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Peak points for domains in Cn

by Armen Edigarian (Kraków)

Abstract. We give a necessary and sufficient condition for the existence of a weak
peak function by using Jensen type measures. We also show the existence of a weak peak
function for a class of Reinhardt domains.

1. Introduction. Let X be a topological space and let S be a subset
of the set C(X) of all continuous complex-valued functions X → C. We say
that a point ζ ∈ X is an S -peak point if there exists a function f ∈ S such
that f(ζ) = 1 and |f | < 1 on X \{ζ}. Usually, one takes for X a compact set
in C and for S a uniform algebra on X (see e.g. [5, Chapter II]). The basic
problem is to determine a necessary and sufficient condition for a point to
be a peak point.

Let X be any subset of Cn. In complex analysis it is quite natural to
study peak points of the family A (X) = C(X) ∩ O(intX). In particular,
take a bounded domain D ⊂ Cn and take X = D. Then a boundary point
ζ ∈ ∂D is a peak point if it is a peak point for the set A (X). However, in our
paper we study the case X = D ∪ {ζ} (here, D is not necessarily bounded),
where ζ is a boundary point of D. The question is: when is ζ a peak point
for A (D ∪ {ζ})? To distinguish from the standard “peak point” we use the
notion of “weak peak point” (see [8]).

The main result of the paper is the following characterization (cf. [5,
Theorem II.11.3]).

Theorem 1.1. Let D ⊂ Cn be any domain and let ζ ∈ ∂D. The following
conditions are equivalent:

(1) ζ is a weak peak point.
(2) There exists no Borel probability measure µ with compact support in
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D ∪ {ζ} such that µ({ζ}) = 0 and

|f(ζ)| ≤
�

D

|f(w)| dµ(w) for any f ∈ A (D ∪ {ζ}).

(3) There exists no Borel probability measure µ with compact support in
D ∪ {ζ} such that µ({ζ}) = 0 and

f(ζ) =
�

D

f(w) dµ(w) for any f ∈ A (D ∪ {ζ}),

i.e., there exists no Borel probability representing measure µ with
µ(ζ) = 0.

(4) There exists a sequence of functions fN ∈ A (D ∪ {ζ}) such that

(a) ‖fN‖D ≤ 1 for any N ≥ 1;
(b) fN (ζ)→ 1 when N →∞;
(c) for any compact set K b D there exist an η ∈ (0, 1) and a k ∈ N

such that ‖fN‖K ≤ 1− η for any N ≥ k.
(5) For any bounded set W ⊂ Cn there exists a sequence of functions

fN ∈ A (D ∪ {ζ}) such that

(a) ‖fN‖D∩W ≤ 1 for any N ≥ 1;
(b) fN (ζ)→ 1 when N →∞;
(c) for any compact set K b D ∩W there exist an η ∈ (0, 1) and a

k ∈ N such that ‖fN‖K ≤ 1− η for any N ≥ k.
The implications (1)⇒(2)⇒(3) and (4)⇒(5)⇒(2) are immediate.
As a direct corollary of our result we get the following family of domains

where weak peak functions exist.
Corollary 1.2. Assume that a domain D ⊂ Cn can be described as

D =
{
z ∈ Cn :

m∑
j=1

φj(|fj(z) + gj(z)|) +
k∑
`=1

ψ`
(
<(h`(z))

)
< 0
}
,

where fj , gj , h` ∈ O(Cn) and φj , ψ` are convex functions. Then any boundary
point of D is a weak peak point.

2. Non-compact version of Edwards’ theorem. This part of the
paper is motivated by [6] and we use methods developed in that paper. For
the convenience of the reader, we repeat the main points from [6] without
proofs, thus making our exposition self-contained.

Let X be a topological space and let CR(X) be the set of all real-valued
continuous functions on X. Note that CR(X) is a real vector space. We say
that a function H : CR(X)→ [−∞,+∞) is a superlinear operator if

(1) H (αf) = αH (f) for any f ∈ CR(X) and any α ≥ 0;
(2) H (f + g) ≥H (f) + H (g) for any f, g ∈ CR(X).
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Note that any linear operator is superlinear. Moreover, if H1,H2 are
superlinear operators, then min{H1,H2} is also a superlinear operator. In
this way we get superlinear operators which are not linear. As an example,
for a fixed x ∈ X the operator Hx(φ) = φ(x) is (super)linear.

We have the following version of the Hahn–Banach theorem (see e.g. [6,
Theorem 2.4]).

Theorem 2.1. Let Z be a linear space and let M be a vector subspace
of Z. If H : Z → [−∞,+∞) is a superlinear functional and ` : M → R is
a linear functional such that ` ≥H on M , then there is a linear functional
L : Z → R such that ` = L on M and L ≥H on Z.

In particular, we get a relation between positive superlinear operators
and positive linear operators.

Proposition 2.2. Let X be a topological space and let

H : CR(X)→ [−∞,+∞)

be a positive superlinear operator. Then
(2.1)
H (φ) = inf{L (φ) : L is a positive linear operator on CR(X), L ≥H }.

Proof. Fix φ ∈ CR(X). Since H (φ) + H (−φ) ≤ 0, we may find an
a ∈ R such that −H (−φ) ≥ a ≥ H (φ). Consider a real linear subspace
M = {tφ : t ∈ R} ⊂ CR(X) and a linear functional ` : M 3 tφ 7→ ta ∈ R.
Note that ` ≥ H on M . Indeed, `(tφ) = ta ≥ H (tφ) for any t ∈ R. For if
t > 0 then this is equivalent to a ≥H (φ), and if t < 0 then it is equivalent
to −a ≥ H (−φ). Hence by Theorem 2.1 there exists a linear functional
L : CR(X)→ R such that ` = L on M and L ≥H on CR(X).

If H (φ) ∈ R then we take a = H (φ) and get the equality (2.1). If
H (φ) = −∞, we may take the sequence an = −n and get a sequence
{Ln}n≥1 of linear functionals such that Ln ≥ H for any n ≥ 1 and
Ln(φ)→ −∞ when n→∞.

We say that a subset S ⊂ CR(X) is a wedge if αf + βg ∈ S for any
f, g ∈ S and any α, β ≥ 0 (see e.g. [1]). We assume moreover that any wedge
S contains the constants.

For any φ ∈ CR(X) we consider its envelope related to a point x ∈ X
and a wedge S ⊂ CR(X) defined by

Φx,S (φ) = sup{ψ(x) : ψ ∈ S , ψ ≤ φ}.

Note that Φx,S (φ) ≤ φ(x) and that Φx,S : CR(X)→ [−∞,+∞) is a positive
superlinear operator. Here, positivity means Φx,S (φ) ≥ 0 for any φ ∈ CR(X)
such that φ ≥ 0. Actually, we have Φx,S (φ) = φ(x) for any φ ∈ S .
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For a wedge S and a point x ∈ X we study the set Jx,S (X) of all Jensen
measures, i.e., the set of all Borel probability measures µ with compact sup-
port in X such that ψ(x) ≤

	
ψ dµ for any ψ ∈ S .

In 1965 Edwards [3] proved the following result.

Theorem 2.3. Let X be a compact topological space and let S ⊂ CR(X)
be a wedge. Assume that φ is a lower semicontinuous function on X. Then
for any x ∈ X we have

Φx,S (φ) = min
{�
φdµ : µ ∈ Jx,S (X)

}
.

Recently Gogus, Perkins, and Poletsky [6] proved the following non-
compact version of Edwards’ theorem.

Theorem 2.4. Let X be a locally compact σ-compact Hausdorff space
and let S ⊂ CR(X) be a wedge. Assume that φ is a continuous function
on X. Then for any x ∈ X we have Φx,S (φ) ≡ −∞ or

Φx,S (φ) = min
{�
φdµ : µ ∈ Jx,S (X)

}
.

Our main aim in this section is to extend this result to a more general
class of spaces. In the next sections we show applications of our results.

There is an extensive literature on the study of positive linear functionals
on CR(X) (see e.g. [2], [7], and [10]) (1). Let X be a normal topological space
and let L : CR(X)→ R be a positive linear functional. We say that L has
a compact support (in X) if there exists a compact set K ⊂ X such that
L (φ) = 0 for any φ ∈ CR(X) such that φ = 0 on K.

We prove

Theorem 2.5. Let X be a normal topological space and let S ⊂ CR(X)
be a wedge. Assume that any positive linear functional on CR(X) has a com-
pact support. If x ∈ X is a fixed point, then for any φ ∈ CR(X) we have
Φx,S (φ) = −∞ or

Φx,S (φ) = inf
{�
φdµ : µ ∈ Jx,S

}
.

According to [6], on any locally compact σ-compact Hausdorff space any
positive linear functional has a compact support. Hence, Theorem 2.5 is a
generalization of the result of Gogus, Perkins, and Poletsky.

We also need the following version of the Riesz representation theorem.

Proposition 2.6. Let X be a normal topological space and let L :
CR(X)→ R be a positive linear functional with compact support. Then there

(1) The author is grateful to Piotr Niemiec and Jan Stochel for the references on linear
functionals.
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exists a Borel finite measure µ with support in X such that

L (φ) =
�
φ(x) dµ(x) for any φ ∈ CR(X).

Proof. Assume that K ⊂ X is a compact set such that L (φ) = 0 when-
ever φ ∈ CR(X) with φ = 0 on K. Let us define a positive linear operator
L̃ : CR(K) → R. Fix φ ∈ CR(K). From the normality of X and the Tietze
extension theorem there exists φ̃ ∈ CR(X) such that φ̃ = φ on K. We set
L̃ (φ) = L (φ̃). Now we use the classical Riesz representation theorem for
the operator L̃ and get µ.

Proof of Theorem 2.5. From Propositions 2.2 and 2.6 we get

(2.2) Φx,S (φ) = min
{�
φdµ : µ is a Borel finite measure with compact

support in X such that
�
ψ dµ ≥ Φx,S (ψ) for any ψ ∈ CR(X)

}
.

Hence,

(2.3) Φx,S (φ) ≥ inf
{�
φdµ : µ is a Borel finite measure with compact

support in X such that
�
ψ dµ ≥ ψ(x) for any ψ ∈ S

}
.

The inequality “≤” is immediate.

Let us show an example of a set X as in Proposition 2.6.

Theorem 2.7. Let Ω ⊂ Rn be a domain and let K ⊂ ∂Ω be a compact
set. Then any positive linear functional L defined on CR(X) has a compact
support, where X = Ω ∪K.

Proof. Take sequences Rm, rm such that Rm > rm > Rm+1 and Rm → 0
(e.g. Rm = 1/3m and rm = 2/3m+1). Consider functions χm ∈ C∞(R) such
that 0 ≤ χm ≤ 1 having the following properties:

χ1(t) =

{
1, t ≥ R1,

0, t ≤ r1,
and for any m ≥ 2,

χm(t) =

{
1−

∑m−1
j=1 χj(t), t ≥ Rm,

0, t ≤ rm.
Note that

∑∞
m=1 χm(t) = 1 for t > 0. Moreover, χm(t) = 0 for t ≥ Rm−1

and t ≤ rm, m > 1.
We set χ̃m(x) = χm(dist(x,K)), x ∈ Rn. It is easy to see that χ̃m

is in C(Rn). Define A1 = {x ∈ Ω : dist(x,K) ≥ r1} and Am = {x ∈ Ω :
rm ≤ dist(x,K) ≤ Rm−1}, m ≥ 2. Note that Am, m ≥ 2, are (relatively)
closed sets in Ω and that χ̃m = 0 for x ∈ Rn\Am. Moreover,

⋃∞
m=1Am = Ω.

We want to show that for any m ≥ 1 there exists a compact set Km ⊂ Am
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with the following property: L (φ) = 0 whenever φ ∈ CR(X), φ ≥ 0, and
φ = 0 on (X \Am) ∪Km.

Let us show that for any m ≥ 1 there exists a j = j(m) such that
L (φ) = 0 whenever φ ∈ CR(X), φ ≥ 0, and φ = 0 on (Ω \Am)∪Kmj , where

Kmj = {x ∈ Am : dist(x,Rn \Ω) ≥ 1/j, ‖x‖ ≤ j}.

Note that Kmj are compact sets. We also have
⋃∞
j=1Kmj = Am for any

m ≥ 1.
Assume for a while that for any j ≥ 1 there exists a φj ∈ CR(X) such

that φj ≥ 0 on X, φj = 0 on (X \ Am) ∪ Kmj , and L (φj) 6= 0. Without
loss of generality we may assume that L (φj) = 1. Consider φ =

∑∞
j=1 φj .

Note that φ ∈ CR(X). Moreover, L (φ) ≥
∑N

j=1 L (φj) = N for any N ∈ N.
Hence, L (φ) = +∞, a contradiction.

Now consider the set

L =
∞⋃
j=1

Kmj(m) ∪K.

Note that L is compact. It suffices to show that L (φ) = 0 for any φ ∈ CR(X)
such that φ = 0 on L. First let us prove this for φ ≥ 0. So, fix a φ ∈ CR(X)
such that φ ≥ 0 and φ = 0 on L. Fix an ε > 0. Since φ = 0 on K, there
exists a δ > 0 such that φ < ε on {z ∈ Ω : dist(z,K) ≤ δ}. We have

φ =
∞∑
m=1

φχ̃m =

m0∑
m=1

φχ̃m +
∞∑

m=m0+1

φχ̃m.

Further, φχ̃m = 0 on (X \ Am) ∪ Kmj(m). Hence, L (φχ̃m) = 0. Set φ̃ =∑∞
m=m0+1 φχ̃m. For sufficiently large m0 we have φ̃ = 0 on {z ∈ Ω :

dist(z,K) > δ}. Therefore, 0 ≤ φ̃ ≤ ε on Ω. So

L (φ) =

m0∑
m=1

L (φχ̃m) + L (φ̃) = L (φ̃) ≤ εL (1).

Since ε > 0 was arbitrary, we get L (φ) = 0.
If φ is not positive, take φ = φ+ − φ−, where φ+ = max{φ, 0} and

φ− = φ+ − φ. Then L (φ) = L (φ+)−L (φ−) = 0.

Corollary 2.8. Let Ω ⊂ Rn be a domain and let ζ ∈ ∂Ω be a boundary
point. Assume that S ⊂CR(Ω∪{ζ}) is a wedge.Then for any φ∈CR(Ω∪{ζ})
we have Φζ,S (φ) = −∞ or

Φζ,S (φ) = inf
{ �

φdµ : µ ∈ Jζ,S
}
.

In particular, if Jζ,S = {δζ} then Φζ,S (φ) = φ(ζ) for any φ ∈ CR(Ω ∪ {ζ}).
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Proof of Theorem 1.1. The implication(3)⇒(4) follows fromCorollary 2.8.
Indeed, consider a wedge S = {<f : f ∈ A (D∪{ζ})} ⊂ CR(D∪{ζ}). Now,
fix a compact set K ⊂ D and a continuous function φ such that φ ≤ 0 on D,
φ(ζ) = 0, and φ = −1 on K. Then we get a sequence gN ∈ A (D∪{ζ}) such
that <gN ≤ 0 on D, <gN ≤ −1 on K, and <gN (ζ) → 0 when N → ∞. Set
fN = egN .

It remains to show (4)⇒(1). We use the method of [9].
Set εN = 1/4N . Then there is a sequence of functions fN ∈ A (D ∪ {ζ}),

N ≥ 1, such that fN (ζ)→ 1 as N →∞ and |fN | < 1 on D, N ≥ 1. Taking
a subsequence of {fN}N≥1 if necessary, we may assume that ζ ∈ UN , where
UN = {z ∈ D ∪ {ζ} : |fN (z)− 1| < εN}. Set

(2.4) h(z) =
∞∑
N=1

1

2N
· 1 + εN + fN (z)

1 + εN − fN (z)
.

Note that ζ ∈ UN and that h is a well-defined holomorphic function in D.
Indeed, fix a compact set K b D. Then there exist an η ∈ (0, 1) and a k ∈ N
such that ‖fN‖K ≤ 1 − η for any N ≥ k. Hence,

∣∣1+εN+fN (z)
1+εN−fN (z)

∣∣ ≤ 3−η
η for

z ∈ K and N ≥ k, so the series in (2.4) is locally uniformly convergent.
It is easy to check that for any ε > 0,

<
(
1 + z

1− z

)
>

1

ε
⇔

∣∣∣∣z − 1

1 + ε

∣∣∣∣ < ε

1 + ε
.

We have

<h(z) ≥ 1

2N
· <
(
1 + fN (z)

1+εN

1− fN (z)
1+εN

)
≥ 2N for z ∈ UN .

Set F = h−1
h+1 . Then |F − 1| = 2

|h+1| ≤
2

|<h+1| ≤
2

2N+1
on UN . Hence F is in

A (D ∪ {ζ}) and F (ζ) = 1.

Proof of Corollary 1.2. Fix a ζ ∈ ∂D and assume that µ is a representing
measure at ζ. If c := µ({ζ}) ∈ [0, 1), then without loss of generality we may
assume that µ({ζ}) = 0. Indeed, it suffices to replace µ by µ̃ =

µ−cδζ
1−c . Then

fj(ζ) =
�

D

fj(z) dµ(z), gj(ζ) =
�

D

gj(z) dµ(z), hi(ζ) =
�

D

hi(z) dµ(z).

By Jensen’s inequality we have

φj(|fj(ζ) + gj(ζ)|) ≤
�

D

φj(|fj(z) + gj(z)|) dµ(z),

ψi(<hi(ζ)) ≤
�

D

ψi(<hi(z)) dµ(z).
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Hence,

0 =
m∑
j=1

φj(|fj(ζ) + gj(ζ)|) +
k∑
i=1

ψi(<(hi(ζ)))(2.5)

≤
�

D

( m∑
j=1

φj(|fj(z) + gj(z)|) +
k∑
i=1

ψi(<(hi(z)))
)
dµ(z) < 0,

a contradiction. So, we get c = 1.

Example 2.9. Any boundary point of the domain

D = {(z1, z2, z3) ∈ C3 : 2|z3 + z22|+ |z3|2 + |z41 − z32 | < 1}
is a weak peak point. Note that for any (z1, z2, z3) ∈ D and any t ∈ [0, 1] we
have (t3z1, t

4z2, t
8z3) ∈ D. Therefore, D is indeed a domain.

3. Peak points on Reinhardt domains. Let us start with the follow-
ing very special, however important case.

Proposition 3.1. Let α1, . . . , αn ≥ 0 be any numbers and let

D = {z ∈ Cn : |z1|α1 · . . . · |zn|αn < 1}.
Then any boundary point of D is a weak peak point.

Proof. Without loss of generality we may assume that α1, . . . , αn > 0.
Fix a boundary point ζ ∈ ∂D. We are going to use condition (5) of Theo-
rem 1.1. Fix an R > ‖ζ‖. We want to show that there exists a sequence of
polynomials fN such that

• ‖fN‖D∩DnR ≤ 1 for any N ≥ 1;
• fN (ζ)→ 1 when N →∞;
• for any compact set K b D ∩DnR there exist an η ∈ (0, 1) and a k ∈ N

such that ‖fN‖K ≤ 1− η for any N ≥ k.
Fix a compact set K ⊂ D ∩DnR and an ε > 0. There exist β1, . . . , βn ∈ Z

and a q ∈ N, q ≥ 2, such that signβj = signαj and

|qαj − βj | ≤ ε for any j = 1, . . . , n.

Set fε(z) = zβ11 · . . . · z
βn
n , z ∈ Cn. Let us estimate supz∈D∩Dn |fε(z)|.

First we want to show that there exists a δ ∈ (0, 1) such that for any
z ∈ D ∩ DnR with min{|z1|, . . . , |zn|} ≤ δ we have

|z1|β1 · . . . · |zn|βn ≤ (1/2)q.

It suffices to have

(3.1) δmin{β1,...,βn}Rβ1+···+βn−min{β1,...,βn} ≤ (1/2)q.

We see that for small enough δ > 0 the inequality (3.1) holds.
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If |z1|, . . . , |zn| ≥ δ then

|fε(z)| = (|z1|α1 · . . . · |zn|αn)q|z1|β1−qα1 · . . . · |zn|βn−qαn(3.2)
≤ (|z1|α1 · . . . · |zn|αn)q(max{R, 1/δ})nε.

We have
|fε(ζ)| = |ζ1|β1−α1q · . . . · |ζn|βn−αnq.

Hence, |fε(ζ)| → 1 when ε→ 0. We see that condition (5) of Theorem 1.1 is
fulfilled. So, ζ is a weak peak point of D.

A domain D ⊂ Cn is called Reinhardt if (λ1z1, . . . , λnzn) ∈ D for all
points z = (z1, . . . , zn) ∈ D and any |λ1| = · · · = |λn| = 1. Let

Vj = {z ∈ Cn : zj = 0}, j = 1, . . . , n,

and V =
⋃n
j=1 Vj . The following result is well-known (see e.g. [11]).

Theorem 3.2. Let D ⊂ Cn be a Reinhardt domain. Then D is pseudo-
convex if and only if the set

logD := {x ∈ Rn : (ex1 , . . . , exn) ∈ D}
is convex and for any j ∈ {1, . . . , n},
(3.3) if D ∩ Vj 6= ∅ and (z′, zj , z

′′)∈D then (z′, λzj , z
′′)∈D for any λ∈D.

In particular, if D is a pseudoconvex domain and D ∩ Vj 6= ∅ for some
j ∈ {1, . . . , n}, then πj(D) = D ∩ Vj is a pseudoconvex domain in Cn−1
(after natural identification), where

πj : Cn 3 z 7→ (z1, . . . , zj−1, 0, zj+1, . . . , zn) ∈ Vj .
For Reinhardt domains, which satisfy Fu’s condition (see (3.4) below),

we have the following result (cf. [4], [12]).

Theorem 3.3. Let D ⊂ Cn be a pseudoconvex Reinhardt domain such
that for any j ∈ {1, . . . , n},
(3.4) if D ∩ Vj 6= ∅ then D ∩ Vj 6= ∅.
Then any ζ ∈ ∂D is a weak peak point.

Proof. Note that 0 6∈ ∂D. For if 0 ∈ ∂D then from (3.3) and (3.4) we
deduce that D is a complete Reinhardt domain, a contradiction.

Fix a boundary point ζ ∈ ∂D. First assume that ζ1 · . . . · ζn 6= 0. Without
loss of generality, we may assume that for some m ∈ {0, 1, . . . , n} we have

• D ∩ Vj 6= ∅, j = 1, . . . ,m;
• D ∩ Vj = ∅, j = m+ 1, . . . , n.

These conditions imply that

• if z∈D then (λ1z1, . . . , λmzm, zm+1, . . . , zn)∈D for any λ1, . . . , λm∈D;
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• there exists a δ0 ∈ (0, 1) such that for any z ∈ D we have |zj | > δ0 for
j = m+ 1, . . . , n.

Since logD is convex, there exist α1, . . . , αn ∈ R such that
α1x1 + · · ·+ αnxn < α1 log |ζ1|+ · · ·+ αn log |ζn| for any x ∈ logD.

Note that α1, . . . , αm ≥ 0. We have D ⊂ G and ζ ∈ ∂G, where
G := {z ∈ Cn : |z1|α1 · . . . · |zn|αn < |ζ1|α1 · . . . · |ζn|αn}(3.5)

∩ {z ∈ Cn : |zj | > δ0, j = m+ 1, . . . , n}.

Hence, it suffices to show that ζ is a weak peak point of any domain G̃ such
thatD⊂G̃ and ζ∈∂G̃. Without loss of generality we may assume that αj 6=0
for any j = 1, . . . , n. Moreover, we may assume that |ζ1|α1 · . . . · |ζn|αn = 1.
Indeed, consider

G̃ := {z ∈ Cn : |z1|α1 · . . . · |zn|αn < |ζ1|α1 · . . . · |ζn|αn}(3.6)
∩ {z ∈ Cn : |zj/ζj | > δ1, j = m+ 1, . . . , n},

where δ1 > 0 is sufficiently small, such that G ⊂ G̃. Note that ζ ∈ ∂G̃. Now,
we use the linear mapping

L : Cn 3 (z1, . . . , zn) 7→ (z1/ζ1, . . . , zn/ζn) ∈ Cn

and proceed to show the existence of a peak function for the domain L(G̃).
Let us show that we may assume α1, . . . , αn > 0, and hence the result

follows from Proposition 3.1. Indeed, consider the domain
H = {z ∈ Cn : |z1||α1| · . . . · |zn||αn| < 1}.

Note that (ζε11 , . . . , ζ
εn
n ), where εj = signαj , j = 1, . . . , n, is a boundary

point of H. If f is a peak function for H, then f ◦ψ is a peak function for G,
where

ψ : Cm × (C∗)n−m 3 z 7→ (z1, . . . , zm, z
εm+1

m+1 , . . . , z
εn
n ) ∈ Cn.

Now assume that ζ ∈ ∂D and that ζ1 · . . . · ζn = 0. Then there are
1 ≤ j1 < · · · < jk ≤ m such that ζjs = 0 for s = 1, . . . , k, and z` 6= 0 for
` 6∈ {j1, . . . , jk}. Consider the projection
π : Cn 3 (z1, . . . , zn) 7→ (z1, . . . , zj1−1, zj1+1, . . . , zjk−1, zjk+1, . . . , zn)∈Cn−k

and the domain D̃ = π(D). Note that D̃ is pseudoconvex and π(ζ) ∈ ∂D̃.
Hence, π(ζ) is a weak peak point for ∂D̃, and therefore ζ is a weak peak
point for ∂D.

Example 3.4. Using Sibony’s ideas we show that there exist a domain
D ⊂ C2 and a boundary point such that there exists a weak peak function,
but peak functions do not exist.

Let D b CN be a bounded domain and let φn : D→ D be a sequence of
holomorphic mappings such that φn(0) → p ∈ ∂D. Assume that f ∈ A(D)
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is such that f(p) = 1 and |f | < 1 on D. Then there exists a subsequence
{nk} such that f(φnk)→ 1 locally uniformly on D. In particular, if φn → φ

locally uniformly on D then f(φ) ≡ 1. So, f(w) = 1 for any w ∈ φ(D).
Let us now consider a special case. Fix an irrational number α > 0. Let

D ⊂ C2 be a domain and let (z0, w0) ∈ ∂D. Assume that there exists a
bounded neighborhood U ⊂ C2 of (z0, w0) such that

D ∩ U = {(z, w) ∈ C2 : |z| · |w|α < 1} ∩ U.
We want to show that there does not exist a holomorphic function f in
O(D) ∩ C(D ∩ U) such that |f | < 1 on D and f(z0, w0) = 1.

Indeed, assume that such a function exists. Then there also exists a neigh-
borhood V ⊂ C of the origin such that (z0e−αλ, w0e

λ) ∈ U whenever λ ∈ V .
For sufficiently large n ∈ N consider the functions

ψn(λ) = f(z0e
−αλ, (1− 1/n)w0e

λ).

Note that ψn : V → D∩U is a holomorphic mapping. Hence, a subsequence
ψnk tends locally uniformly on V to a holomorphic mapping ψ : V → C2. It
is easy to see (use continuity of f) that

ψ(λ) = f(z0e
−αλ, w0e

λ).

So, ψ : V →D ∩ U is a holomorphic mapping such that |ψ| ≤ 1 and ψ(0) = 1.
Hence, ψ ≡ 1. Since α is irrational, we deduce that {(z0e−αλ, w0e

λ) : λ ∈ V }
is dense in a neighborhood of (z0, w0). From the continuity of f we get f = 1
on a relatively open subset ∂D containing (z0, w0). Then f(z0, λw0) = 1
on the open subset of the unit circle containing 1. Hence, f(z0, λw0) = 1
everywhere, a contradiction.

Question 3.5. Do there exist a bounded pseudoconvex domain D ⊂ Cn
with smooth boundary and a boundary point ζ ∈ ∂D such that ζ is not a
weak peak point?
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