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Pullback attractors for nonautonomous parabolic equations
involving weighted p-Laplacian operators

by Cung The Anh and Tang Quoc Bao (Hanoi)

Abstract. Using the asymptotic a priori estimate method, we prove the existence of
pullback attractors for nonautonomous quasilinear degenerate parabolic equations involv-
ing weighted p-Laplacian operators in bounded domains, without restriction on the growth
order of the polynomial type nonlinearity and on the exponential growth of the external
force. The results obtained improve some recent ones for nonautonomous reaction-diffusion
equations. Moreover, a relationship between pullback attractors and uniform attractors is
given.

1. Introduction. Nonautonomous equations appear in many applica-
tions in the natural sciences, so they are of great importance and interest.
The long-time behavior of solutions of such equations have been studied ex-
tensively in the last years. The first attempt was to extend the notion of
global attractors to the nonautonomous case leading to the concept of uni-
form attractor (see [8]). It is remarkable that the conditions ensuring the
existence of the uniform attractor parallel those for the autonomous case.
However, one disadvantage of the uniform attractor is that it need not be
“invariant” unlike the global attractor for autonomous systems. Moreover,
it is well-known that the trajectories may be unbounded for many nonau-
tonomous systems when time tends to infinity and the uniform attractor for
such systems does not exist. In order to overcome this drawback, a new con-
cept, called a pullback attractor, has been introduced for nonautonomous
equations. Several variations are then developed. On the one hand, there
exists the pullback attractor of “fixed” bounded sets as the most usual op-
tion [9]. On the other hand, several authors use the concept of attraction in
a universe D not only composed by a “fixed” set, but also moving in time,
which usually appears in applications and is defined in terms of a tempered
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condition [6]. We refer the reader to the interesting paper [18] for a com-
parison of these two concepts of pullback attractors. The theory of pullback
attractors has been developed for both nonautonomous and random dynam-
ical systems and has proved useful in the understanding of the dynamics of
nonautonomous dynamical systems because it allows one to consider a larger
class of nonautonomous forces than the theory of uniform attractors does.

In this paper, we study the long-time behavior of solutions to the fol-
lowing nonautonomous quasilinear parabolic equation with a variable, non-
negative coefficient, defined on a bounded domain Ω ⊂ RN (N ≥ 3) with
boundary ∂Ω:

(1.1)

∂u

∂t
− div(σ|∇u|p−2∇u) + f(u) = g(x, t), x ∈ Ω, t > τ,

u|t=τ = uτ (x), x ∈ Ω,
u|∂Ω = 0,

where 2 ≤ p < N , uτ ∈ L2(Ω) is given, the diffusion coefficient σ, the
nonlinearity f , and the external force g satisfy some conditions specified
later.

Problem (1.1) may be degenerate in the sense that the measurable, non-
negative diffusion coefficient σ(x) is allowed to have at most a finite number
of (essential) zeroes. More precisely, we assume that the function σ : Ω → R
satisfies

(H1) σ ∈ L1
loc(Ω) and for some α ∈ (0, p), lim infx→z |x − z|−ασ(x) > 0 for

all z ∈ Ω.

The physical motivation of assumption (H1) is related to the modeling of
reaction diffusion processes in composite materials, occupying a bounded
domain Ω, which at some points behave as perfect insulators. Following [10,
p. 79], when at some points the medium is perfectly insulating, it is natural
to assume that σ(x) vanishes at those points. Note that in various diffusion
processes, the equation involves diffusion σ(x) ∼ |x|α, α ∈ (0, p).

In the case that σ(x) satisfies condition (H1), problem (1.1) contains
some important classes of parabolic equations, such as semilinear heat equa-
tions (when σ = 1, p = 2), semilinear degenerate parabolic equations (when
p = 2), p-Laplacian equations (when σ = 1, p 6= 2), etc. In the autonomous
degenerate case, that is, the case of g independent of time t, the existence
and long-time behavior of solutions to problem (1.1) when p = 2 have been
studied in [11, 12] and recently in [1, 2]; the quasilinear case 1 < p 6= 2 < N
has been investigated in [3, 4].

In this paper we continue the study of the long-time behavior of solutions
to problem (1.1) in the case of the external force g depending on time t by
using the theory of pullback attractors. To study problem (1.1) we assume
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the following conditions:
(H2) f : R→ R is a C1 function satisfying:

C1|u|q − k1 ≤ f(u)u ≤ C2|u|q + k2, q ≥ 2,(1.2)
f ′(u) ≥ −`,(1.3)

where Ci, ki and ` are positive constants;
(H3) g ∈W 1,2

loc (R;L2(Ω)) satisfies

(1.4)

0�

−∞
eζs(‖g(s)‖2L2(Ω) + ‖g′(s)‖2L2(Ω)) ds <∞,

0�

−∞

s�

−∞
eζr‖g(r)‖2L2(Ω) dr ds <∞,

where ζ is a fixed positive number;
(H4) [1, p∗α) ∩ I[p′, q′] 6= ∅, where p′ := p/(p− 1) is the conjugate exponent

of p and

I[p′, q′] := {(1− t)p′ + tq′ : 0 ≤ t ≤ 1}, p∗α :=
pN

N − p+ α
.

Let us make some comments about assumptions (H2)–(H4). The nonlin-
earity f is assumed to have polynomial growth and to satisfy a standard dissi-
pative condition. Typical examples of functions satisfying condition (H2) are
polynomials with odd degree and positive leading coefficient. The conditions
in (H3) hold if g ∈W 1,2

loc (R;L2(Ω)) and there exist γ ∈ (0, ζ), τ ∈ R (we can
assume τ < 0) andMτ > 0 such that ‖g(t)‖2L2(Ω)+‖g

′(t)‖2L2(Ω) ≤Mτe
−γt for

all t ≤ τ . In particular, (H3) holds if ‖g(t)‖2L2(Ω) + ‖g′(t)‖2L2(Ω) ≤Meζ|t| for
all t ∈ R. Finally, (H4) is a technical condition, which is necessary to prove
the existence of a weak solution to problem (1.1) using the compactness
method (see [3] for details).

In order to study problem (1.1) we introduce the natural energy space
D1,p

0 (Ω, σ) defined as the closure of C∞0 (Ω) in the norm

‖u‖D1,p
0 (Ω,σ)

:=
( �
Ω

σ(x)|∇u|p dx
)1/p

,

and prove some compactness results. The main aim of this paper is to prove
the existence of a pullback attractor in the space D1,p

0 (Ω, σ)∩Lq(Ω) for the
process associated to problem (1.1).

Let us describe the methods used in this paper (we refer the reader to
Sect. 2 for relevant concepts). First, we use the compactness and monotonic-
ity methods [15] to prove the global existence of a weak solution and use
a priori estimates to show the existence of a family B̂ = {B(t) : t ∈ R} of
pullback absorbing sets in D1,p

0 (Ω, σ) ∩Lq(Ω)) for the process associated to
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problem (1.1). By the compactness of the embedding D1,p
0 (Ω, σ) ↪→ L2(Ω),

the process is pullback asymptotically compact in L2(Ω). This immediately
implies the existence of a pullback attractor in L2(Ω). When proving the exis-
tence of pullback attractors in Lq(Ω) and in D1,p

0 (Ω, σ)∩Lq(Ω), to overcome
the difficulty due to the lack of embbeding results, we use the asymptotic
a priori estimate method initiated in [17] for autonomous equations and de-
veloped in [16] for nonautonomous equations. One of the main new features
in our paper is that the existence of pullback attractors is proved for a class
of quasilinear degenerate parabolic equations. It is also worth noticing that,
when p = 2, σ = 1, our results improve the recent ones in [20, 13, 14] for
nonautonomous Laplacian equations and, as far as we know, the results are
new even for p-Laplacian equations.

The content of the paper is as follows. In Section 2, for the convenience of
readers, we recall some concepts and results on function spaces and pullback
attractors which we will use. In Section 3, we construct the process associated
to problem (1.1) and prove the existence of pullback attractors in various
spaces by using the asymptotic a priori estimate method. The existence
of uniform attractors and a relationship between pullback attractors and
uniform attractors are proved in the last section.

2. Preliminaries

2.1. Function spaces and operators. In order to study problem (1.1),
we introduce the weighted Sobolev space D1,p

0 (Ω, σ) defined as the closure
of C∞0 (Ω) in the norm

‖v‖D1,p
0 (Ω,σ)

=
( �
Ω

σ(x)|∇v|p dx
)1/p

,

and denote by D−1,p′
(Ω, σ) the dual space of D1,p

0 (Ω, σ).
We recall some compactness results from [3].

Lemma 2.1. Assume that Ω is a bounded domain in Rn, N ≥ 2, and σ
satisfies the hypothesis (H1). Then the following embeddings hold:

(i) D1,p
0 (Ω, σ) ⊂W 1,β

0 (Ω) continuously if 1 ≤ β < pN/(N + α);
(ii) D1,p

0 (Ω, σ) ⊂ Lr(Ω) compactly if 1 ≤ r < p∗α.

Put
Lp,σu := −div(σ(x)|∇u|p−2∇u), u ∈ D1,p

0 (Ω, σ).

The following lemma, whose proof is straightforward, gives some important
properties of the operator Lp,σ.

Lemma 2.2. The operator Lp,σ maps D1,p
0 (Ω, σ) into its dual D−1,p′

(Ω, σ).
Moreover,
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(1) Lp,σ is hemicontinuous, i.e., for all u, v, w ∈ D1,p
0 (Ω, σ), the map

λ 7→ 〈Lp,σ(u+ λv), w〉 is continuous from R to R.
(2) Lp,σ is strongly monotone when p ≥ 2, that is, there exists δ > 0 such

that

〈Lp,σu−Lp,σv, u−v〉 ≥ δ‖u−v‖2D1,p
0 (Ω,σ)

for all u, v ∈ D1,p
0 (Ω, σ).

Lemma 2.3. If p > 2, then for any ζ > 0, there is a positive number
C = C(p, ζ) such that

(2.1) ‖u‖p
D1,p

0 (Ω,σ)
≥ ζ‖u‖2L2(Ω) − C for all u ∈ D1,p

0 (Ω, σ).

Proof. We have

(2.2) ‖u‖p
D1,p

0 (Ω,σ)
≥ λ1‖u‖pLp(Ω),

where λ1>0 is the first eigenvalue of the operator Lp,σu :=−div(σ|∇u|p−2∇u)
in Ω with the homogeneous Dirichlet condition. On the other hand, we have

(2.3) ‖u‖pLp(Ω) ≥ |Ω|
(2−p)/2‖u‖p

L2(Ω)
,

and, by the Young inequality, for any z > 0 we have

(2.4) zp ≥ ζ|Ω|(p−2)/2λ−1
1 z2 − C,

where C depends only on p and ζ. Combining (2.2)–(2.4) we obtain (2.1).

2.2. Pullback attractors. Let X be a Banach space with norm ‖ · ‖.
Denote by B(X) the set of all bounded subsets of X. For A,B ⊂ X, the
Hausdorff semi-distance between A and B is defined by

dist(A,B) = sup
x∈A

inf
y∈B
‖x− y‖.

Let {U(t, τ) : t ≥ τ, t, τ ∈R} be a process in X, i.e., a two-parameter family
of mappings U(t, τ) : X → X such that U(τ, τ) = Id and U(t, s)U(s, τ) =
U(t, τ) for all t ≥ s ≥ τ, t, s, τ ∈ R. The process {U(t, τ)} is said to be
norm-to-weak continuous if U(t, τ)xn ⇀ U(t, τ)x for all t ≥ τ whenever
xn → x in X. The following result can be used to verify that a process is
norm-to-weak continuous.

Lemma 2.4 ([21]). Let X,Y be two Banach spaces, and X∗, Y ∗ their re-
spective dual spaces. Assume that X is dense in Y , the injection i : X → Y
is continuous, its adjoint i∗ : Y ∗ → X∗ is dense, and {U(t, τ)} is a contin-
uous (or weak continuous) process on Y , that is, U(t, τ)xn → U(t, τ)x in Y
as xn → x in Y (or U(t, τ)xn ⇀ U(t, τ)x in Y as xn ⇀ x in Y ), for all
t ≥ τ, τ ∈ R. Then {U(t, τ)} is norm-to-weak continuous on X iff for all
t ≥ τ , U(t, τ) maps compact subset of X to bounded subsets of X.

Definition 2.5 ([14]). The process {U(t, τ)} is said to be pullback asymp-
totically compact if for any t ∈ R and D ∈ B(X), and any sequences
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τn → −∞ and xn ∈ D, the sequence {U(t, τn)xn} is relatively compact
in X.

Definition 2.6. A process {U(t, τ)} is called pullback ω-limit compact
if for any ε > 0, t ∈ R, and D ∈ B(X), there exists a τ0 = τ0(D, ε, t) ≤ t
such that

α
( ⋃
τ≤τ0

U(t, τ)D
)
≤ ε,

where α is the Kuratowski measure of noncompactness of B ∈ B(X),

α(B) = inf{δ > 0 : B has a finite open cover by sets of diameter ≤ δ}.

Lemma 2.7 ([14]). A process {U(t, τ)} is pullback asymptotically compact
if it is ω-limit compact.

Definition 2.8. A family B̂ = {B(t) : t ∈ R} of bounded sets is called
pullback absorbing for the process {U(t, τ)} if for any t ∈ R and D ∈ B(X),
there exists τ0 = τ0(D, t) ≤ t such that⋃

τ≤τ0

U(t, τ)D ⊂ B(t).

Definition 2.9. The family Â = {A(t) : t ∈ R} ⊂ B(X) is said to be a
pullback attractor for {U(t, τ)} if

(1) A(t) is compact for all t ∈ R;
(2) Â is invariant, i.e.,

U(t, τ)A(τ) = A(t) for t ≥ τ ;
(3) Â is pullback attracting, i.e.,

lim
τ→−∞

dist(U(t, τ)D,A(t)) = 0 for all D ∈ B(X), and t ∈ R;

(4) if {C(t) : t ∈ R} is any family of closed pullback attracting sets then
A(t) ⊂ C(t) for all t ∈ R.

Theorem 2.10 ([14]). Let {U(t, τ)} be a norm-to-weak continuous pro-
cess such that {U(t, τ)} is pullback asymptotically compact. If there exists a
family B̂ = {B(t) : t ∈ R} of pullback absorbing sets, then {U(t, τ)} has a
unique pullback attractor Â = {A(t) : t ∈ R} and

A(t) =
⋂
s≤t

⋃
τ≤s

U(t, τ)B(τ).

3. Existence of pullback attractors. Denote

V = Lp(τ, T ;D1,p
0 (Ω, σ)) ∩ Lq(τ, T ;Lq(Ω)),

V ∗ = Lp
′
(τ, T ;D−1,p′

(Ω, σ)) + Lq
′
(τ, T ;Lq

′
(Ω)),
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where q′ is the conjugate of q. From now on, for brevity, we denote by |·|2, (·, ·)
the norm and scalar product of L2(Ω), and by | · |q, ‖ · ‖ the norms in the
spaces Lq(Ω) and D1,p

0 (Ω, σ), respectively.

Definition 3.1. A function u(x, t) is called a weak solution of (1.1) on
(τ, T ) if

u ∈ V, ∂u

∂t
∈ V ∗,

u|t=τ = uτ a.e. in Ω,
and T�

τ

�

Ω

(
∂u

∂t
ϕ+ σ|∇u|p−2∇u∇ϕ+ f(u)ϕ

)
dx dt =

T�

τ

�

Ω

gϕ dx dt

for all test functions ϕ ∈ V .

It follows from Theorem 1.8 in [8, p. 33] that if u ∈ V and du/dt ∈ V ∗,
then u ∈ C([τ, T ];L2(Ω)). This makes the initial condition in problem (1.1)
meaningful.

Theorem 3.2. Under conditions (H1)–(H4), for any T > τ and uτ ∈
L2(Ω), problem (1.1) has a unique weak solution u on (τ, T ). Moreover,

(3.1) |u(t)|22 ≤ C
(
e−ζ(t−τ)|uτ |22 + 1 + e−ζt

t�

−∞
eζs|g(s)|22 ds

)
.

Proof. Under conditions (H1)–(H4), one can prove the existence of a
weak solution of problem (1.1) using the compactness and monotonicity
methods [15, Chapters 1–2]. The proof is similar to the one in the au-
tonomous case (see [3, 4]), so it is omitted here. We only prove (3.1). From
(1.1) we have

1
2
d

dt
|u|22 + ‖u‖p +

�

Ω

f(u)u dx =
�

Ω

g(t)u dx.

By (1.2) and the Cauchy inequality, we obtain

(3.2)
d

dt
|u|22 + 2‖u‖p + 2C1|u|qq ≤ 2k1|Ω|+

1
η
|g(t)|22 + η|u|22.

Using Lemma 2.3 we get

(3.3)
d

dt
|u|22 + ζ|u|22 ≤

1
η
|g(t)|22 + C.

Applying the Gronwall lemma to (3.3), we get the desired inequality (3.1).

By Theorem 3.2, problem (1.1) defines a process:

U(t, τ) : L2(Ω)→ D1,p
0 (Ω, σ) ∩ Lq(Ω),

where U(t, τ)uτ is the unique weak solution of (1.1) with initial datum uτ .
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Lemma 3.3. Under conditions (H1)–(H4), the weak solution u of (1.1)
satisfies the following inequality for all t > τ :

(3.4)

|u|22 + ‖u‖p + |u|qq ≤ c
((

1 + (t− τ) +
1

t− τ

)
e−ζ(t−τ)|uτ |22 +

(
1 +

1
t− τ

)

+
(

1 +
1

t− τ

)
e−ζt

t�

−∞
eζs|g(s)|22 ds

+
(

1 +
1

t− τ

)
e−ζt

t�

−∞

s�

−∞
eζr|g(r)|22 dr ds

)
.

Hence there exists a family B̂ = {B(t) : t ∈ R} of pullback absorbing sets in
D1,p

0 (Ω, σ) ∩ Lq(Ω) for {U(t, τ)}.

Proof. Multiplying (3.1) by eζt and integrating from τ to t, we get

(3.5)
t�

τ

eζs|u|22 ds ≤ C
(
(t− τ)eζτ |uτ |22 + eζt +

t�

−∞

s�

−∞
eζr|g(r)|2 dr ds

)
.

From (3.2) and (2.1), we have

(3.6)
d

dt
|u|22 + ‖u‖p + 2C1|u|qq ≤ C +

1
η
|g(t)|22.

Thus,

(3.7) d

dt
(eζt|u|22) + eζt(‖u‖p + 2C1|u|qq) ≤ ζeζt|u|22 + Ceζt +

eζt

η
|g(t)|22.

Integrating this inequality and using (3.1), we have

(3.8)
t�

τ

eζs(‖u‖p + 2C1|u|qq) ds ≤ C
(
(1 + ζ(t− τ))eζτ |uτ |22 + eζt

+
t�

−∞
eζs|g(s)|22 ds+

t�

−∞

s�

−∞
eζr|g(r)|2 dr ds

)
.

Combining (3.5) and (3.8), we get

(3.9)
t�

τ

eζs(‖u‖p + 2C1|u|qq + |u|22) ds ≤ C
(
(1 + t− τ)eζτ |uτ |22 + eζt

+
t�

−∞
eζs|g(s)|22 ds+

t�

−∞

s�

−∞
eζr|g(r)|22 dr ds

)
.
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From (1.2) and (3.6), we obtain

(3.10)
d

dt
|u|22 + ‖u‖p + C5

�

Ω

F (u) dx ≤ 1
η
|g(t)|22 + C7,

where F (u) =
	u
0 f(s) ds.

We now give some formal calculations; a rigorous proof uses Galerkin
approximations and Lemma 11.2 in [19]. Multiplying (1.1)1 by ut and inte-
grating over Ω, we have

|ut|22 +
1
2
d

dt

(
‖u‖p + 2

�

Ω

F (u) dx
)

=
�

Ω

g(t)ut dx ≤
1
2
|g(t)|22 +

1
2
|ut|22.

Thus,

(3.11)
d

dt

(
‖u‖p + 2

�

Ω

F (u) dx
)
≤ |g(t)|22.

Combining (3.10), (3.11) and using (2.1), we have
d

dt
G(u) + C8G(u) ≤ C9|g(t)|22 + C,

where G(u) = |u|22 + ‖u‖p + 2
	
Ω F (u) dx. This implies that

d

dt
((t− τ)eζtG(u)) ≤ (1+(ζ−C8)(t− τ))G(u)eζt+(C+C9|g(t)|22)(t− τ)eζt.

Integrating this inequality from τ to t, we obtain

(t− τ)G(u) ≤ (1 + C11(t− τ))
t�

τ

G(u)eζs ds

+ C10(t− τ)eζt + C9(t− τ)
t�

τ

eζs|g(s)|22 ds.

Using (3.9) we get the required inequality (3.4). Put

(3.12) r20(t) = 2c
(
1 + e−ζt

t�

−∞
eζs|g(s)|22 ds+ e−ζt

t�

−∞

s�

−∞
eζr|g(r)|22 dr ds

)
.

Then for any D ∈ B(L2(Ω)) and any t ∈ R, by (3.4), there exists τ0(D, t) ≤ t
such that

|u|22 + ‖u‖p + |u|qq ≤ r20(t) for all τ ≤ τ0, uτ ∈ D,

i.e., there exists a family B̂ = {B(t) : t ∈ R} of bounded pullback absorbing
sets in D1,p

0 (Ω, σ) ∩ Lq(Ω) of {U(t, τ)}.

Remark 3.4. Let R be the set of all functions r : R→ (0,∞) such that

lim
t→−∞

eζtr2(t) = 0,
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and denote by D the class of all families D̂ = {D(t) : t ∈ R} ⊂ B(D1,p
0 (Ω, σ)

∩ Lq(Ω)) such that D(t) ⊂ B(r(t)) for some r ∈ R, where B(r(t)) denotes
the closed ball in D1,p

0 (Ω, σ)∩Lq(Ω) with radius r(t). From the proof above,
we see that there exists a family of pullback D-absorbing sets in D1,p

0 (Ω, σ)
∩ Lq(Ω) for the process {U(t, τ)}.

From Lemma 3.3 we see that the process {U(t, τ)}maps each compact set
in D1,p

0 (Ω, σ)∩Lq(Ω) to a bounded set in D1,p
0 (Ω, σ)∩Lq(Ω) for any t ≥ τ ,

and thus by Lemma 2.4, the process {U(t, τ)} is norm-to-weak continuous in
D1,p

0 (Ω, σ) ∩ Lq(Ω). Since {U(t, τ)} has a family of pullback absorbing sets
in D1,p

0 (Ω, σ)∩Lq(Ω), in order to prove the existence of pullback attractors,
we need only check that {U(t, τ)} is pullback asymptotically compact.

3.1. Pullback attractor in L2(Ω). Because D1,p
0 (Ω, σ) ↪→ L2(Ω) com-

pactly, the process {U(t, τ)} is pullback asymptotically compact in L2(Ω).
Thus, we immediately get the following result.

Theorem 3.5. Assume conditions (H1)–(H4) hold. Then the process
{U(t, τ)} associated to problem (1.1) has a pullback attractor Â2 in L2(Ω).

3.2. Pullback attractor in Lq(Ω). From now on, for the sake of
brevity, we will use the notation

Ω(Φ) = {x ∈ Ω : Φ is true},
where Φ is a logical condition.

To prove that {U(t, τ)} is pullback asymptotically compact in Lq(Ω), we
need the following lemma.

Lemma 3.6. Let {U(t, τ)} be a norm-to-weak continuous process in Lq(Ω)
and L2(Ω), and let {U(t, τ)} satisfy the following two conditions:

(i) {U(t, τ)} is pullback asymptotically compact in L2(Ω);
(ii) for any ε > 0, t ∈ R, and D ∈ B(L2(Ω)), there exist constants

M = M(ε,D) and τ0 = τ0(ε,D) ≤ t such that( �

Ω(|U(t,τ)uτ |≥M)

|U(t, τ)uτ |q dx
)1/q

< ε for any τ ≤ τ0 and uτ ∈D.

Then {U(t, τ)} is pullback asymptotically compact in Lq(Ω).

Proof. For any fixed ε > 0 and D ∈ B(L2(Ω)), it follows from condition
(i) and Lemma 2.7 that there exists τ1 = τ1(D, ε) ≤ τ0 such that

α
( ⋃
τ≤τ1

U(t, τ)D
)
≤ (3M)(2−q)/2(ε/2)q/2 in L2(Ω),

i.e.,
⋃
τ≤τ1 U(t, τ)D has a finite (3M)(2−q)/2(ε/2)q/2-net in L2(Ω). From con-

dition (ii) and Lemma 5.3 in [21] we deduce that
⋃
τ≤τ1 U(t, τ)D has a finite
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ε-net in Lq(Ω). By the definition of the measure of noncompactness, we
obtain

α
( ⋃
τ≤τ1

U(t, τ)D
)
≤ ε in Lq(Ω),

i.e., {U(t, τ)} is pullback ω-limit compact in Lq(Ω). Using Lemma 2.7 once
again, {U(t, τ)} is pullback asymptotically compact in Lq(Ω).

Theorem 3.7. Assume conditions (H1)–(H4) hold. Then the process
{U(t, τ)} associated to problem (1.1) has a pullback attractor Âq in Lq(Ω).

Proof. It is sufficient to show that the process {U(t, τ)} satisfies the
condition (ii) in Lemma 3.6.

Take M large enough such that C̃1|u|q−1 ≤ f(u) in

Ω1 = Ω(u(t) ≥M) = {x ∈ Ω : u(x, t) ≥M},

and denote

(u−M)+ =
{
u−M, u ≥M ,
0, u ≤M .

In Ω1 we have

g(t)((u−M)+)q−1 ≤ C̃1

2
((u−M)+)2q−2 +

1
2C̃1

|g(t)|2(3.13)

≤ C̃1

2
((u−M)+)q−1|u|q−1 +

1
2C̃1

|g(t)|2,

and

(3.14)

f(u)((u−M)+)q−1 ≥ C̃1|u|q−1((u−M)+)q−1

≥ C̃1

2
((u−M)+)q−1|u|q−1 +

C̃1M
q−2

2
((u−M)+)q.

Multiplying equation (1.1)1 by |(u −M)+|q−1 and using (3.13) and (3.14),
we deduce that

2
q

d

dt
|(u−M)+|qq + (q − 1)

�

Ω1

σ(x)|∇(u−M)+|p|(u−M)+|q−2 dx

+ C̃1M
q−2

�

Ω1

|(u−M)+|q ≤
�

Ω1

1
C̃1

|g(t)|2 dx.

Therefore
d

dt
|(u−M)+|qq + CM q−2|(u−M)+|qq ≤ C|g(t)|22,
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which implies that

(3.15)
d

dt

(
(t−τ)eρt|(u−M)+|qq

)
≤ eρt|(u−M)+|qq + C(t−τ)eρt|g(t)|22,

where ρ = CM q−2. Integrating (3.15) we get

(t− τ)eρt|(u−M)+|qq ≤
t�

τ

eρs|(u−M)+|qq ds+ C(t− τ)
t�

τ

eρs|g(s)|22 ds

≤ e(ρ−ζ)t
t�

τ

eζs|u|qq ds+
C(t− τ)e(ρ−γ)t

ρ− γ
,

and then

(3.16) |(u−M)+|qq ≤
1

t− τ
e−ζt

t�

τ

eζs|u|qq ds+
Ce−γt

ρ− γ
.

By (3.16) and (3.9), we have

|(u−M)+|qq ≤ C
((

1 +
1

t−τ

)
e−ζ(t−τ)|uτ |22 +

1
t−τ

+
e−ζt

t−τ

t�

−∞
eζs|g(s)|22 ds

+
e−ζt

t− τ

t�

−∞

s�

−∞
eζr|g(r)|22 dr ds

)
+
Ce−γt

ρ− γ
.

Hence, for any ε > 0, there exist M1 > 0 and τ1 < t such that for any τ < τ1
and any M ≥M1, we have

(3.17)
�

Ω(u(t)≥M)

|(u−M)+|q dx ≤ ε.

Repeating the same reasoning with (u+M)− instead of (u−M)+, we deduce
that there existM2 > 0 and τ2 < t such that for any τ < τ2 and anyM ≥M2,
we have

(3.18)
�

Ω(u(t)≤−M)

|(u+M)−|q dx ≤ ε,

where

(u+M)− =
{
u+M, u ≤ −M ,
0, u ≥ −M .

Letting M0 = max{M1,M2} and τ0 = min{τ1, τ2}, we obtain
�

Ω(|u|≥M)

(|u| −M)q dx ≤ ε for τ ≤ τ0 and M ≥M0.
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Using (3.17) and (3.18), we have

(3.19)
�

Ω(|u|≥2M)

|u|q dx =
�

Ω(|u|≥2M)

((|u| −M) +M)q dx

≤ 2q−1
( �

Ω(|u|≥2M)

(|u| −M)q dx+
�

Ω(|u|≥2M)

M q dx
)

≤ 2q−1
( �

Ω(|u|≥M)

(|u| −M)q dx+
�

Ω(|u|≥M)

(|u| −M)q dx
)

≤ 2qε.

This completes the proof.

3.3. Pullback attractor in D1,p
0 (Ω, σ) ∩ Lq(Ω). First, we prove the

following lemma.

Lemma 3.8. Assume conditions (H1)–(H4) hold. Then for any t ∈ R
and any bounded subset B ⊂ L2(Ω), there exists a positive constant T =
T (B, t) ≤ t such that

(3.20) |ut(t)|22 ≤ C
(
1 + e−ζt

t�

−∞
eζs(|g(s)|22 + |g′(s)|22) ds

)
,

for all τ ≤ T and all uτ ∈ B, where C > 0 is independent of t and B.

Proof. We give some formal calculations; a rigorous proof is done by use
of Galerkin approximations and Lemma 11.2 in [19]. By differentiating (1.1)1
in time t and setting v = ut, we get

vt − div(σ(x)|∇u|p−2∇v)
− (p− 2)div(σ(x)|∇u|p−4(∇u · ∇v)∇u) + f ′(u)v = g′(r).

Multiplying the above equality by eζrv and then integrating over Ω, we get

1
2
d

dr
(eζr|v|22) + eζr

�

Ω

σ(x)|∇u|p−2|∇v|2 dx

+ (p− 2)eζr
�

Ω

σ(x)|∇u|p−4(∇u · ∇v)2 dx+ eζr(f ′(u)v, v)

=
ζ

2
eζr|v|22 +

1
2
eζr(g′(r), v).

Using (1.3), the Cauchy inequality, and noting that p ≥ 2, we obtain

(3.21)
d

dr
(eζr|v|22) ≤ C(eζr|g′(r)|22 + eζr|v|22).
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We set τ ≤ r ≤ t− 1 and F (s) =
	s
0 f(ξ) dξ; then by (1.2), we deduce that

(3.22) C̃1‖u‖qLq(Ω) − k̃1|Ω| ≤
�

Ω

F (u) dx ≤ C̃2‖u‖qLq(Ω) + k̃2|Ω|.

Multiplying (1.1)1 by u, then using (1.3) and the Cauchy inequality, we get

(3.23)
d

dr
(eζr|u|22) = ζeζr|u|22 + eζr

d

dr
|u|22

≤ 2ζeζr|u|22 − 2eζr‖u‖p − 2C̃1e
ζr|u|qq +

1
ζ
eζr|g(r)|22 + 2eζrk1|Ω|

≤ −eζr‖u‖p − 2C̃1e
ζr|u|qq + C(eζr|g(r)|22 + eζr),

where we have used the fact that ‖u‖p ≥ 2ζ|u|22 − C̃ (see Lemma 2.3).
Integrating the last inequality over the interval [τ, t], we obtain

(3.24) eζt|u|22 ≤ eζτ |uτ |2 + C
( t�

−∞
eζs|g(s)|2 ds+ eζt

)
.

By (1.3) and (3.22), we infer from (3.23) that

(3.25)
d

ds
(eζs|u|22) + C

(
eζs‖u‖p + 2eζs

�

Ω

F (u) dx
)
≤ C(eζs|g(s)|22 + eζs).

Integrating this inequality from r to r + 1 and using (3.24), we obtain

(3.26)
r+1�

r

(
eζs‖u‖p + 2eζs

�

Ω

F (u) dx
)
ds

≤ C
(
eζr|u(r)|22 +

r+1�

r

(eζs|g(s)|2 + eζs) ds
)

≤ C
(
eζτ |uτ |22 +

t�

−∞
eζs|g(s)|2 ds+ eζt

)
<∞ for any r ∈ [τ, t− 1].

Now multiplying (1.1)1 by eζrut = eζrv, we have

(3.27) eζr|v|22 +
d

dr

(
2
p
eζr‖u‖p + 2eζr

�

Ω

F (u) dx
)

≤ ζ
(

2
p
eζr‖u‖2 + 2eζr

�

Ω

F (u) dx
)

+ eζr|g(r)|22.

By (3.26), (3.27), and the uniform Gronwall inequality, we obtain

(3.28) eζr‖u(r)‖2 +eζr
�

Ω

F (u) dx ≤ C
(
eζτ |uτ |22 +

t�

−∞
eζs|g(s)|22 ds+ eζt

)
.
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On the other hand, integrating (3.27) from r to r + 1, by (3.23), (3.26) and
(3.28), we have

r+1�

r

eζs|v|22 ds ≤ C
(
eζτ |uτ |22 +

t�

−∞
eζs|g(s)|22 ds+ eζt

)
.

Then, by (3.21), using the uniform Gronwall lemma once again, we get

eζt|v|22 ≤ C
(
eζτ |uτ |22 +

t�

−∞
eζs(|g(s)|22 + |g′(s)|22) ds+ eζt

)
,

that is,

|v(t)|22 ≤ C
(
e−ζ(t−τ)|uτ |22 + e−ζt

t�

−∞
eζs(|g(s)|22 + |g′(s)|22) ds+ 1

)
.

This completes the proof.

We are now in a position to prove the main theorem.

Theorem 3.9. Assume conditions (H1)–(H4) hold. Then the process
{U(t, τ)} associated to problem (1.1) has a pullback attractor Â in D1,p

0 (Ω, σ)
∩ Lq(Ω).

Proof. By Lemma 3.3, {U(t, τ)} has a family of bounded pullback ab-
sorbing sets in D1,p

0 (Ω, σ) ∩ Lq(Ω). It remains to show that {U(t, τ)} is
pullback asymptotically compact in D1,p

0 (Ω, σ) ∩ Lq(Ω), i.e., for any t ∈ R,
any bounded set D ∈ B(D1,p

0 (Ω, σ) ∩ Lq(Ω)), and any sequences τn → −∞
and uτn ∈ D, the sequence {U(t, τn)uτn} is precompact in D1

0(Ω, σ)∩Lq(Ω).
Thanks to Theorem 3.7, we only need to show that the sequence {U(t, τn)uτn}
is precompact in D1,p

0 (Ω, σ).
Denote un(t) = U(t, τn)uτn . By Theorem 3.5, we can assume that {un(t)}

is a Cauchy sequence in L2(Ω). Since Lp,σ is strongly monotone when p ≥ 2,
we have

δ‖un(t)− um(t)‖2

≤ 〈Lp,σun(t)− Lp,σum(t), un(t)− um(t)〉

= −
〈
dun
dt

(t)− dum
dt

(t), un(t)−um(t)〉−〈f(un(t))−f(um(t)), un(t)−um(t)
〉

≤
∣∣∣∣ ddtun(t)− d

dt
um(t)

∣∣∣∣2
2

|un(t)− um(t)|22 + `|un(t)− um(t)|22,

where we have used condition (1.3). Because {un(t)} is a Cauchy sequence
in L2(Ω) and by Lemma 3.8, one gets

‖un(t)− um(t)‖ → 0 as m,n→∞.
The proof is complete.
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Remark 3.10. The pullback attractor in Theorems 3.5, 3.7 and 3.9 is
the same object. Using the universe D in Remark 3.4, one may establish
the existence of a pullback D-attractor; as a corollary of the results in [18],
this attractor works in the norms of L2(Ω), Lq(Ω) and D1,p

0 (Ω, σ) ∩ Lq(Ω)
(the same in the three frameworks) and contains the attractor obtained in
Theorems 3.5, 3.7 and 3.9.

4. A relationship between pullback attractors and uniform at-
tractors

4.1. Existence and structure of a uniform attractor. First, we
recall the concept of kernel sections. The kernel K of the process {U(t, τ)}
consists of all bounded complete trajectories of the process {U(t, τ)}:
K = {u(·) |U(t, τ)u(τ) = u(t), dist(u(t), u(0)) ≤ Cu, ∀t ≥ τ, t, τ ∈ R}.

The set K(s) = {u(s) : u(·) ∈ K} is said to be the kernel section at time
s ∈ R.

In this section, to get the existence of a uniform attractor in D1,p
0 (Ω) ∩

Lq(Ω), instead of assumption (H3), we assume the external force g satisfies
the following condition:

(H3bis) g ∈W 1,2
loc (R;L2(Ω)) and

sup
t∈R
‖g(t, ·)‖2L2(Ω) ≤ K, g′ ∈ L2

b(R;L2(Ω)),

where L2
b(R;L2(Ω)) is the set of translation bounded functions (see [7, 8]).

Denote by Hw(g) the closure of {g(·+h) : h ∈ R} in L2
loc(R;L2(Ω)) with

the weak topology. It is known (see e.g. [7, 8]) that Hw(g) is weakly com-
pact in L2

loc(R;L2(Ω)). By Theorem 3.2, for each external force σ ∈ Hw(g),
problem (1.1) has a unique weak solution Uσ(t, τ)uτ subject to the initial
datum uτ . Thus, we get a family of processes {Uσ(t, τ)}σ∈Hw(g) associated
to problem (1.1). The following results are proved in [5] (the structure of the
uniform attractor follows from Theorem 3.9 in [7]).

Theorem 4.1. Assume conditions (H1), (H2), (H3bis) and (H4) hold.
Then the family of processes {Uσ(t, τ)}σ∈Hw(g) has a uniform attractor
AHw(g) in D1,p

0 (Ω) ∩ Lq(Ω). Moreover,

AHw(g) =
⋃

σ∈Hw(g)

Kσ(s), ∀s ∈ R,

where Kσ(s) is the kernel section at s of the kernel Kσ of the process
{Uσ(t, τ)} with symbol σ ∈ Hw(g).

4.2. The relationship between pullback attractors, uniform at-
tractors and kernel sections. We first recall some abstract results. A set
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Y is said to be uniformly (w.r.t. τ ∈ R) attracting for a process {U(t, τ)} if

sup
τ∈R

dist(U(t+ τ, τ)B, Y )→ 0 as t→∞

for any bounded set B. In particular, a closed set A0 is said to be a uniform
(w.r.t. τ ∈ R) attractor for {U(t, τ)} if it is contained in any closed uniformly
attracting set. Given a symbol σ0, let Σ0 = {σ0(· + h) : h ∈ R} be a
subset of some Banach space. If the process {Uσ0(t, τ)} satisfies the following
translation identity:

(4.1) Uσ0(t+ h, τ + h) = UT (h)σ0
(t, τ), ∀t ≥ τ, t, τ ∈ R, h ≥ 0,

then obviously, being uniformly (w.r.t. τ ∈ R) attracting for {Uσ0(t, τ)} is
equivalent to being uniformly (w.r.t σ ∈ Σ0) attracting for {Uσ(t, τ)}σ∈Σ0 .
It is easy to see that the uniform (w.r.t. τ ∈ R) attractor A0 of {Uσ0(t, τ)}
coincides with the uniform (w.r.t. σ ∈ Σ0) attractor AΣ0 of {Uσ(t, τ)}σ∈Σ0 .

Now we return to problem (1.1). Obviously, (H3bis) implies (H3). For
problem (1.1), it is proved in Theorem 3.9 that for any g0 ∈ Hw(g), the
process {Ug0(t, τ)} has a pullback attractor Âg0 = {Ag0(t) : t ∈ R} in
D1,p

0 (Ω) ∩ Lq(Ω). Moreover, we have

Theorem 4.2. Assume conditions (H1), (H2), (H3bis) and (H4) hold.
Then for any g0 ∈ Hw(g), the process {Ug0(t, τ)} has a pullback attractor
Âg0 = {Ag0(t) : t ∈ R} in D1,p

0 (Ω) ∩ Lq(Ω), and

Ag0(s) = Kg0(s),
⋃

g0∈Hw(g)

Ag0(s) = AHw(g), ∀s ∈ R,

where AHw(g) is the uniform attractor of problem (1.1), and Kg0 is the kernel
of the process {Ug0(t, τ)}.

Proof. Since Âg0 is pullback attracting and Ag0(s) is compact, we have

Kg0(s) ⊂ Ag0(s) for any s ∈ R.

On the other hand, by the definition of Kg0(s) and the invariance of Âg0 ,

Ag0(s) ⊂ Kg0(s) for any s ∈ R.

So, we have

(4.2) Ag0(s) = Kg0(s) for any s ∈ R.

Next, by (4.2) and Theorem 4.1,

AHw(g) =
⋃

g0∈Hw(g)

Kg0(s) =
⋃

g0∈Hw(g)

Ag0(s), ∀s ∈ R.

The proof is complete.
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