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Hausdorff dimension of invariant measures related to
Poisson driven stochastic differential equations

by Tomasz Bielaczyc (Katowice)

Abstract. It is shown that the Hausdorff dimension of an invariant measure gener-
ated by a Poisson driven stochastic differential equation is greater than or equal to 1.

1. Introduction. We consider a stochastic differential equation of the
form

(1.1) dξ(t) = a(ξ(t))dt+
�

Θ

σ(ξ(t), θ)Np(dt, dθ), t ≥ 0,

with the initial condition

(1.2) ξ(0) = ξ0

where (ξ(t))t≥0 is a stochastic process with values in a separable Banach
space X. We make the following five assumptions:

i. The coefficient a : X → X is Lipschitzian,

‖a(x)− a(y)‖ ≤ la‖x− y‖ for x, y ∈ X.

ii. (Θ,G, κ) is a probability space.
iii. The perturbation coefficient σ : X×Θ → X is BX×G/BX -measurable

and
‖σ(x, ·)− σ(y, ·)‖L2(κ) ≤ lσ‖x− y‖ for x, y ∈ X.

iv. There are given a probability space (Ω,A,P), a sequence (tn)n≥0

of nonnegative random variables and a sequence (θn)n≥1 of random
elements with values in the space Θ. The variables ∆tn = tn − tn−1

(t0 = 0) are nonnegative, independent and equally distributed with
density function λe−λt for t ≥ 0. The elements θn are independent,
equally distributed with distribution κ. The sequences (tn)n≥0 and
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(θn)n≥1 are also independent. It is well known that the mapping

Ω 3 ω 7→ p(ω) = (tn(ω), θn(ω))n≥1

defines a stationary Poisson point process. Moreover, for every mea-
surable set Z ⊂ (0,∞)×Θ the variable

Np(Z) = card{n : (tn, θn) ∈ Z}
is Poisson distributed and

E(Np((0, t]×G)) = λtκ(G) for t ∈ (0,∞), G ∈ G,
where E denotes expectation with respect to the probability P.

v. For every µ ∈M1 there is an X-valued random vector ξµ defined on
Ω, independent of p and having distribution µ.

Recently equation (1.1) was considered for example in [LT, MS, S, T].
It is well known [GS] that equations (1.1) and (1.2) define a semigroup of
Markov operators (P t)t≥0 acting on the space of all Borel measures on X.
J. Myjak and T. Szarek [MS] gave sufficient conditions for the existence of a
unique invariant measure with respect to (P t)t≥0. They also proved that the
lower capacity of this measure is greater than or equal to 1. T. Szarek [S]
showed that the Hausdorff dimension of this measure is greater than or equal
to log 2/log 3. In this paper we will show that the Hausdorff dimension of
the invariant distribution with respect to (P t)t≥0 is greater than or equal
to 1. A similar result, but with much stronger assumptions, can be obtained
from Theorem 5.1.1 of [H].

2. Preliminaries. Let (X, ‖·‖) be a separable Banach space. We denote
by B(x, r) the open ball with center at x ∈ X and radius r > 0, and by BX
the family of all Borel subsets of X.

LetM be the family of all finite Borel measures onX. ThenMsig denotes
the family of finite signed measures, andM1 the set of all µ ∈M such that
µ(X) = 1. The elements of M1 will be called distributions. Given µ ∈ M
we define the support of µ by the formula

suppµ = {x ∈ X : µ(B(x, r) > 0 for r > 0}.

Let C(X) be the space of bounded continuous functions f : X → R with
the supremum norm. We will use the abbreviation

〈f, µ〉 =
�

X

f(x)µ(dx).

For A ⊂ X and s, δ > 0 define

Hsδ(A) = inf
{ ∞∑
i=1

(diamUi)s : A ⊂
∞⋃
i=1

Ui, diamUi ≤ δ
}
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and
Hs(A) = lim

δ→0
Hsδ(A).

The value
dimHA = inf{s > 0: Hs(A) = 0}

is called the Hausdorff dimension of the set A. The Hausdorff dimension of
a measure µ ∈M1 is defined by the formula

dimH µ = inf{dimHA : A ∈ BX , µ(A) = 1}.
For a given µ ∈ M we define the lower pointwise dimension of µ at

x ∈ X by

dxµ = lim inf
r→0

logµ(B(x, r))
log r

(here log 0 = −∞).

Lemma 2.1. Let µ be a distribution. If A ⊆ X is such that µ(A) = 1
then

∀x∈A dxµ ≥ δ ⇒ dimHA ≥ δ.
The proof can be found in [Y] (it was formulated in the case when X =

Rn but it remains valid for any separable Banach space).
By a solution of (1.1), (1.2) we mean a process (ξ(t))t≥0 with values in

X such that with probability one the following two conditions are satisfied:

• Each sample path is a right continuous function such that for every
t > 0 the limit ξ(t−) = lims↗t ξ(s) exists,
• ξ(t) = ξ0 +

	t
0 a(ξ(s)) ds+

	t
0

	
Θ σ(ξ(s−), θ)Np(ds, dθ) for t ≥ 0.

It is easy to give an explicit formula for the solution of (1.1), (1.2). Consider
the ordinary differential equation

(2.1) y′(t) = a(y(t)) for t ≥ 0

and denote by y(t) = St(x), t ∈ R, the solution of (2.1) satisfying the initial
condition y(0) = x. Then for every fixed p = (ti, θi)i∈N the solution is given
by the formula

(2.2)
ξx(tn) = ξx(tn−) + σ(ξx(tn−), θn) for n ∈ N (ξx(0) = x),

ξx(t) = St−tn(ξx(tn)), for n ∈ N0, tn ≤ t < tn+1.

Define

U tf(x) =
�

Ω

f(ξx(t)(ω)) P(dω) for t ≥ 0, f ∈ C(X).(2.3)

The classical theory of equation (1.1) ensures that (U t)t≥0 is a continuous
semigroup of bounded linear operators on C(X). Analogously, for given
µ ∈ M1 we may find a solution ξµ(t), t ≥ 0 of (1.1), (1.2) such that ξµ(0)
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has distribution µ. For every t ≥ 0 we define P tµ to be the distribution of
ξµ(t).

The operators P t and U t satisfy the duality condition

〈f, P tµ〉 = 〈U tf, µ〉 for f ∈ C(X), µ ∈M1.(2.4)

The operator U t, t ≥ 0, defined by (2.3) may be extended to all nonneg-
ative Borel functions. Then condition (2.4) is also satisfied. The operators
P t are defined independently of the choice of ξµ(0) and form a semigroup
acting onM1. Moreover using (2.4) the semigroup (P t)t≥0 can be extended
to Msig.

Lemma 2.2. For µ ∈M1, A ∈ B(X) and t ≥ 0,

P tµ(A) ≥ e−λt
�

X

1A(St(x))µ(dx).

For the proof see [MS, Lemma 5.1].
A measure µ ∈M is called invariant with respect to (P t)t≥0 if P tµ = µ

for t ≥ 0.

3. Main theorem. Suppose that there exists a measure µ∗ ∈ M1 in-
variant with respect to (P t)t≥0. We define the sequence (Dn)n∈N of sets by
the formula

Dn := {S1/n(x) : x ∈ suppµ∗} for n ∈ N.
Lemma 3.1.

dimH µ∗ = inf
{

dimHA : A ∈ BX , A ⊆
⋃
n∈N

Dn, µ∗(A) = 1
}
.

Proof. By Lemma 2.2 we have

µ∗(Dn) = P 1/nµ∗(Dn) ≥ e−λ/n
�

X

1Dn(S1/n(x))µ∗(dx) = e−λ/n.

Consequently, µ∗(
⋃
n∈NDn) = 1 and

dimH µ∗ = inf{dimHA : A ∈ BX , A ⊆ X, µ∗(A) = 1}

= inf
{

dimHA : A ∈ BX , A ⊆
⋃
n∈N

Dn, µ∗(A) = 1
}
.

Theorem 3.2. If a(x) 6= 0 for every x ∈ X and there exists β > 0 such
that

(3.1) e−βt‖x− y‖ ≤ ‖St(x)− St(y)‖ ≤ eβt‖x− y‖ for x, y ∈ X, t ≥ 0,

then dimH µ∗ ≥ 1.

Proof. Let x ∈
⋃
n∈NDn. We will prove that

∀γ∈(0,1)∃K>0 µ∗(B(x, r)) ≤ Kr1−γ for r ∈ (0,∞).
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Pick γ ∈ (0, 1). Let η ∈ (0, 1/2) be such that

(3.2) 31−γ ≤ (1 + η)−1(3− 2η)(1− η)2.

There exists n ∈ N such that x ∈ Dn. From the definition of St it follows
that

(3.3) lim
t→0

‖x− St(x)‖
t

= a(x).

For abbreviation set a = a(x). Let r0 ∈ (0,min{4, a/(4n)}) be such that

(3.4) e4r0β/a ≤ 1 + η, e−4r0λ/a ≥ 1− η, e−4r0β/a ≥ 1− η
and

(3.5) ∀w≤8r0/a
3
4
a ≤ ‖x− S

w(x)‖
w

≤ 5
4
a.

Set

K = max
{

4λ
η(1− η)2a

,
4
r0

}
.

For every r ≥ r0/4 we have

µ∗(B(x, r)) ≤ 1 ≤ Kr.
We define

r∗ := inf{r′ > 0: µ∗(B(x, r)) ≤ Kr1−γ for r ≥ r′}.
Of course r∗ ≤ r0/4. We will show that r∗ = 0. Suppose, contrary to our
claim, that r∗ > 0. Let r̂ ∈ (r∗/3, r∗) be such that

(3.6) µ∗(B(x, r̂)) > Kr̂1−γ .

Set r := r̂(1− η)−2. We have

r ≤ r∗
(1− η)2

≤ r0
4
· 4 = r0.

From (3.5) and continuity of the semigroup St it follows that there exists
b ∈ [3a/4, 5a/4] such that

b =
‖x− S2r/b(x)‖

2r/b
.

Set t := 2r/b. We have ‖x− St(x)‖ = 2r and

t ≤ 2r0
b
≤ 2a

4n
· 4

3a
<

1
n
.

From (3.4) it follows that

(3.7) r̂ = r(1− η)2 ≤ re−8r0β/a ≤ re−6rβ/b = re−2βt.

Choose x0 ∈ S−t(x) and define x1 = St(x). From (3.1) it follows that

St(y) ∈ B(x, re−2βt) ⇒ y ∈ B(x0, re
−βt) for y ∈ X.
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Using Lemma 2.2 and inequality (3.7) we obtain

1− µ∗(B(x, r̂)) ≥ e−λt − e−λt
�

X

1B(x,re−2βt)S
t(y)µ∗(dy)

≥ e−λt − e−λtµ∗(B(x0, re
−βt)).

Since 1− e−λt ≤ λt we have

(3.8) µ∗(B(x, r̂)) ≤ µ∗(B(x0, re
−βt)) + λt.

We will show that

µ∗(B(x0, re
−βt)) ≥ (1− η)µ∗(B(x, r̂)).(3.9)

Indeed, suppose towards a contradiction that

µ∗(B(x0, re
−βt)) < (1− η)µ∗(B(x, r̂)).

Then by (3.8) we have

µ∗(B(x, r̂)) ≤ (1− η)µ∗(B(x, r̂)) + λt

and consequently

µ∗(B(x, r̂)) ≤ λt

η
≤ K · (1− η)2at

4
≤ K · (1− η)2r = Kr̂ < Kr̂1−γ ,

which contradicts (3.6).
By (3.1) we have

e−βt‖x0 − x‖ ≤ ‖x− x1‖ ≤ eβt‖x0 − x‖.
Moreover, since 2t ≤ 8r0/a, from (3.5) it follows that

‖x0 − x1‖ ≥ e−βt‖x− S2t(x)‖ ≥ 3
2
ate−βt = 3

a

b
re−βt ≥ 2re−βt.

Therefore the sets B(x0, re
−βt), B(x, re−βt) and B(x1, re

−βt) are mutually
disjoint and all contained in B(x, 3reβt). Thus

µ∗(B(x, 3reβt)) ≥ µ∗(B(x0, re
−βt)) + µ∗(B(x, re−βt))(3.10)

+ µ∗(B(x1, re
−βt)).

From (3.1) it follows that

y ∈ B(x, re−2βt) ⇒ St(y) ∈ B(x1, re
−βt).

From this and Lemma 2.2 we have

µ∗(B(x1, re
−βt)) ≥ e−λt

�

X

1B(x1,re−βt)S
t(y)µ∗(dy)

≥ e−λtµ∗(B(x, re−2βt)).

By (3.4) we have

1− η ≤ e−4r0λ/a ≤ e−λt.(3.11)
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Using (3.7) we obtain

µ∗(B(x1, re
−βt)) ≥ (1− η)µ∗(B(x, r̂)).

By (3.9) and (3.10) we obtain

µ∗(B(x, 3reβt)) ≥ (3− 2η)µ∗(B(x, r̂)).

Consequently, using (3.4) and (3.2),

µ∗(B(x, r̂)) ≤ µ∗(B(x, 3reβt))
3− 2η

≤ K · 31−γ(1 + η)1−γr1−γ

3− 2η
≤ K · (1− η)2r1−γ ≤ Kr̂1−γ ,

which contradicts (3.6).
We showed that

∀x∈S
n∈N Dn

∀γ∈(0,1)∃K>0∀r∈(0,∞) µ∗(B(x, r)) ≤ Kr1−γ .

Thus for every x ∈
⋃
n∈NDn and γ ∈ (0, 1) we have

dxµ∗ = lim inf
r→0

logµ(B(x, r))
log r

≥ lim inf
r→0

logKr1−γ

log r
= 1− γ.

Hence by Lemma 2.1 we obtain

∀A⊆S
n∈N Dn, µ(A)=1 dimHA ≥ 1.

Consequently, dimH µ∗ ≥ 1.

Corollary 3.3. Let X = R. If a(x) 6= 0 for every x ∈ X and there
exists β > 0 such that condition (3.1) holds, then dimH µ∗ = 1.

Proof. From Theorem 3.2 it follows that dimH µ∗ ≥ 1. On the other
hand it is well known that in the case when X = R, dimH µ∗ ≤ 1.

Lemma 3.4. Assume that there exists β > 0 such that

‖St(x)− St(y)‖ ≤ eβt‖x− y‖ for x, y ∈ X, t ≥ 0

and

(3.12) ‖q(x, ·)− q(y, ·)‖L1(κ) ≤ l‖x− y‖ for x, y ∈ X,

where q(x, θ) = x+σ(x, θ) and l < exp(−β/λ). Then the semigroup (P t)t≥0

given by (2.4) is asymptotically stable.

For the proof see [S, Theorem 3.4].

Corollary 3.5. Assume that a(x) 6= 0 for every x ∈ X and there exists
β > 0 such that (3.1) is satisfied. If (3.12) holds then dimH µ∗ ≥ 1, where
µ∗ ∈M1 is invariant with respect to (P t)t≥0.

Proof. By Lemma 3.4 the semigroup (P t)t≥0 has an invariant distribu-
tion µ∗. From Theorem 3.2 it follows that dimH µ∗ ≥ 1.
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