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Homoclinic orbits for an almost periodically forced
singular Newtonian system in R3

by Robert Krawczyk (Gdańsk)

Abstract. This work uses a variational approach to establish the existence of at
least two homoclinic solutions for a family of singular Newtonian systems in R3 which are
subjected to almost periodic forcing in time variable.

1. Introduction. This paper is motivated by [19] where the existence
of homoclinic orbits was proved for a family of singular Newtonian systems
in R2 which were subjected to almost periodic forcing in time. We extend
the results of [19] to Newtonian systems in R3. More precisely, we will be
concerned with the Newtonian system in R3,

(1.1) q̈ + a(t)∇W (q) = 0,

where a(t) and W (q) satisfy the following assumptions:

(a1) a : R → R is a continuous almost periodic function such that
a(t) ≥ a0 > 0 for all t ∈ R.

(H1) There is a line l such that l ∩ {0} = ∅, W ∈ C2(R3 \ {l},R) and l
consists of singular points of W , i.e. limx→lW (x) = −∞.

(H2) W : R3 \ {l} → R satisfies the Gordon condition in a neighbor-
hood of l, i.e. there is a neighborhood N of l and a function
U ∈C2(N \{l},R) such that |U(x)| → ∞ as x→ l and

|∇U(x)|2 ≤ −W (x) for all x ∈ N \ {l}.
(H3) W (x) < W (0) = 0 if x 6= 0 and W ′′(0) is negative definite.
(H4) There is a constant W0 < 0 such that lim sup|x|→∞W (x) ≤W0.

Here and subsequently, x→ l stands for d(x, l) = inf{|x−y| : y ∈ l} → 0 and
| · | : R3 → R is the Euclidean norm in R3. Condition (H2) governs the rate at
which −W (x)→∞ as x→ l. It was introduced by W. B. Gordon [10]. If a
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potentialW : R3\{l}→R satisfies (H2) then its gradient∇W : R3 \ {l} → R3

is called a strong force. Condition (H3) implies that the origin is a nonde-
generate critical point ofW , and condition (H4) guarantees thatW does not
asymptotically converge to its global maximum 0.

When a(t) ≡ 1 and somewhat weaker hypotheses than (H1)–(H4) are
satisfied, it was shown in [16] that (1.1) has a pair of homoclinic orbits Q+

and Q− which wind around l in a positive and negative sense respectively.
When R3 is replaced by R2 and the line l by a fixed point ξ, it was proved
in [19] that (1.1) has a pair of homoclinic orbits which wind around ξ in
opposite sense. Finally, when R3 is replaced by Rn with n > 2 and a(t) ≡ 1
and again weaker assumptions than the above are fulfilled, the existence of
a single homoclinic orbit of (1.1) was proved by K. Tanaka [21].

There have been several other works in recent years which use variational
methods to find periodic, homoclinic and heteroclinic solutions for periodi-
cally forced or conservative singular Newtonian systems with infinitely deep
wells of Gordon’s type: see for example [1, 2, 4]–[8, 11, 13]–[15, 18].

The goal of this paper is to obtain an analogue of the result of [19] for
singular Newtonian systems in R3. It will be shown that (1.1) has a pair
of orbits Q+, Q− homoclinic to 0 winding around l in opposite sense. The
proof will be based on minimization and geometric arguments.

Let us introduce some basic notions and necessary notation.

Definition 1.1. A set D ⊂ R is called relatively dense in R if there
exists a number λ > 0 such that every interval of length λ contains at least
one element of D.

Definition 1.2. Let f : R → R be a continuous function. A number τ
is called an ε-period of f if

sup
t∈R
|f(t+ τ)− f(t)| ≤ ε.

A continuous function f : R→ R is called almost periodic if for every ε > 0
there exists a relatively dense set Dε ⊂ R of ε-periods of f .

When a(t) is periodic of period T > 0, and Q is a homoclinic orbit of
(1.1) then so is Q(t− kT ) for k ∈ Z. This is no longer the case when a(t) is
almost periodic.

E. Serra, M. Tarallo and S. Terracini [20] established the existence of at
least one nonzero homoclinic solution for a Lagrangian system of the form

q̈ − q + a(t)∇G(q) = 0,

where q ∈ Rn, a(t) satisfies (a1) and G ∈ C2(Rn,R) satisfies the super-
quadraticity growth condition due to A. Ambrosetti and P. H. Rabinowitz:
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(G1) There is θ > 2 such that for all x ∈ Rn \ {0},
0 < θG(x) ≤ ∇G(x) · x.

Thus G is a rather different nonlinearity thanW . Nevertheless G andW have
a common feature that makes proofs of several our technical results nearly
identical with those of [20]. Note that (G1) implies that G(x) = o(|x|2) and
∇G(x) = o(|x|) as x→ 0. From this it follows that for each M > 0 there are
K(M) > 0 and L(M) > 0 such that if |x| < M then G(x) ≤ K(M)|x|2 and
|∇G(x)| ≤ L(M)|x|. The same inequalities hold for W by (H3). Moreover,
their proof exploited the Bochner criterion.

Theorem 1.3 ([3], Bochner’s criterion). A continuous function f : R→
R is almost periodic if and only if for every sequence {σn}∞n=1 of real numbers
there exists a subsequence {σnk

}∞k=1 such that {f(t + σnk
)}∞k=1 is uniformly

convergent in R, i.e. there is a function g ∈ C(R,R) such that

‖f(·+ σnk
)− g(·)‖L∞(R) → 0 as k →∞.

In particular, note that Definition 1.2 implies the existence of a sequence
of real numbers τn →∞ (τn → −∞) as n→∞ such that

‖f(·+ τn)− f(·)‖L∞(R) → 0

as n → ∞. Using this fact, it will be shown in Section 2 that (1.1) has a
homoclinic solution.

Definition 1.4. A solution q : R→ R3 is said to be homoclinic (to 0) if

q(±∞) = lim
t→±∞

q(t) = 0 and q̇(±∞) = 0.

Let E denote the Sobolev space W 1,2(R,R3) with the standard norm

‖q‖2E =
�

R

(|q(t)|2 + |q̇(t)|2) dt.

Lemma 1.5. Let {un}∞n=1, {vn}∞n=1 be bounded sequences in E and as-
sume that ‖un − vn‖E → 0 as n→∞. Then

|un|2 − |vn|2 → 0 as n→∞ in W 1,2(R,R).
This appears in [20, proof of Proposition 3.4, Step 2]. From now on, ‖ · ‖

stands for the standard norm in W 1,2(R,R).
Set

L(q) = 1
2 |q̇(t)|

2 − a(t)W (q(t)).

We will consider the family of curves that avoid the line l,

Λ = {q ∈ E : q(t) /∈ l for all t ∈ R}.
For q ∈ Λ, set

(1.2) I(q) =
�

R

L(q) dt.
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Proposition 1.6. If (a1) and (H1)–(H4) hold then I ∈ C1(Λ,R).
This was proved in [9, Proposition 1.1].

Proposition 1.7. If (a1) and (H1)–(H4) are satisfied, q ∈ Λ and I ′(q)
= 0, i.e. q is a critical point of I on Λ, then q is a classical solution of (1.1)
with |q(t)|, |q̇(t)| → 0 as |t| → ∞.

Proof. If q ∈ E, standard embedding theorems imply q(t) → 0 as |t| →
∞. If q is a critical point of I, it is a weak solution of (1.1) and then standard
“elliptic” arguments show it is a classical solution of (1.1). Finally, using (1.1),
(a1), (H1) and (H3) arguing as in [16] it is possible to show that q̇ ∈ E and
therefore |q̇(t)| → 0 as |t| → ∞.

Let Π be the plane that is perpendicular to l and contains 0. We will
use the cylindrical coordinate system in R3 with the height axis l and the
reference plane Π. Let P be the intersection point of the plane Π and the
line l. Then P is the pole and the half-line P0 is the polar axis. In this
coordinate system, for all q ∈ Λ we have

q(t) = (r(t) cosϕ(t), r(t) sinϕ(t), z(t)),

where r(t) is the distance of q(t) from l, ϕ(t) is a polar angle and z(t) is
the distance of q(t) from the plane Π. We choose an orthogonal positively
oriented base { ~P0, ~PR} of Π. The positive direction of l is determined by
~P0× ~PR. The function ϕ is not unique. However, if q is continuous then we
can assume that r, ϕ and z are also continuous.

Definition 1.8. Following J. Janczewska and J. Maksymiuk [16], for
q ∈ Λ we define the winding (rotation) number as follows:

WN(q) =
ϕ(∞)− ϕ(−∞)

2π
.

Set ε̂ = |P |/3. From now on, Bε(x) stands for an open ball in R3 of
radius ε > 0, centered at x ∈ R3.

Remark 1.9. Let 0 < ε ≤ ε̂. If q ∈ Λ, there is T ∈ R such that
q(T ) ∈ Bε(0). Then, by WN(q|T−∞) and WN(q|∞T ) we denote the winding
numbers of appropriate paths in Λ that arise from q|(−∞,T ] and q|[T,∞) resp.,
by connecting q(T ) to 0 by a line segment. By elementary homotopy argu-
ments,

WN(q) = WN(q|T−∞) +WN(q|∞T ).

Moreover, if q([T,∞)) ⊂ Bε(0) then
WN(q) = WN(q|T−∞).

Let

(1.3) Γ = {q ∈ Λ : WN(q) 6= 0} = Γ+ ∪ Γ−,
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where
Γ± = {q ∈ Γ : ±WN(q) > 0}.

Now we are ready to formulate our main result.

Theorem 1.10. If (a1) and (H1)–(H4) are satisfied then the Newtonian
system (1.1) has at least two homoclinic solutions Q± ∈ Γ±.

2. Proof of Theorem 1.10. For the convenience of the reader the proof
of Theorem 1.10 will be divided into a sequence of lemmas, propositions and
theorems.

Throughout this section we will assume that (a1) and (H1)–(H4) are
satisfied.

Lemma 2.1. For each M > 0 there is a constant K > 0 such that if
q ∈ Λ and I(q) ≤M then

d(q(t), l) ≥ K for all t ∈ R.
The proof of Lemma 2.1 is analogous to that of [14, Proposition 2.6] and

[16, Proposition 2.6] and therefore it will be omitted.
Let

αε = a0 inf{−W (x) : x /∈ Bε(0)},
where 0 < ε ≤ ε̂.

Lemma 2.2. Suppose that q ∈Λ and q(t) /∈Bε(0) for each t∈
⋃k
i=1[ri, si],

where [ri, si] ∩ [rj , sj ] = ∅ for i 6= j. Then

I(q) ≥
√
2αε

k∑
i=1

|q(si)− q(ri)|.

The proof of Lemma 2.2 is the same as that of [12, Lemma 2.1].
Let

(2.1) c± = inf
q∈Γ±

I(q).

Proposition 2.3. There is c > 0 such that

(2.2) c± ≥ c.
Proof. We will prove the case of c+. The second one is analogous. Let

{qm}∞m=1 be a minimizing sequence for I on Γ+. Fix 0 < ε ≤ ε̂. If qm ∈ Γ+

then WN(qm) > 0. Since Bε(0) ∩ l = ∅ there are Tm1 , Tm2 ∈ R such that qm
leaves Bε(0) at Tm1 , rotates around the line l and returns to Bε(0) at Tm2 .
There is a ray starting from 0, passing through the line l, intersecting the
orbit of qm at qm(Tm3 ), where Tm3 ∈ (Tm1 , Tm2 ) and |qm(Tm3 )| > |P |. Thus by
Lemma 2.2,

I(qm) ≥
√
2αε |qm(Tm1 )− qm(Tm3 )| ≥

√
2αε
|P |
2
.
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Finally,

c+ = lim
m→∞

I(qm) ≥
|P |
2

√
2αε = c.

Lemma 2.4. IfM > 0, q ∈ Λ, and I(q) ≤M , then there exists ω(M) > 0
(independent of q) such that

‖q‖E ≤ ω(M).

The proof of Lemma 2.4 is the same as that of [19, Proposition 1.11] and
it will be omitted. Condition (H3) plays an important role here.

If a(t) satisfies (a1) then it is bounded from above by some constant a1.
We set

Aa = {β ∈ C(R,R) : a0 ≤ β(t) ≤ a1 for all t ∈ R}.

For every β ∈ Aa we define a functional I(β, ·) : Λ→ R by setting

(2.3) I(β, q) =
�

R

(
1
2 |q̇|

2 − β(t)W (q)
)
dt.

Let

K∞ = {v ∈ E : v 6≡ 0, ∃β ∈ Aa, ∇I(β, v) = 0},

Q∞ =
{
ϕ ∈W 1,2(R,R) : ϕ(t) =

∑
finite

|τθivi(t)|
2, vi ∈ K∞, θi ∈ R

}
,

where τθivi(t) = vi(t− θi).

Lemma 2.5. There exists δ > 0 such that for all ϕ ∈ Q∞,

0 < ϕ(t) < 2δ ⇒ ϕ′′(t) > 0.

For the proof we refer the reader to [20].
For all ϕ ∈ Q∞, set

Z(ϕ) = {t ∈ R : ϕ(t) = δ},

where δ is the number introduced in Lemma 2.5. Let T : Q∞ → R be given by

T (ϕ) = maxZ(ϕ).

In [20] it was shown that T is locally Lipschitz continuous on bounded subsets
of Q∞ (see [20, Proposition 3.11]).

Lemma 2.6. Let β1, β2 ∈ L∞(R,R) and B be a bounded subset of Λ.
Then there exists a constant M =M(B) such that for all q ∈ B,

|I(β1, q)− I(β2, q)| ≤M‖β1 − β2‖L∞(R,R),(2.4)

‖∇I(β1, q)−∇I(β2, q)‖E ≤M‖β1 − β2‖L∞(R,R).(2.5)
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Proof. Inequality (2.4) follows from

|I(β1, q)− I(β2, q)| =
∣∣∣ �
R

(β2(t)− β1(t))W (q) dt
∣∣∣

≤ ‖β1 − β2‖L∞(R,R) sup
q∈B

�

R

|W (q)| dt.

Since B is bounded, there is a constantM1 =M1(B) such that for all q ∈ B,
‖q‖E ≤M1. By (H3) there exists M2 =M2(M1) such that

|W (x)| ≤M2|x|2

for all |x| ≤M1. Therefore

sup
q∈B

�

R

|W (q)|dt ≤M2 sup
q∈B

�

R

|q|2 dt ≤M2M
2
1 .

Finally,
|I(β1, q)− I(β2, q)| ≤M2M

2
1 ‖β1 − β2‖L∞(R,R).

Similarly, inequality (2.5) follows from

‖∇I(β1, q)−∇I(β2, q)‖E ≤ ‖β1 − β2‖L∞(R,R) sup
q∈B

(�
R

|∇W (q)|2 dt
)1/2

.

As a simple consequence of Lemma 2.6 we get

Lemma 2.7. Let {qn}∞n=1 be a bounded sequence in Λ and {βn}∞n=1 ⊂
L∞(R,R) such that βn → β in L∞(R,R). Then
(2.6) |I(βn, qn)− I(β, qn)| → 0 and ‖∇I(βn, qn)−∇I(β, qn)‖E → 0

as n→∞.

To continue, it is essential to understand the behavior of Palais–Smale
sequences for I. The next results provide this information.

Lemma 2.8 (Representation lemma). Let {pm}∞m=1 be a Palais–Smale
sequence for I at the level b > 0, i.e. I(pm) → b and ∇I(pm) → 0 as
m → ∞. Then there exist a number k ∈ N, depending on b, k functions
βi ∈ Aa, k functions vi ∈ E, vi 6≡ 0, a subsequence still denoted by {pm}∞m=1

and k sequences {θ1
m}∞m=1, . . . , {θkm}∞m=1 ⊂ R such that

(i) ‖pm −
∑k

i=1 τθimvi‖E → 0 as m→∞,
(ii) ∇I(βi, vi) = 0 for all i = 1, . . . , k,
(iii) b =

∑k
i=1 I(βi, vi),

(iv) |θim − θ
j
m| → ∞ as m→∞ for all i 6= j.

The statement of Lemma 2.8 is the same as that of [20, Proposition 2.16]
although the technical frameworks of the two results are different. Neverthe-
less the proof of Lemma 2.8 is nearly identical with that in [20]. Therefore
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we indicate those properties for (1.1) that combined with [20] allow for the
same proof.

Note that by Lemma 2.4 Palais–Smale sequences for I are bounded in E.
Moreover, by (H3) there exist ρ, β0 > 0 such that if |x| ≤ ρ then −W (x) ≥
β0|x|2. Thus for x ∈ Λ such that ‖x‖E ≤ ρ we have

I(β, x) ≥
�

R

(
1
2 |ẋ|

2 + a0β0|x|2
)
dt ≥ min{1/2, a0β0}‖x‖2E .

With the above observations and Lemma 2.2 the proof of Lemma 2.8 pro-
ceeds as in [20]. Bochner’s criterion is exploited here. It is worth pointing out
that analogous results can be found in many papers on homoclinic solutions
(see e.g. [9], [19]).

Lemma 2.9. Let {pm}∞m=1 be a Palais–Smale sequence for I at the level
b > 0 as in the representation lemma, that is, assume pm −

∑k
i=1 τθimvi → 0

in E for some vi ∈ K∞ and θim ∈ R. Then

(2.7) |pm|2 −
k∑
i=1

|τθimvi|
2 → 0 as m→∞ in W 1,2(R,R).

For the proof we refer the reader to [20].

Proposition 2.10. Let {pm}∞m=1 be a Palais-Smale sequence for I at
the level b > 0. Then

(2.8) dist(|pm|2, Q∞)→ 0 as m→∞ in W 1,2(R,R).
Proof. Suppose (2.8) is false. Then there is a subsequence, still denoted

by {pm}∞m=1, such that

(2.9) lim
m→∞

dist(|pm|2, Q∞) > 0.

Taking another subsequence {pm}∞m=1, by Lemma 2.8 we have∥∥∥pm − k∑
i=1

τθimvi

∥∥∥
E
→ 0

as m→∞ for some k, vi and θim. Consequently, by Lemma 2.9,

|pm|2 −
k∑
i=1

|τθimvi|
2 → 0 as m→∞ in W 1,2(R,R),

contradicting (2.9).

This proof is adapted from [20].

Theorem 2.11. Let {pm}∞m=1 ⊂ Λ be a Palais–Smale sequence for I at
the level b > 0. Moreover,

(2.10) ‖pm − pm−1‖E → 0 as m→∞.
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Then there is a sequence {θm}∞m=1 ⊂ R and r > 0 such that

lim inf
m→∞

|τθmpm(0)| ≥ r,(2.11)

|θm − θm−1| → 0 as m→∞.(2.12)

Proof. Since dist(|pm|2, Q∞) → 0 as m → ∞, there exists {ϕm}∞n=1 ⊂
Q∞ such that ‖|pm|2−ϕm‖ → 0 as m→∞ inW 1,2(R,R). Let θm = T (ϕm).
By Lemma 1.5 we have

‖ϕm − ϕm−1‖ ≤ ‖ϕm − |pm|2‖+
∥∥|pm|2 − |pm−1|2

∥∥+ ∥∥ϕm−1 − |pm−1|2
∥∥

→ 0

as m→∞. By uniform continuity of T on bounded sets we have

|θm − θm−1| = |T (ϕm)− T (ϕm−1)| → 0

as m→∞. Moreover,

|τθmpm(0)|2 = |pm(θm)|2 − ϕm(θm) + ϕm(θm) = o(1) + ϕm(T (ϕm))
= o(1) + δ > 0 as m→∞.

Theorem 2.12. Let q∈Γ . Then there exists a homoclinic solution Q∈Λ
of (1.1) such that I(Q) ∈ (0, I(q)].

Proof. If ∇I(q) = 0, the result is obtained for Q = q.
Suppose that ∇I(q) 6= 0. Let V(x) be a locally Lipschitz continuous pseu-

dogradient vector field for I, i.e. V : Ê → E is locally Lipschitz continuous
on Ê = {x ∈ E : ∇I(x) 6= 0} and satisfies

‖V(x)‖E ≤ 2‖∇I(x)‖E ,(2.13)

∇I(x) · V(x) ≥ ‖∇I(x)‖2E .(2.14)

Consider the Cauchy problem

(2.15)
dη

ds
= − V(η)

1 + ‖V(η)‖E
≡ −W(η)

with η(0) = q. ThenW is locally Lipschitz continuous on Ê and ‖W(x)‖E≤1
for all x ∈ Ê. Thus the solution of (2.15) exists for all s ≥ 0.

By (2.14), we have

(2.16)
dI(η(s))

ds
= ∇I(η(s))dη

ds
= −∇I(η(s))W(η(s)) < 0.

Since η(0) ∈ Γ , combining Lemma 2.1 with (2.16) we conclude that η(s) ∈ Γ
for all s ≥ 0. Moreover, by (2.16), (2.1) and Proposition 2.3,

inf
s≥0

I(η(s)) = lim
s→∞

I(η(s)) ≥ c± > 0,
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depending on whether q is in Γ+ or Γ−. Let {sm}∞m=1 ⊂ R be a sequence
satisfying sm →∞ as m→∞ and

|sm − sm−1| → 0

as m → ∞. By a corollary to Ekeland’s Theorem (see [17, Corollary 4.1])
there is a sequence {tm}∞m=1, tm →∞ as m→∞ such that

|tm − sm| → 0, I(η(tm)) ≤ I(η(sm))

and

(2.17)
d

ds
I(η(tm))→ 0

as m→∞. Set qm = η(tm). By (2.17) and (2.16) we obtain

(2.18) ∇I(qm)→ 0

as m→∞. Moreover, from the above it follows that

‖qm − qm−1‖E =

∥∥∥∥ tm�

tm−1

dη

ds
ds

∥∥∥∥
E

≤
tm�

tm−1

∥∥∥∥dηds
∥∥∥∥
E

ds ≤ |tm − tm−1|

≤ |tm − sm|+ |sm − sm−1|+ |sm−1 − tm−1| → 0

as m→∞. Hence {qm}∞m=1 satisfies the assumptions of Theorem 2.11. Thus
there exists a sequence {θm}∞m=1 and r > 0 such that

lim inf
m→∞

|τθmqm(0)| ≥ r,(2.19)

|θm − θm−1| → 0 as m→∞.(2.20)

We will consider two cases.

Case 1: {θm}∞m=1 has a bounded subsequence. Then along a subsequence
θm → θ. By decreasing of I along η we have I(qm) < I(q). Therefore by
Lemma 2.4, {qm}∞m=1 is bounded. Hence there is Q ∈ Λ such that qm ⇀ Q
in E and qm → Q in L∞loc(R,R3) along a subsequence. Thus

∇I(qm) · f → ∇I(Q) · f

for all f ∈ C∞0 (R,R3). Finally, by (2.18), ∇I(Q) · f = 0, and by (2.19),
τθQ(0) 6= 0. Therefore Q is a nontrivial homoclinic solution of (1.1). More-
over, for all N1, N2 such that N1 < N2, the functional given by

E 3 q 7→
N2�

N1

(
1
2 |q̇(t)|

2 − a(t)W (q(t))
)
dt
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is weakly lower semicontinuous. Hence for each j ∈ N,
j�

−j

(
1
2 |Q̇|

2 − a(t)W (q)
)
dt ≤ lim inf

m→∞

j�

−j

(
1
2 |q̇m|

2 − a(t)W (qm)
)
dt

≤ lim
m→∞

I(qm) = c± ≤ I(q).

Letting j →∞ we get
I(Q) ≤ I(q).

Case 2: {θm}∞m=1 has no bounded subsequence. Let vm = τθmqm. By
the almost periodicity of the function a(t), there is an unbounded sequence
{σm}∞m=1 (in the same direction as {θm}∞m=1) such that

(2.21) ‖τ−σma− a‖L∞(R) → 0 as m→∞.

Let {θmk
}∞k=1 be a subsequence satisfying

(2.22) |θmk
− σk| → 0 as k →∞.

This is possible by (2.20). By boundedness of {vm}∞m=1 there is Q ∈ Λ
such that vm ⇀ Q in E and vm → Q in L∞loc(R,R3) along a subsequence.
Combining (2.21), (2.22) and uniform continuity of a(t) we have

(2.23) ‖τ−θmk
a−a‖L∞(R) ≤ ‖τ−θmk

a−τ−σka‖L∞(R)+‖τ−σka−a‖L∞(R) → 0

as k →∞. For all f ∈ C∞0 (R,R3) we have

∇I(Q) · f = lim
k→∞

∇I(vmk
) · f = lim

k→∞
∇I(τθmk

a, vmk
) · f

= lim
k→∞

�

R

(
v̇mk

(t) · ḟ(t)− τθmk
a(t)∇W (vmk

(t)) · f(t)
)
dt

= lim
k→∞

�

R

(
q̇mk

(t− θmk
) · ḟ(t)− a(t− θmk

)∇W (qmk
(t− θmk

)) · f(t)
)
dt

= lim
k→∞

�

R

(
q̇mk

(t) · ḟ(t+ θmk
)− a(t)∇W (qmk

(t)) · f(t+ θmk
)
)
dt

= lim
k→∞

∇I(qmk
)τ−θmk

f = 0

by (2.23), Lemma 2.7 and (2.18). Analogously to Case 1 we get I(Q) ≤
I(q).

Lemma 2.13. There is a constant ρ > 0 such that if w ∈ Λ \ {0} is a
solution of (1.1) then ‖w‖L∞(R,R3) > ρ.

Proof. From (H3), there exist ρ, β > 0 such that if |x| ≤ ρ, then

−∇W (x) · x ≥ β|x|2.
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Suppose that w ∈ Λ \ {0} is a solution of (1.1) and ‖w‖L∞(R,R3) ≤ ρ. Then

0 = ∇I(w) · w =
�

R

(|ẇ|2 − a(t)∇W (w) · w) dt

≥
�

R

(|ẇ|2 + βa(t)|w|2) dt

≥
�

R

(|ẇ|2 + βa0|w|2) dt > 0,

a contradiction.

Theorem 2.14. There is ε0 > 0 such that if q ∈ Γ± and

(2.24) I(q) < c± + ε0

then the solution Q of (1.1) given by Theorem 2.12 lies in Γ± and I(Q) ∈
[c±, I(q)].

Proof. We will consider the case q ∈ Γ+. Suppose that Q /∈ Γ+. Then
WN(q) ≤ 0. Let δ ∈ (0, ρ/2) with ρ given by Lemma 2.13. Since Q ∈ E there
is a time T = T (δ) > 0 such that

Q(t) ∈ Bδ(0) for all |t| ≥ T .

We take δ > 0 sufficiently small such that WN(Q) = WN(Q|T−T ).
Let {qm}∞m=1 and {θm}∞m=1 be defined as in the proof of Theorem 2.12.

Case 1: {θm}∞m=1 has a bounded subsequence. Let Qm(t) = qm(t). Since
Qm ⇀ Q in E, Qm converges to Q uniformly for |t| ≤ T +1 as m→∞. We
have

(2.25) 0 <WN(Qm) = WN(Qm|−T−1
−∞ ) +WN(Qm|T+1

−T−1) +WN(Qm|∞T+1)

and

(2.26) WN(Qm|T+1
−T−1) = WN(Q|T+1

−T−1) = WN(Q) < 0

form large enough. SinceWN(Q)<0, by (2.25) and (2.26),WN(Qm|−T−1
−∞ )>0

or WN(Qm|∞T+1) > 0. Without loss of generality suppose WN(Qm|−T−1
−∞ )> 0.

Define a new function by

(2.27) q̂m(t) =


Qm(t) for t ≤ −T − 1,

−(t+ T )Qm(−T − 1) for −T − 1 < t ≤ −T,
0 for t ≥ −T.
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We have WN(q̂m) > 0 and thus q̂m ∈ Γ+. We obtain

I(q̂m) =

−T−1�

−∞
L(q̂m) dt+

−T�

−T−1

L(q̂m) dt+
∞�

−T
L(q̂m) dt

= I(Qm) +

−T�

−T−1

L(q̂m) dt−
∞�

−T−1

L(Qm) dt

< c+ + ε0 +

−T�

−T−1

L(q̂m) dt−
T+1�

−T−1

L(Qm) dt.

For t ∈ [−T − 1,−T ] we have

L(q̂m) =
1

2

∣∣∣∣ ddt [(t+ T )Qm(−T − 1)]

∣∣∣∣2
− a(t)W (−(t+ T )Qm(−T − 1))

and

(2.28) − (t+ T )Qm(−T − 1) ∈ Bδ(0),

for m large enough. Using (2.28) we obtain

−T�

−T−1

L(q̂m) dt = 1
2 |Qm(−T −1)|2−

−T�

−T−1

a(t)W (−(t+T )Qm(−T−1)) dt(2.29)

≤ 1
2δ

2 − a1

−T�

−T−1

W (−(t+ T )Qm(−T − 1)) dt.

Applying (H3) and the Maclaurin formula for W we get

(2.30) W (x) =W (0) +W ′(0)(x) + 1
2W

′′(ξ)(x, x) = O(|x|2),

where ξ is an intermediate point between 0 and x. Combining (2.28)–(2.30)
we have

−T�

−T−1

L(q̂m)dt = O(δ2).

Thus

(2.31) I(q̂m) < c+ + ε0 −
T+1�

−T−1

L(Qm) dt+O(δ2) as δ → 0.

Since Qm → Q ∈ Λ uniformly for t ∈ [−T − 1, T + 1], by Lemma 2.13 we
conclude that in this interval the curve Qm passes from ∂Bδ(0) to ∂Bρ(0)
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and finally back to ∂Bδ(0). Therefore by Lemma 2.2,

(2.32)
T+1�

−T−1

L(Qm) dt ≥
ρ

2

√
2a0γ

(ρ
2

)
≡ ε1

with γ(ρ/2) := inf |x|>ρ/2−W (x). Combining (2.31) with (2.32) gives

I(q̂m) < c+ + ε0 − ε1 +O(δ2) as δ → 0.

Hence by choosing ε0 := ε1/2 and δ sufficiently small we have

I(q̂m) < c+,

contrary to q̂m ∈ Γ+. Thus Q ∈ Γ+, and hence I(Q) ≥ c+.

Case 2: {θm}∞m=1 has no bounded subsequence. Define Qk = vmk
=

τθmk
qmk

, where {θmk
}∞k=1 is the subsequence introduced in Theorem 2.12,

case 2. Then

I(Qk) = I(τθmk
qmk

) =
�

R

(
1
2 |τθmk

q̇mk
|2 − a(t)W (τθmk

qmk
)
)
dt

=
�

R

(
1
2 |q̇mk

|2 − τ−θmk
a(t)W (qmk

)
)
dt

= I(qmk
) +

�

R

(
a(t)− τ−θmk

a(t)
)
W (qmk

)dt < c+ + ε0

for large k, due to the uniform L∞ bounds on {qmk
}∞k=1 given by Lemma 2.4

and the estimate (2.23). The rest of the proof is similar to the first case.
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