ANNALES POLONICI MATHEMATICI 101.1 (2011)

Hausdorff dimension of invariant measures related to Poisson driven stochastic differential equations

by Tomasz Bielaczyc (Katowice)

Abstract. It is shown that the Hausdorff dimension of an invariant measure generated by a Poisson driven stochastic differential equation is greater than or equal to 1.

1. Introduction. We consider a stochastic differential equation of the form

(1.1)
$$d\xi(t) = a(\xi(t))dt + \int_{\Theta} \sigma(\xi(t), \theta) \mathcal{N}_p(dt, d\theta), \quad t \ge 0,$$

with the initial condition

DOI: 10.4064/ap101-1-7

where $(\xi(t))_{t\geq 0}$ is a stochastic process with values in a separable Banach space X. We make the following five assumptions:

i. The coefficient $a: X \to X$ is Lipschitzian,

$$||a(x) - a(y)|| \le l_a ||x - y||$$
 for $x, y \in X$.

- ii. $(\Theta, \mathcal{G}, \kappa)$ is a probability space.
- iii. The perturbation coefficient $\sigma \colon X \times \Theta \to X$ is $\mathcal{B}_X \times \mathcal{G}/\mathcal{B}_X$ -measurable and

$$\|\sigma(x,\cdot) - \sigma(y,\cdot)\|_{L^2(\kappa)} \le l_\sigma \|x - y\|$$
 for $x, y \in X$.

iv. There are given a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, a sequence $(t_n)_{n\geq 0}$ of nonnegative random variables and a sequence $(\theta_n)_{n\geq 1}$ of random elements with values in the space Θ . The variables $\Delta t_n = t_n - t_{n-1}$ $(t_0 = 0)$ are nonnegative, independent and equally distributed with density function $\lambda e^{-\lambda t}$ for $t \geq 0$. The elements θ_n are independent, equally distributed with distribution κ . The sequences $(t_n)_{n\geq 0}$ and

²⁰¹⁰ Mathematics Subject Classification: Primary 37A50; Secondary 60J75, 37A05. Key words and phrases: invariant measure, Hausdorff dimension.

 $(\theta_n)_{n\geq 1}$ are also independent. It is well known that the mapping

$$\Omega \ni \omega \mapsto p(\omega) = (t_n(\omega), \theta_n(\omega))_{n \ge 1}$$

defines a stationary Poisson point process. Moreover, for every measurable set $Z \subset (0, \infty) \times \Theta$ the variable

$$\mathcal{N}_p(Z) = \operatorname{card}\{n \colon (t_n, \theta_n) \in Z\}$$

is Poisson distributed and

$$\mathbb{E}(\mathcal{N}_p((0,t]\times G)) = \lambda t \kappa(G) \quad \text{for } t \in (0,\infty), G \in \mathcal{G},$$

where \mathbb{E} denotes expectation with respect to the probability \mathbb{P} .

v. For every $\mu \in \mathcal{M}_1$ there is an X-valued random vector ξ_{μ} defined on Ω , independent of p and having distribution μ .

Recently equation (1.1) was considered for example in [LT, MS, S, T]. It is well known [GS] that equations (1.1) and (1.2) define a semigroup of Markov operators $(P^t)_{t\geq 0}$ acting on the space of all Borel measures on X. J. Myjak and T. Szarek [MS] gave sufficient conditions for the existence of a unique invariant measure with respect to $(P^t)_{t\geq 0}$. They also proved that the lower capacity of this measure is greater than or equal to 1. T. Szarek [S] showed that the Hausdorff dimension of this measure is greater than or equal to $\log 2/\log 3$. In this paper we will show that the Hausdorff dimension of the invariant distribution with respect to $(P^t)_{t\geq 0}$ is greater than or equal to 1. A similar result, but with much stronger assumptions, can be obtained from Theorem 5.1.1 of [H].

2. Preliminaries. Let $(X, \|\cdot\|)$ be a separable Banach space. We denote by B(x, r) the open ball with center at $x \in X$ and radius r > 0, and by \mathcal{B}_X the family of all Borel subsets of X.

Let \mathcal{M} be the family of all finite Borel measures on X. Then \mathcal{M}_{sig} denotes the family of finite signed measures, and \mathcal{M}_1 the set of all $\mu \in \mathcal{M}$ such that $\mu(X) = 1$. The elements of \mathcal{M}_1 will be called *distributions*. Given $\mu \in \mathcal{M}$ we define the *support* of μ by the formula

$$\operatorname{supp} \mu = \{x \in X \colon \mu(B(x,r) > 0 \text{ for } r > 0\}.$$

Let C(X) be the space of bounded continuous functions $f: X \to \mathbb{R}$ with the supremum norm. We will use the abbreviation

$$\langle f, \mu \rangle = \int_X f(x) \, \mu(dx).$$

For $A \subset X$ and $s, \delta > 0$ define

$$\mathcal{H}_{\delta}^{s}(A) = \inf \left\{ \sum_{i=1}^{\infty} (\operatorname{diam} U_{i})^{s} \colon A \subset \bigcup_{i=1}^{\infty} U_{i}, \operatorname{diam} U_{i} \leq \delta \right\}$$

and

$$\mathcal{H}^s(A) = \lim_{\delta \to 0} \mathcal{H}^s_{\delta}(A).$$

The value

$$\dim_{\mathbf{H}} A = \inf\{s > 0 \colon \mathcal{H}^s(A) = 0\}$$

is called the *Hausdorff dimension* of the set A. The *Hausdorff dimension* of a measure $\mu \in \mathcal{M}_1$ is defined by the formula

$$\dim_{\mathbf{H}} \mu = \inf \{ \dim_{\mathbf{H}} A \colon A \in \mathcal{B}_X, \, \mu(A) = 1 \}.$$

For a given $\mu \in \mathcal{M}$ we define the lower pointwise dimension of μ at $x \in X$ by

$$\underline{\mathbf{d}}_{x}\mu = \liminf_{r \to 0} \frac{\log \mu(B(x,r))}{\log r}$$

(here $\log 0 = -\infty$).

LEMMA 2.1. Let μ be a distribution. If $A \subseteq X$ is such that $\mu(A) = 1$ then

$$\forall_{x \in A} \ \underline{\mathbf{d}}_x \mu \ge \delta \ \Rightarrow \ \dim_{\mathbf{H}} A \ge \delta.$$

The proof can be found in [Y] (it was formulated in the case when $X = \mathbb{R}^n$ but it remains valid for any separable Banach space).

By a solution of (1.1), (1.2) we mean a process $(\xi(t))_{t\geq 0}$ with values in X such that with probability one the following two conditions are satisfied:

- Each sample path is a right continuous function such that for every t > 0 the limit $\xi(t-) = \lim_{s \nearrow t} \xi(s)$ exists,
- $\xi(t) = \xi_0 + \int_0^t a(\xi(s)) ds + \int_0^t \int_{\Theta} \sigma(\xi(s-), \theta) \mathcal{N}_p(ds, d\theta)$ for $t \ge 0$.

It is easy to give an explicit formula for the solution of (1.1), (1.2). Consider the ordinary differential equation

$$(2.1) y'(t) = a(y(t)) for t \ge 0$$

and denote by $y(t) = S^t(x)$, $t \in \mathbb{R}$, the solution of (2.1) satisfying the initial condition y(0) = x. Then for every fixed $p = (t_i, \theta_i)_{i \in \mathbb{N}}$ the solution is given by the formula

(2.2)
$$\begin{aligned} \xi_x(t_n) &= \xi_x(t_n -) + \sigma(\xi_x(t_n -), \theta_n) & \text{for } n \in \mathbb{N} \ (\xi_x(0) = x), \\ \xi_x(t) &= S^{t - t_n}(\xi_x(t_n)), & \text{for } n \in \mathbb{N}_0, \ t_n \le t < t_{n+1}. \end{aligned}$$

Define

(2.3)
$$U^{t}f(x) = \int_{\Omega} f(\xi_{x}(t)(\omega)) \mathbb{P}(d\omega) \quad \text{for } t \geq 0, f \in C(X).$$

The classical theory of equation (1.1) ensures that $(U^t)_{t\geq 0}$ is a continuous semigroup of bounded linear operators on C(X). Analogously, for given $\mu \in \mathcal{M}_1$ we may find a solution $\xi_{\mu}(t)$, $t\geq 0$ of (1.1), (1.2) such that $\xi_{\mu}(0)$

has distribution μ . For every $t \geq 0$ we define $P^t \mu$ to be the distribution of $\xi_{\mu}(t)$.

The operators P^t and U^t satisfy the duality condition

(2.4)
$$\langle f, P^t \mu \rangle = \langle U^t f, \mu \rangle \quad \text{for } f \in C(X), \, \mu \in \mathcal{M}_1.$$

The operator U^t , $t \geq 0$, defined by (2.3) may be extended to all nonnegative Borel functions. Then condition (2.4) is also satisfied. The operators P^t are defined independently of the choice of $\xi_{\mu}(0)$ and form a semigroup acting on \mathcal{M}_1 . Moreover using (2.4) the semigroup $(P^t)_{t\geq 0}$ can be extended to \mathcal{M}_{sig} .

LEMMA 2.2. For $\mu \in \mathcal{M}_1$, $A \in B(X)$ and $t \geq 0$,

$$P^t \mu(A) \ge e^{-\lambda t} \int_X \mathbb{1}_A(S^t(x)) \, \mu(dx).$$

For the proof see [MS, Lemma 5.1].

A measure $\mu \in \mathcal{M}$ is called *invariant* with respect to $(P^t)_{t\geq 0}$ if $P^t\mu = \mu$ for $t\geq 0$.

3. Main theorem. Suppose that there exists a measure $\mu_* \in \mathcal{M}_1$ invariant with respect to $(P^t)_{t\geq 0}$. We define the sequence $(D_n)_{n\in\mathbb{N}}$ of sets by the formula

$$D_n := \{ S^{1/n}(x) \colon x \in \operatorname{supp} \mu_* \} \quad \text{ for } n \in \mathbb{N}.$$

Lemma 3.1.

$$\dim_{\mathrm{H}} \mu_* = \inf \Big\{ \dim_{\mathrm{H}} A \colon A \in \mathcal{B}_X, \ A \subseteq \bigcup_{n \in \mathbb{N}} D_n, \ \mu_*(A) = 1 \Big\}.$$

Proof. By Lemma 2.2 we have

$$\mu_*(D_n) = P^{1/n}\mu_*(D_n) \ge e^{-\lambda/n} \int_X \mathbb{1}_{D_n}(S^{1/n}(x)) \, \mu_*(dx) = e^{-\lambda/n}.$$

Consequently, $\mu_*(\bigcup_{n\in\mathbb{N}} D_n) = 1$ and

$$\dim_{\mathcal{H}} \mu_* = \inf \{ \dim_{\mathcal{H}} A \colon A \in \mathcal{B}_X, \ A \subseteq X, \ \mu_*(A) = 1 \}$$
$$= \inf \Big\{ \dim_{\mathcal{H}} A \colon A \in \mathcal{B}_X, \ A \subseteq \bigcup_{n \in \mathbb{N}} D_n, \ \mu_*(A) = 1 \Big\}. \blacksquare$$

Theorem 3.2. If $a(x) \neq 0$ for every $x \in X$ and there exists $\beta > 0$ such that

(3.1) $e^{-\beta t} \|x - y\| \le \|S^t(x) - S^t(y)\| \le e^{\beta t} \|x - y\|$ for $x, y \in X$, $t \ge 0$, then $\dim_H \mu_* \ge 1$.

Proof. Let $x \in \bigcup_{n \in \mathbb{N}} D_n$. We will prove that

$$\forall_{\gamma \in (0,1)} \exists_{K>0} \quad \mu_*(B(x,r)) \le Kr^{1-\gamma} \quad \text{ for } r \in (0,\infty).$$

Pick $\gamma \in (0,1)$. Let $\eta \in (0,1/2)$ be such that

(3.2)
$$3^{1-\gamma} \le (1+\eta)^{-1}(3-2\eta)(1-\eta)^2.$$

There exists $n \in \mathbb{N}$ such that $x \in D_n$. From the definition of S^t it follows that

(3.3)
$$\lim_{t \to 0} \frac{\|x - S^t(x)\|}{t} = a(x).$$

For abbreviation set a = a(x). Let $r_0 \in (0, \min\{4, a/(4n)\})$ be such that

(3.4)
$$e^{4r_0\beta/a} \le 1 + \eta$$
, $e^{-4r_0\lambda/a} \ge 1 - \eta$, $e^{-4r_0\beta/a} \ge 1 - \eta$

and

(3.5)
$$\forall_{w \le 8r_0/a} \quad \frac{3}{4}a \le \frac{\|x - S^w(x)\|}{w} \le \frac{5}{4}a.$$

Set

$$K = \max \left\{ \frac{4\lambda}{\eta (1-\eta)^2 a}, \frac{4}{r_0} \right\}.$$

For every $r \geq r_0/4$ we have

$$\mu_*(B(x,r)) \le 1 \le Kr.$$

We define

$$r_* := \inf\{r' > 0 : \mu_*(B(x,r)) \le Kr^{1-\gamma} \text{ for } r \ge r'\}.$$

Of course $r_* \leq r_0/4$. We will show that $r_* = 0$. Suppose, contrary to our claim, that $r_* > 0$. Let $\hat{r} \in (r_*/3, r_*)$ be such that

(3.6)
$$\mu_*(B(x,\hat{r})) > K\hat{r}^{1-\gamma}.$$

Set $r := \hat{r}(1-\eta)^{-2}$. We have

$$r \le \frac{r_*}{(1-\eta)^2} \le \frac{r_0}{4} \cdot 4 = r_0.$$

From (3.5) and continuity of the semigroup S^t it follows that there exists $b \in [3a/4, 5a/4]$ such that

$$b = \frac{\|x - S^{2r/b}(x)\|}{2r/b}.$$

Set t := 2r/b. We have $||x - S^t(x)|| = 2r$ and

$$t \le \frac{2r_0}{b} \le \frac{2a}{4n} \cdot \frac{4}{3a} < \frac{1}{n}.$$

From (3.4) it follows that

$$(3.7) \hat{r} = r(1-\eta)^2 \le re^{-8r_0\beta/a} \le re^{-6r\beta/b} = re^{-2\beta t}.$$

Choose $x_0 \in S^{-t}(x)$ and define $x_1 = S^t(x)$. From (3.1) it follows that $S^t(y) \in B(x, re^{-2\beta t}) \implies y \in B(x_0, re^{-\beta t})$ for $y \in X$.

Using Lemma 2.2 and inequality (3.7) we obtain

$$1 - \mu_*(B(x,\hat{r})) \ge e^{-\lambda t} - e^{-\lambda t} \int_X \mathbb{1}_{B(x,re^{-2\beta t})} S^t(y) \, \mu_*(dy)$$

$$\ge e^{-\lambda t} - e^{-\lambda t} \mu_*(B(x_0, re^{-\beta t})).$$

Since $1 - e^{-\lambda t} \le \lambda t$ we have

(3.8)
$$\mu_*(B(x,\hat{r})) \le \mu_*(B(x_0, re^{-\beta t})) + \lambda t.$$

We will show that

(3.9)
$$\mu_*(B(x_0, re^{-\beta t})) \ge (1 - \eta)\mu_*(B(x, \hat{r})).$$

Indeed, suppose towards a contradiction that

$$\mu_*(B(x_0, re^{-\beta t})) < (1 - \eta)\mu_*(B(x, \hat{r})).$$

Then by (3.8) we have

$$\mu_*(B(x,\hat{r})) \le (1-\eta)\mu_*(B(x,\hat{r})) + \lambda t$$

and consequently

$$\mu_*(B(x,\hat{r})) \le \frac{\lambda t}{\eta} \le K \cdot \frac{(1-\eta)^2 at}{4} \le K \cdot (1-\eta)^2 r = K\hat{r} < K\hat{r}^{1-\gamma},$$

which contradicts (3.6).

By (3.1) we have

$$e^{-\beta t} ||x_0 - x|| \le ||x - x_1|| \le e^{\beta t} ||x_0 - x||.$$

Moreover, since $2t \leq 8r_0/a$, from (3.5) it follows that

$$||x_0 - x_1|| \ge e^{-\beta t} ||x - S^{2t}(x)|| \ge \frac{3}{2} ate^{-\beta t} = 3\frac{a}{b} re^{-\beta t} \ge 2re^{-\beta t}.$$

Therefore the sets $B(x_0, re^{-\beta t})$, $B(x, re^{-\beta t})$ and $B(x_1, re^{-\beta t})$ are mutually disjoint and all contained in $B(x, 3re^{\beta t})$. Thus

(3.10)
$$\mu_*(B(x, 3re^{\beta t})) \ge \mu_*(B(x_0, re^{-\beta t})) + \mu_*(B(x, re^{-\beta t})) + \mu_*(B(x_1, re^{-\beta t})).$$

From (3.1) it follows that

$$y \in B(x, re^{-2\beta t}) \Rightarrow S^t(y) \in B(x_1, re^{-\beta t})$$

From this and Lemma 2.2 we have

$$\mu_*(B(x_1, re^{-\beta t})) \ge e^{-\lambda t} \int_X \mathbb{1}_{B(x_1, re^{-\beta t})} S^t(y) \, \mu_*(dy)$$

$$\ge e^{-\lambda t} \mu_*(B(x, re^{-2\beta t})).$$

By (3.4) we have

$$(3.11) 1 - \eta \le e^{-4r_0\lambda/a} \le e^{-\lambda t}.$$

Using (3.7) we obtain

$$\mu_*(B(x_1, re^{-\beta t})) \ge (1 - \eta)\mu_*(B(x, \hat{r})).$$

By (3.9) and (3.10) we obtain

$$\mu_*(B(x, 3re^{\beta t})) \ge (3 - 2\eta)\mu_*(B(x, \hat{r})).$$

Consequently, using (3.4) and (3.2),

$$\mu_*(B(x,\hat{r})) \le \frac{\mu_*(B(x,3re^{\beta t}))}{3-2\eta} \le \frac{K \cdot 3^{1-\gamma}(1+\eta)^{1-\gamma}r^{1-\gamma}}{3-2\eta}$$

\$\leq K \cdot (1-\eta)^2 r^{1-\gamma} \leq K\hat{r}^{1-\gamma},\$

which contradicts (3.6).

We showed that

$$\forall_{x \in \bigcup_{n \in \mathbb{N}} D_n} \forall_{\gamma \in (0,1)} \exists_{K > 0} \forall_{r \in (0,\infty)} \quad \mu_*(B(x,r)) \le Kr^{1-\gamma}.$$

Thus for every $x \in \bigcup_{n \in \mathbb{N}} D_n$ and $\gamma \in (0,1)$ we have

$$\underline{\mathbf{d}}_x \mu_* = \liminf_{r \to 0} \frac{\log \mu(B(x,r))}{\log r} \ge \liminf_{r \to 0} \frac{\log K r^{1-\gamma}}{\log r} = 1 - \gamma.$$

Hence by Lemma 2.1 we obtain

$$\forall_{A \subseteq \bigcup_{n \in \mathbb{N}} D_n, \, \mu(A) = 1} \quad \dim_{\mathbf{H}} A \ge 1.$$

Consequently, $\dim_{\mathrm{H}} \mu_* \geq 1$.

COROLLARY 3.3. Let $X = \mathbb{R}$. If $a(x) \neq 0$ for every $x \in X$ and there exists $\beta > 0$ such that condition (3.1) holds, then $\dim_{\mathbf{H}} \mu_* = 1$.

Proof. From Theorem 3.2 it follows that $\dim_{\mathrm{H}} \mu_* \geq 1$. On the other hand it is well known that in the case when $X = \mathbb{R}$, $\dim_{\mathrm{H}} \mu_* \leq 1$.

Lemma 3.4. Assume that there exists $\beta > 0$ such that

$$||S^{t}(x) - S^{t}(y)|| \le e^{\beta t} ||x - y|| \quad \text{for } x, y \in X, \ t \ge 0$$

and

(3.12)
$$||q(x,\cdot) - q(y,\cdot)||_{L^1(\kappa)} \le l||x - y|| \quad \text{for } x, y \in X,$$

where $q(x,\theta) = x + \sigma(x,\theta)$ and $l < \exp(-\beta/\lambda)$. Then the semigroup $(P^t)_{t\geq 0}$ given by (2.4) is asymptotically stable.

For the proof see [S, Theorem 3.4].

COROLLARY 3.5. Assume that $a(x) \neq 0$ for every $x \in X$ and there exists $\beta > 0$ such that (3.1) is satisfied. If (3.12) holds then $\dim_{\mathrm{H}} \mu_* \geq 1$, where $\mu_* \in \mathcal{M}_1$ is invariant with respect to $(P^t)_{t>0}$.

Proof. By Lemma 3.4 the semigroup $(P^t)_{t\geq 0}$ has an invariant distribution μ_* . From Theorem 3.2 it follows that $\dim_{\mathbf{H}} \mu_* \geq 1$.

References

- [GS] I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations, Naukova Dumka, Kiev, 1968; English transl.: Springer, Berlin and New York, 1972.
- [H] K. Horbacz, Invariant measures for random dynamical systems, Dissertationes Math. 451 (2008), 66 pp.
- [LT] A. Lasota and J. Traple, Invariant measures related with Poisson driven stochastic differential equation, Stoch. Process. Appl. 106 (2003), 81–93.
- [MS] J. Myjak and T. Szarek, Capacity of invariant measures related to Poisson-driven stochastic differential equations, Nonlinearity 16 (2003), 441–455.
- [S] T. Szarek, The pointwise dimension for invariant measures related with Poisson driven stochastic differential equations, Bull. Polish Acad. Sci. Math. 50 (2002), 241–250.
- [T] J. Traple, Markov semigroups generated by Poisson driven stochastic differential equations, ibid. 44 (1996), 161–182.
- [Y] L. S. Young, Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynam. Systems 2 (1982), 109–124.

Tomasz Bielaczyc Institute of Mathematics Silesian University 40-007 Katowice, Poland E-mail: bielaczyc@ux2.math.us.edu.pl

Received 99 1 9010

Received 22.4.2010 and in final form 28.6.2010 (2202)