{D} \to D$ be a sequence of holomorphic mappings such that $\phi_n(0) \to p \in \partial D$. Assume that $f \in A(\overline{D})$

10

is such that f(p) = 1 and |f| < 1 on D. Then there exists a subsequence $\{n_k\}$ such that $f(\phi_{n_k}) \to 1$ locally uniformly on \mathbb{D} . In particular, if $\phi_n \to \phi$ locally uniformly on \mathbb{D} then $f(\phi) \equiv 1$. So, f(w) = 1 for any $w \in \overline{\phi(\mathbb{D})}$.

Let us now consider a special case. Fix an irrational number $\alpha > 0$. Let $D \subset \mathbb{C}^2$ be a domain and let $(z_0, w_0) \in \partial D$. Assume that there exists a bounded neighborhood $U \subset \mathbb{C}^2$ of (z_0, w_0) such that

$$D \cap U = \{(z, w) \in \mathbb{C}^2 : |z| \cdot |w|^{\alpha} < 1\} \cap U.$$

We want to show that there does not exist a holomorphic function f in $\mathcal{O}(D) \cap C(\overline{D} \cap U)$ such that |f| < 1 on D and $f(z_0, w_0) = 1$.

Indeed, assume that such a function exists. Then there also exists a neighborhood $V \subset \mathbb{C}$ of the origin such that $(z_0 e^{-\alpha \lambda}, w_0 e^{\lambda}) \in U$ whenever $\lambda \in V$. For sufficiently large $n \in \mathbb{N}$ consider the functions

$$\psi_n(\lambda) = f(z_0 e^{-\alpha\lambda}, (1 - 1/n)w_0 e^{\lambda}).$$

Note that $\psi_n : V \to D \cap U$ is a holomorphic mapping. Hence, a subsequence ψ_{n_k} tends locally uniformly on V to a holomorphic mapping $\psi : V \to \mathbb{C}^2$. It is easy to see (use continuity of f) that

$$\psi(\lambda) = f(z_0 e^{-\alpha\lambda}, w_0 e^{\lambda}).$$

So, $\psi: V \to \overline{D \cap U}$ is a holomorphic mapping such that $|\psi| \leq 1$ and $\psi(0) = 1$. Hence, $\psi \equiv 1$. Since α is irrational, we deduce that $\{(z_0 e^{-\alpha\lambda}, w_0 e^{\lambda}) : \lambda \in V\}$ is dense in a neighborhood of (z_0, w_0) . From the continuity of f we get f = 1 on a relatively open subset ∂D containing (z_0, w_0) . Then $f(z_0, \lambda w_0) = 1$ on the open subset of the unit circle containing 1. Hence, $f(z_0, \lambda w_0) = 1$ everywhere, a contradiction.

QUESTION 3.5. Do there exist a bounded pseudoconvex domain $D \subset \mathbb{C}^n$ with smooth boundary and a boundary point $\zeta \in \partial D$ such that ζ is not a weak peak point?

Acknowledgements. This research was partially supported by the National Science Center of Poland (NCN) grant UMO-2011/03/B/ST1/04758.

References

- C. D. Aliprantis and R. Tourky, *Cones and Duality*, Grad. Stud. Math. 84, Amer. Math. Soc., Providence, RI, 2007.
- [2] P. Berti and P. Rigo, Integral representation of linear functionals on spaces of unbounded functions, Proc. Amer. Math. Soc. 128 (2000), 3251–3258.
- D. A. Edwards, Choquet boundary theory for certain spaces of lower semicontinuous functions, in: Function Algebras (New Orleans, LA, 1965), Scott-Foresman, 1966, 300–309.
- S. Fu, On completeness of invariant metrics of Reinhardt domains, Arch. Math. (Basel) 63 (1994), 166–172.

- [5] T. W. Gamelin, Uniform Algebras, Prentice-Hall, 1969.
- [6] N. G. Gogus, T. L. Perkins and E. A. Poletsky, Non-compact versions of Edwards' Theorem, Positivity 17 (2013), 459–473.
- [7] E. Hewitt, Linear functionals on spaces of continuous functions, Fund. Math. 37 (1950), 161–189.
- [8] L. Kosiński and W. Zwonek, Proper holomorphic mappings vs. peak points and Shilov boundary, Ann. Polon. Math. 107 (2013), 97–108.
- [9] P. Pflug, About the Carathéodory completeness of all Reinhardt domains, in: Functional Analysis, Holomorphy and Approximation Theory II, G. I. Zapata (ed.), North-Holland Math. Stud. 86, North-Holland, 1984, 331–337.
- P. Ressel, Integral representations on convex semigroups, Math. Scand. 61 (1987), 93–111.
- [11] V. S. Vladimirov, Methods of the Theory of Complex Variables, MIT Press, Cambridge, MA, 1966.
- [12] W. Zwonek, On Carathéodory completeness of pseudoconvex Reinhardt domains, Proc. Amer. Math. Soc. 128 (2000), 857–864.

Armen Edigarian

Faculty of Mathematics and Computer Science

Jagiellonian University

Łojasiewicza 6

30-348 Kraków, Poland

E-mail: armen.edigarian@uj.edu.pl

Received 23.10.2014 and in final form 7.1.2015

(3525)