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Pencils of irreducible rational curves
and plane Jacobian conjecture

by Nguyen Van Chau (Hanoi)

Abstract. In certain cases the invertibility of a polynomial map F = (P, Q) : C2 →
C2 can be characterized by the irreducibility and the rationality of the curves aP +bQ = 0,
(a : b) ∈ P1.

1. Introduction. Let F = (P,Q) : C2 → C2 be a polynomial map
with finite fibres. The mysterious Jacobian Conjecture (see [1] and [2] for
its history and surveys), posed first by Ott-Heinrich Keller [8] in 1939 and
still open, asserts that F = (P,Q) is invertible if its Jacobian detDF is a
non-zero constant. In 1978 Razar [15] discovered a remarkable fact that F
is invertible if detDF ≡ c 6= 0 and, in addition, all the fibres P = λ, λ ∈ C,
are irreducible rational curves, i.e. curves diffeomorphic to a sphere with a
finite number of punctures. In various attempts to understand the nature of
the plane Jacobian conjecture, this fact has been reproved by Heitmann [4],
Lê and Weber [9], Friedland [3], and Némethi and Sigray [10] with several
different approaches. In fact, Vistoli [17] and Neumann and Norbury [11] ob-
served that every rational polynomial with all fibres irreducible is equivalent
to the projection (x, y) 7→ x up to polynomial diffeomorphisms.

In this paper we note that in certain cases the invertibility of a polynomial
map F = (P,Q) of C2 with finite fibres can be characterized by the topology
of the pencil of the affine curves aP + bQ = 0, (a : b) ∈ P1. Our result is

Theorem 1 (Main Theorem). Let F = (P,Q) be a polynomial map of
C2 with finite fibres. Suppose all the curves aP + bQ = 0, (a : b) ∈ P1, are
irreducible and rational. Then the following are equivalent:

(a) (0, 0) is a regular value of F ;
(b) detDF ≡ c 6= 0;
(c) F is invertible.
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Theorem 1 leads to the following criterion for the invertibility of poly-
nomial maps of C2.

Theorem 2. Let F be a polynomial map of C2 with finite fibres. If for
generic points q ∈ C2 the inverse images F−1(l) of all complex lines l in C2

passing through q are irreducible rational curves, then F is invertible.

Proof. Since the fibres of F are finite, we have detDF 6≡ 0. Then, by the
assumptions we can assume that (0, 0) is a regular value of F and that for
all lines l passing through (0, 0) the inverse image F−1(l) is an irreducible
rational curve. Hence, by Theorem 1 the map F is invertible.

Note that Theorem 2 still holds in higher dimensions under the additional
assumption detDF ≡ c 6= 0 ([14, Corollary 1.3]).

In an attempt to understand the plane Jacobian conjecture it is worth
considering the following questions:

Question 1. Does the Jacobian condition ensure the irreducibility of all
of the curves aP + bQ = 0, (a : b) ∈ P1?

Question 2. Is a non-zero constant Jacobian polynomial map F =
(P,Q) of C2 invertible if all the curves aP + bQ = 0, (a : b) ∈ P1, are
irreducible?

Kaliman [7] observed that to prove the plane Jacobian conjecture it is suf-
ficient to consider non-zero constant Jacobian polynomial maps F = (P,Q)
all of whose fibres P = c, c ∈ C, are irreducible. In general to Question 2
note that the irreducibility of the curves aP + bQ = 0, (a : b) ∈ P1, alone
does not guarantee the invertibility of the polynomial map F = (P,Q). For
example, the map F (x, y) = (x, x2 + y3) is not invertible, but the curves
ax+ b(x2 + y3) = 0, (a : b) ∈ P1, are irreducible. Further examination of the
relation between the Jacobian condition and the geometry of the pencil of
curves aP + bQ = 0 would be useful in pursuit of the solution of the plane
Jacobian problem.

The proof of Theorem 1 will be carried out in Section 3 after some
necessary preparations in the next section.

2. Two lemmas on the pencil of curves aP + bQ = 0. From now
on, F = (P,Q) is a given polynomial map of C2 with finite fibres. In this
section we are concerned with compactifications of the pencil of the curves
aP + bQ = 0. The results obtained will be used in our proof of Theorem 1
in Section 3.

Let Dλ := {(x, y) ∈ C2 : aP (x, y)+bQ(x, y) = 0} for λ = (a : b) ∈ P1 and
denote by rλ the number of irreducible components of the curve Dλ. Regard-
ing the plane C2 as a subset of the projective plane P2, we can associate to
F the rational map G : P2 → P1 given by G(x, y) = (P (x, y) : Q(x, y)) ∈ P1,



Pencils of irreducible rational curves 49

which is well defined outside the finite set B := F−1(0, 0) and a possible
finite subset of the line at infinity of C2. We can extend G to a regular
morphism g : X → P1 from a compactification X of C2 \B to P1. By a hori-
zontal component (resp. a constant component) of G we mean an irreducible
component l of the divisor D := X \ (C2 \B) such that the restriction gl of
g to l is a non-constant mapping (resp. a constant mapping). Let us denote
by hG the number of horizontal components of G. The number hG depends
on P and Q, but not on the compactification X of C2.

We can construct such an extension g : X → P1 by a minimal sequence
of blow-ups

(1) π : X → P2

that removes all the indeterminacy points of the rational map G. In such
an extension g the divisor D is the disjoint union of the connected divisors
D∞ := π−1(L∞) and Db := π−1(b), b ∈ B, where L∞ indicates the line
at infinity of C2 ⊂ P2. Denote by h∞ and hb the numbers of horizontal
components of G contained in the divisors D∞ and Db, b ∈ B, respectively.
Obviously,

(2) h∞ > 0 and hb > 0 for b ∈ B
and

(3) hG = h∞ +
∑
b∈B

hb.

Lemma 1. If the generic curve Dλ is irreducible and rational, then

(4)
∑
λ∈P1

(rλ − 1) = h∞ +
∑
b∈B

hb − 2.

The equality (4) is a folklore fact, which can be deduced from the esti-
mate on the total reducibility order of pencils of curves obtained by Vistoli
in [17]. The proof presented below is quite elementary and is analogous to
that of Kaliman [6] for the total reducibility order of polynomials in two
variables.

Proof of Lemma 1. Fix a regular morphism g which is a blow-up version
of G. Let Cλ be the fibre g = λ, λ ∈ P1, and let C be a generic fibre of g.
We will use Suzuki’s formula [16]

(5)
∑
λ∈P1

(χ(Cλ)− χ(C)) = χ(X)− 2χ(C).

Here, χ(V ) indicates the Euler–Poincaré characteristic of V .
Let us denote by m the number of irreducible components of the divisor

D and by mλ the number of irreducible components of Cλ contained in D.
Then χ(X) = m+ 2 and
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m = h∞ +
∑
b∈B

hb +
∑
λ∈P1

mλ.

Since the generic curves Dλ are irreducible and rational, the generic fibre
C is a copy of P1 and the fibres Cλ are connected rational curves with simple
normal crossings. Therefore, χ(C) = 2 and χ(Cλ) = rλ +mλ + 1.

Now, by the above we have

(6) χ(X)− 2χ(C) = h∞ +
∑
b∈B

hb +
∑
λ∈P1

mλ − 2

and
(7)

∑
λ∈P1

(χ(Cλ)− χ(C)) =
∑
λ∈P1

(rλ − 1) +
∑
λ∈P1

mλ.

Putting (6) and (7) into (5) we get the desired equality (4).

Regarding polynomials P and Q as rational maps from P2 into P1, the
blow-up X

π→ P2 in (1) also provides natural extensions p, q : X → P1 of
P and Q, which may have some indeterminacy points. If necessary, we can
replace X by its convenient blow-up version so that p and q are regular
morphisms and f = (p, q) : X → P1 × P1 is a regular extension of F . The
restrictions of p and q to each irreducible component l ⊂ D then determine
holomorphic maps from l to P1, denoted by pl and ql respectively. We can
divide the horizontal components l of G into the following types:

I. l ⊂ Db. Then (pl, ql) ≡ (0, 0).
II. l ⊂ D∞. Then either

(a) (pl, ql) ≡ (∞,∞),
(b) (pl, ql) ≡ (0, 0), or
(c) (pl, ql) is a non-constant mapping with (pl : ql) 6= const.

Obviously, in Type (IIc), (pl, ql)(l) ∩ C2 6= ∅.
By a dicritical component of F we mean an irreducible component l ⊂

D∞ such that (pl, ql) is a non-constant mapping. Recall from [5] that the
non-proper value set AF of F is the set of all a ∈ C2 such that a is a limit
point of F (vk) for a sequence vk ∈ C2 tending to ∞. The set AF is a plane
curve composed of the images of some polynomial maps from C into C2 [5].
When F has finite fibres, by definitions

(8) v 6∈ AF ⇔
∑

w∈F−1(v)

degw F = deggeo F,

where degw F is the multiplicity of F at w and deggeo F is the number of
solutions of the equation F (x, y) = v for generic points v ∈ C2. Obviously,
by the definitions

AF =
⋃

l a dicritical component of F

(f(l) ∩ C2).
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In particular, F is a proper map of C2 if and only if F does not have dicritical
components.

Lemma 2.

(a) G has at least one horizontal component of Type (IIa).
(b) If AF 6= ∅, then G has at least one horizontal component of Types

(IIb) or Type (IIc). If (0, 0) ∈ AF , then G has at least one horizontal
component of Type (IIb).

(c) If l is a dicritical component of F , then either l is a horizontal com-
ponent of G or f(l) ∩ C2 is a line passing through (0, 0).

Proof. (a) Note that each generic fibre Cλ is the union of Dλ and a finite
number of points lying in horizontal components of G, at which the rational
map (p, q) is well defined. If G did not have horizontal components of Type
(IIa), the map (p, q) would have finite values on Cλ∩D, and hence P and Q
would be constant on each connected component of Dλ. This is impossible,
since the fibres of F are finite.

(b) By definitions the non-proper value set AF can be expressed as
AF = f(D∞) ∩ C2. Assume AF 6= ∅. Let V be an irreducible component of
AF . Then the inverse f−1(V ) must contain a component l of D∞ such that
V ⊂ f(l). Obviously, g(l) = P1 or gl ≡ const. Therefore, l is a horizontal
component of Type (IIc) of G, unless (0, 0) ∈ AF and V is a line passing
through (0, 0). In the case (0, 0) ∈ AF , the intersection D := f−1(0, 0)∩D∞
is not empty. Then f maps each neighbourhood U of D onto a neighbour-
hood of (0, 0), and hence g maps each such U onto P1. It follows that D
must contain a horizontal component of Type (IIb) of G. The conclusions
are now clear.

(c) Let l be a dicritical component of F , (pl : ql) 6= const. By definitions,
l is either a horizontal component of G (if (pl : ql) 6= const), or a component
of a fibre of g. Obviously, in the latter case f(l)∩C2 is a line passing through
(0, 0).

3. Proof of Main Theorem. In the proof we will use the following
fact on the non-proper value sets of non-zero constant Jacobian polynomial
maps of C2.

Theorem 3 ([12], [13]). Let F = (P,Q) be a non-zero constant Jacobian
polynomial map. Then the irreducible components of AF , if any, can be
parameterized by polynomial maps t 7→ (ϕ(t), ψ(t)), ϕ,ψ ∈ C[t], satisfying

degϕ
degψ

=
degP
degQ

.

In particular, AF never contains components isomorphic to the line C.
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Now, we are ready to prove Theorem 1.

Proof of Theorem 1. Let F = (P,Q) be a given polynomial map C2 with
finite fibres such that all the curves aP+bQ = 0, (a : b) ∈ P1, are irreducible
and rational. The implication (c)⇒(a;b) is trivial. We need to prove only
(a)⇒(c) and (b)⇒(c). We will use the same constructions and notations
presented for F = (P,Q) in the previous sections.

First, by the assumptions we can apply Lemma 1 to see that G has
exactly two horizontal components,

(9) hG = h∞ +
∑
b∈B

hb = 2.

Since h∞ > 0 and hb > 0 for b ∈ B by Lemma 2, from (9) it follows that
either

(i) h∞ = 2 and B = ∅, or
(ii) h∞ = 1, B consists of a unique point, say B = {b}, and hb = 1.

(a)⇒(c). Assume that (0, 0) is a regular value of F , i.e. F−1(0, 0) is
non-empty and does not contain singular points of F . So, we are in case (ii):
h∞ = 1, B = {b} and hb = 1. Then, by Lemma 2(a) the unique horizontal
component of G in D∞ must be of Type (IIa). It follows that F does not
have dicritical components, AF = ∅. This means that F is a proper map
of C2. Then, by (8) the geometric degree deggeo F is equal to the number
of solutions of the equation F (x, y) = (0, 0), counted with multiplicity. But
this equation admits b as a unique solution and b is not a singular point
of F . Thus, deggeo F = 1 and hence F is injective. Then, by the well-known
fact (see [2]) that polynomial injections of Cn are automorphisms, the map
F must be invertible.

(b)⇒(c). Assume detDF ≡ const 6= 0. If F−1(0, 0) 6= ∅, then (0, 0) is
a regular value of F and we are done by the previous part. Assume now
that F−1(0, 0) = ∅. Then we are in case (i): h∞ = 2 and B = ∅. In this
case, by the definitions (0, 0) is a non-proper value of F , (0, 0) ∈ AF . There-
fore, by Lemma 2(a)&(b), G has exactly two horizontal components, one
of Type (IIa) and one of Type (IIb). In particular, none of such horizontal
components can be a dicritical component of F . Hence, by Lemma 2(c),
AF must be composed of some lines passing through (0, 0). This contradicts
Theorem 3. Thus, F is invertible.
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