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Sharp norm estimate of Schwarzian derivative
for a class of convex functions

by Stanisława Kanas (Rzeszów and Lublin) and
Toshiyuki Sugawa (Sendai)

Abstract. We establish a sharp norm estimate of the Schwarzian derivative for a
function in the classes of convex functions introduced by Ma and Minda [Proceedings
of the Conference on Complex Analysis, Int. Press, 1992, 157–169]. As applications, we
give sharp norm estimates for strongly convex functions of order α, 0 < α < 1, and for
uniformly convex functions.

1. Background and main result. Let A be the class of analytic func-
tions f on the unit disk D = {z ∈ C : |z| < 1} satisfying the normalization
conditions f(0) = 0 and f ′(0) = 1, and let S be the class of univalent
functions in A . The Schwarzian derivative

Sf =
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

=
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

and its norm (the hyperbolic sup-norm)

‖Sf‖ = sup
z∈D

(1− |z|2)2|Sf (z)|

play an important role in the theory of Teichmüller spaces. Key results con-
cerning the Schwarzian derivative are summarized in the following theorem.

Theorem 1.1 (Nehari [N1], Kühnau [K], Ahlfors–Weill [AW]). Let f ∈A .
If f is univalent, then ‖Sf‖ ≤ 6. Conversely, if ‖Sf‖ ≤ 2, then f is univalent.
Moreover, let 0 ≤ k < 1. If f extends to a k-quasiconformal mapping of the
Riemann sphere Ĉ then ‖Sf‖ ≤ 6k. Conversely, if ‖Sf‖ ≤ 2k, then f extends
to a k-quasiconformal mapping of Ĉ.

Here, a mapping f : Ĉ → Ĉ of the Riemann sphere Ĉ = C ∪ {∞} is
called k-quasiconformal if f is a sense-preserving homeomorphism of Ĉ and
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has locally integrable partial derivatives on C \ {f−1(∞)} with |fz̄| ≤ k|fz|
a.e. The best reference to the above theorem is Lehto’s book [L2].

The universal Teichmüller space T can be identified with the set of
Schwar- zian derivatives of univalent analytic functions on D with quasicon-
formal extensions to Ĉ. It is known that T is a bounded domain in the
Banach space of analytic functions on D with finite hyperbolic sup norm
(see [L2]).

In connection with Teichmüller spaces, it is an interesting problem to
estimate the norm of the Schwarzian derivatives for typical subclasses of
univalent functions. A function f ∈ A is called starlike (resp. convex) if f is
univalent and the image f(D) is starlike with respect to the origin (resp. con-
vex). The classes of starlike and convex functions are denoted by S ∗ and K ,
respectively. It is well known that f ∈ A is starlike (resp. convex) if and
only if Re[zf ′(z)/f(z)] > 0 (resp. Re[1 + zf ′′(z)/f ′(z)] > 0). These notions
have been refined and generalized in many ways (see [G1]).

In the present note, we are mainly concerned with strongly starlike and
convex functions. A function f ∈ A is called strongly starlike (resp. strongly
convex) of order α (0 < α < 1) if |arg[zf ′(z)/f(z)]| < πα/2 (resp. |arg[1 +
zf ′′(z)/f ′(z)]| < πα/2) in |z| < 1. The classes of strongly starlike and convex
functions of order α will be denoted by S ∗

α and Kα, respectively. See [Su2]
for geometric characterizations of functions in S ∗

α .

Define γ(β) for 0 < β < 1 by

γ(β) =
2
π

arctan
[
tan

πβ

2
+

β

(1 + β)(1+β)/2(1− β)(1−β)/2 cos(πβ/2)

]
.

Note that γ(β) increases from 0 to 1 when β varies from 0 to 1. Mocanu
[Mo] found the following relation.

Theorem 1.2 (Mocanu). Kγ(β) ⊂ S ∗
β for 0 < β < 1.

In other words, Kα ⊂ S ∗
γ−1(α) for 0 < α < 1, where γ−1 denotes the

inverse function of γ : [0, 1]→ [0, 1]. For sharp or improved relations of this
kind, see the paper [KS2] of the present authors.

We summarize important properties of strongly starlike functions as fol-
lows.

Theorem 1.3. A strongly starlike function f of order α ∈ (0, 1) ex-
tends to a sin(πα/2)-quasiconformal mapping of Ĉ and therefore ‖Sf‖ ≤
6 sin(πα/2).

The first part is due to Fait, Krzyż and Zygmunt [FKZ] and the second
one is obtained from the first in combination with Theorem 1.1 (as was
pointed out by Chiang [Ch]).
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By Theorems 1.2 and 1.3, we see that a function f ∈ Kα extends
to a sin(πγ−1(α)/2)-quasiconformal mapping of Ĉ and satisfies ‖Sf‖ ≤
6 sin(πγ−1(α)/2). On the other hand, we have the following norm estimate
for convex functions.

Theorem 1.4. A convex function f satisfies ‖Sf‖ ≤ 2. The bound is
sharp.

This result was repeatedly proved in the literature (see [Rob], [N2], [L1]),
and was refined by Suita [Sui] in the following form: the sharp inequality
‖Sf‖ ≤ 8α(1−α) holds for a function f ∈ A with Re[1+ zf ′′(z)/f ′(z)] > α
and 1/2 ≤ α < 1.

Obviously, the estimate ‖Sf‖ ≤ 6 sin(πγ−1(α)/2) for f ∈ Kα is not
better than Theorem 1.4 when α is close to 1. We will give a sharp norm
estimate for f ∈ Kα.

Main Theorem 1.5. Let f be a strongly convex function of order α for
0 < α < 1. Then the sharp inequality ‖Sf‖ ≤ 2α holds.

Define a function fα ∈ Kα by the relation

1 +
zf ′′α(z)
f ′α(z)

=
(

1 + z2

1− z2

)α
.

Then a simple computation gives

fα(z) = z + αz3/3 + α2z5/5 + α(1 + 8α2)z7/63 + · · ·
and thus Sfα(0) = 2α. Therefore, we see that ‖Sfα‖ = 2α.

Combining Theorem 1.5 with the Ahlfors–Weill theorem (Theorem 1.1),
we obtain the following result.

Corollary 1.6. A function f ∈ Kα extends to an α-quasiconformal
mapping of Ĉ for 0 < α < 1.

By using Mathematica Ver. 7, we found that sin(πγ−1(α)/2) < α when
0 < α < 0.3354 (see Figure 1). Therefore, the corollary gives a better bound
only when α > 0.3355, though it has the obvious merit of simplicity.

For some reason, the second author [Su1] was even led to expect that
each function in S ∗

α might extend to an α-quasiconformal mapping of Ĉ.
This was recently disproved by Yuliang Shen [S] for every 0 < α < 1.

Goodman [G2] introduced the class UCV of uniformly convex functions.
Here, a function f ∈ A is called uniformly convex if every (positively ori-
ented) circular arc of the form {z ∈ D : |z− ζ| = r}, ζ ∈ D, 0 < r < |ζ|+ 1,
is mapped by f univalently onto a convex arc. In particular, UCV ⊂ K .
See also [KW], [KS1] and [K] for k-uniform convexity (0 ≤ k <∞), a more
refined notion of convexity, and related results. We have the following sharp
norm estimate for UCV.
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Fig. 1. Graph of sin(πγ−1(α)/2)− α

Main Theorem 1.7. Let f be a uniformly convex function. Then the
sharp inequality ‖Sf‖ ≤ 8/π2 holds. In particular, f extends to a 4/π2-
quasiconformal mapping of Ĉ.

In [K] the first author observed that a uniformly convex function ex-
tends to a k1-quasiconformal mapping of Ĉ, where k1 = sin(πγ−1(1/2)/2) ≈
0.52311. Therefore, the above bound 4/π2 ≈ 0.40528 is slightly better. (Note
also that the numerical computation of K(1) = (1 + k1)/(1− k1) ≈ 3.19387
in [K] was incorrect.)

In Section 2, we provide a principle leading to a sharp norm estimate of
the Schwarzian derivative for a subclass of K given in a specific way. By
making use of it, we prove Theorem 1.5 in Section 3 and Theorem 1.7 in
Section 4.

2. General norm estimate for convex functions. Ma and Minda
[MM1] introduced a unifying way of treatment of various subclasses of K .
Let ϕ be an analytic function on D with ϕ(0) = 1. The class K (ϕ) is defined
to be the set of functions f ∈ A with 1 + zf ′′(z)/f ′(z) ≺ ϕ(z). Here, an
analytic function g on D is said to be subordinate to another h and denoted
by g ≺ h or g(z) ≺ h(z) if g = h ◦ ω for an analytic function ω on D with
ω(0) = 0 and |ω| < 1. When h is univalent, it is useful to note that g ≺ h if
and only if g(0) = h(0) and g(D) ⊂ h(D).

Let

Pα(z) =
(

1 + z

1− z

)α
for a constant α > 0. Then Pα maps D univalently onto the sector |argw| <
πα/2 for 0 < α ≤ 1. Thus, K (Pα) = Kα for 0 < α < 1 and K (P1) = K .

Ma and Minda [MM2] and Rønning [Ron] found the following character-
ization of the class UCV. A function f ∈ A is uniformly convex if and only
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if Re[1 + zf ′′(z)/f ′(z)] > |zf ′′(z)/f ′(z)|, z ∈ D. Noting that the function

(2.1) P (z) = 1 +
2
π2

(
log

1 +
√
z

1−
√
z

)2

maps D univalently onto the domain {w : Rew > |w − 1|}, we have UCV =
K (P ) (see [Ron, p. 191]).

We first give a sharp norm estimate for the class K (ϕ). To this end, we
consider the quantity

F (s, t) =
(1− t2)2

2t2
A(s) + (1− t2)

(
1− s2

t2

)
B(s),

where

A(s) = sup
|z|=s
|2zϕ′(z) + 1− ϕ(z)2| and B(s) = sup

|z|=s
|ϕ′(z)|.

Define
N(ϕ) = sup

0<s<t<1
F (s, t).

Then we have the following.

Main Theorem 2.1. Let ϕ be an analytic function on the unit disk with
ϕ(0) = 1. Then the sharp inequality ‖Sf‖ ≤ N(ϕ) holds for f ∈ K (ϕ).

Note that ϕ is not required to satisfy Reϕ > 0 here, though there is no
guarantee that N(ϕ) is finite in this general case.

Proof. Denote by W the set of analytic functions ω on D with ω(0) = 0
and |ω| < 1.

Let f ∈ K (ϕ). Since 1 + zf ′′(z)/f ′(z) ≺ ϕ(z) by definition, we have
f ′′(z)/f ′(z) = (ϕ(ω(z)) − 1)/z for an ω ∈ W . Set w = ω(z) for a fixed
z ∈ D. Then the Schwarzian derivative Sf can be expressed by

Sf (z) =
ϕ′(w)ω′(z)

z
− ϕ(w)2 − 1

2z2
.

We now recall Dieudonné’s lemma (cf. [D]): for a fixed pair of points z, w ∈ D
with |w| ≤ |z|, one has

{ω′(z) : ω ∈ W , ω(z) = w} =
{
v ∈ C :

∣∣∣∣v − w

z

∣∣∣∣ ≤ |z|2 − |w|2|z|(1− |z|2)

}
.

This means that ζ = ω′(z)− w/z varies over the closed disk

|ζ| ≤ (t2 − |w|2)/t(1− t2)
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for fixed |z| = t < 1. Then we can write

Sf (z) =
ϕ′(w)
z

(
ζ +

w

z

)
− ϕ(w)2 − 1

2z2

=
2wϕ′(w) + 1− ϕ(w)2

2z2
+ ζ · ϕ

′(w)
z

.

Therefore, for |z| = t < 1, we have the sharp inequality

|Sf (z)| ≤
|2wϕ′(w) + 1− ϕ(w)2|

2t2
+
t2 − |w|2

t2(1− t2)
|ϕ′(w)|

for f ∈ K (ϕ). This can be expressed by writing

sup
f∈K (ϕ)

|Sf (z)| = sup
s≤t

sup
|w|=s

[
|2wϕ′(w) + 1− ϕ(w)2|

2t2
+
t2 − |w|2

t2(1− t2)
|ϕ′(w)|

]
= sup

s≤t

[
A(s)
2t2

+
t2 − s2

t2(1− t2)
B(s)

]
.

Hence, we have
sup

f∈K (ϕ)
(1− t2)|Sf (z)| = sup

s<t
F (s, t)

for any fixed point z ∈ D with |z| = t, as required.

As we will see below, we often have the relations

A(s) = 2sϕ′(s) + 1− ϕ(s)2 and B(s) = ϕ′(s)

for 0 ≤ s < 1. Then, by a simple computation, we obtain the expression

(2.2) F (s, t) =
(1− t2)2

2t2
(1− ϕ(s)2) +

(1− t2)(1− s)(s+ t2)
t2

ϕ′(s).

Observe that F (s, t) is described in terms of s and t2 in this case.

3. Proof of Theorem 1.5. We begin with the following properties of
the functions Pα.

Lemma 3.1. The functions Pα(z) and Qα(z) = 2zP ′α(z) + 1 − Pα(z)2

have non-negative Taylor coefficients about z = 0 for 0 < α ≤ 1.

Proof. Since

log
1 + z

1− z
= 2

∞∑
n=1

z2n−1

2n− 1
,

the function Pα(z) = exp(α log 1+z
1−z ) has positive Taylor coefficients. Note

also that, by this expression, Pα satisfies the differential equation

(3.1)
P ′α(z)
Pα(z)

=
2α

1− z2
,
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and therefore

(3.2) P ′′α(z) =
2(α+ z)
1− z2

P ′α(z).

We next use the expansion

Pα(z) = 1 +
∞∑
n=1

anz
n.

Since a1 = 2α and Pα maps D univalently onto a convex domain for 0 <
α ≤ 1, by a theorem of Löwner (cf. [D]) we have

(3.3) 0 ≤ an ≤ 2α (n = 1, 2, . . . ).

By using (3.1) and (3.2), we now have the expression

Q′α(z) = 2zP ′′α(z) + 2P ′α(z)(1− Pα(z)) = 2P ′α(z)
(

1− Pα(z) +
2z(α+ z)

1− z2

)
.

Since P ′α(z) has positive Taylor coefficients and

1− Pα(z) +
2z(α+ z)

1− z2
=
∞∑
n=1

(2α− a2n−1)z2n−1 +
∞∑
n=1

(2− a2n)z2n,

the required assertion for Qα is deduced from (3.3).

We are now ready to prove our main theorem.

Proof of Theorem 1.5. In view of Theorem 2.1, we need to show that
N(Pα) = 2α.

By Lemma 3.1, we can apply (2.2) for ϕ = Pα:

F (s, t) =
(1− t2)2

2t2
(1− Pα(s)2) +

(1− t2)(1− s)(s+ t2)
t2

P ′α(s)

=
(1− t2)2

2t2
(1− Pα(s)2) + 2α

(1− t2)(s+ t2)
t2(1 + s)

Pα(s).

Here, we have used (3.1).
Since F (0, t) = 2α(1 − t2) → 2α as t → 0, it is enough to show that

F (s, t) ≤ 2α when 0 < s < t < 1. Letting x = 1− t2, we see that

F (s, t) ≤ 2α

⇔ (1− Pα(s)2)x2 +
4αx(1 + s− x)

1 + s
Pα(s) ≤ 4α(1− x)

⇔
(
Pα(s)2 +

4α
1 + s

Pα(s)− 1
)
x2 − 4α(1 + Pα(s))x+ 4α ≥ 0.

The left-hand side in the last inequality can be regarded as a quadratic
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polynomial in x of the form

Kx2 − 4Mx+ 4L = K

(
x− 2M

K

)2

+
4
K

(KL−M2)

with K > 0. We now compute KL−M2 as follows:

h(s) := α

(
Pα(s)2 +

4α
1 + s

Pα(s)− 1
)
− α2(1 + Pα(s))2

= α

(
(1− α)Pα(s)2 +

2α(1− s)
1 + s

Pα(s)− (1 + α)
)
.

Since

h′(s) =
4α2(1− α)
(1 + s)2

(Pα+1(s)− 1)Pα(s) > 0

for s > 0, the function h(s) is increasing in 0 < s < 1. Thus h(s) > h(0) = 0
for 0 < s < 1. Therefore, KL − M2 ≥ 0, which implies F (s, t) ≤ 2α as
expected.

Obviously, the above proof covers the case when α = 1. Thus, we have
obtained yet another proof of Theorem 1.4.

4. Proof of Theorem 1.7. We will need the following estimate.

Lemma 4.1. For every non-negative integer n,∑
k,l,m≥0
k+l+m=n

1
(2k + 1)(2l + 1)(2m+ 1)

≤ 1.

Proof. We denote by An the sum in question. Also, let

Bn =
∑
k,l≥0
k+l=n

1
(2k + 1)(2l + 1)

.

By partial fraction decomposition, we observe

Bn =
1

2n+ 2

∑
k+l=n

(
1

2k + 1
+

1
2m+ 1

)
=

1
n+ 1

n∑
k=0

1
2k + 1

.

Since 1/(2k + 1) ≤ 1/3 for k ≥ 1, we have

(4.1) Bn ≤
1

n+ 1

(
1 +

n

3

)
≤ 2

3
for n ≥ 1.
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Similarly, by partial fraction decomposition, we have

2n+ 3
(2k + 1)(2l + 1)(2m+ 1)

=
1

(2k + 1)(2l + 1)
+

1
(2l + 1)(2m+ 1)

+
1

(2m+ 1)(2k + 1)

for k + l +m = n. We now apply it and take into account the symmetry in
k, l,m and (4.1) to obtain finally

An =
3

2n+ 3

n∑
j=0

Bj ≤
3

2n+ 3

(
1 +

2
3
n

)
= 1.

Note. In the previous version of the manuscript, we had a lengthy proof
for Lemma 4.1. The second author asked for an elegant proof of it in Sugaku
Seminar, a mathematical monthly magazine published in Japan. Several
readers gave nice proofs as above. For details, see an article (in Japanese) of
the second author in Sugaku Seminar 50 (2011), no. 3. The authors would
like to express their thanks to the readers of the magazine.

We next show a result similar to Lemma 3.1.

Lemma 4.2. The functions P given in (2.1) and Q(z) = 2zP ′(z) + 1 −
P (z)2 have non-negative Taylor coefficients about z = 0.

Proof. Let

G(z) =
∞∑
n=0

zn

2n+ 1
=

1
2
√
z

log
1 +
√
z

1−
√
z
.

Then

(4.2) P (z) = 1 +
8
π2
zG(z)2.

Therefore, it is immediate to see that P (z) has positive Taylor coefficients
about z = 0. Furthermore, we can easily check the formula

(4.3) P ′(z) =
8G(z)

π2(1− z)
.

We also note that

G(z)3 =
∞∑
n=0

Anz
n,

where An is the number given in Lemma 4.1. With these facts in mind, we
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now compute

Q(z) =
16
π2
zG(z)

(
1

1− z
−G(z)− 4z

π2
G(z)3

)
=

64
π4
z2G(z)

∞∑
n=0

(
π2

4
· 2n+ 2
2n+ 3

−An
)
zn.

Since
π2

4
· 2n+ 2
2n+ 3

≥ π2

6
> 1 ≥ An

for n = 0, 1, 2, . . . by Lemma 4.1, we see that the Taylor coefficients of Q
about z = 0 are non-negative.

We are now in a position to show the second main result.

Proof of Theorem 1.7. We take the same strategy as in the proof of
Theorem 1.5. In view of Theorem 2.1, we only need to show that N(P ) =
8/π2. By Lemma 4.2 and formulae (2.2), (4.2), (4.3), we now have

F (s, t) =
(1− t2)2

2t2
(1− P (s)2) +

(1− t2)(1− s)(s+ t2)
t2

P ′(s)

=
8(1− t2)
π2t2

(
(s+ t2)G(s)− s(1− t2)G(s)2 − 4

π2
s2(1− t2)G(s)3

)
=

8x
π2(1− x)

(
(s+ 1− x)G(s)− sxG(s)2 − 4

π2
s2xG(s)3

)
,

where we put x = 1 − t2. Since F (0, t) = 8(1 − t2)/π2 → 8/π2 as t → 0, it
suffices to show that F (s, t) ≤ 8/π2 for 0 < s < t < 1. This is equivalent to
the inequality

x

(
(s+ 1− x)G(s)− sxG(s)2 − 4

π2
s2xG(s)3

)
≤ 1− x

⇔
(
G(s) + sG(s)2 +

4
π2
G(s)4

)
x2 − (1 + (1 + s)G(s))x+ 1 ≥ 0

for 0 < x < 1 − s2. The left-hand side in the last inequality is of the form
Kx2 −Mx+ L with

4KL−M2 =
(

4sG(s)2

π

)2

− (1− (1− s)G(s))2.

It is enough to show 4KL −M2 ≥ 0. Since G(s) < 1/(1 − s), we observe
that 4KL−M2 ≥ 0 if and only if

4sG(s)2

π
≥ 1− (1− s)G(s),
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which is equivalent to

(4.4) G(s) ≥ π
√

(1− s)2 + 16s/π − 1 + s

8s
.

Since it is easily checked that π(
√

(1− s)2 + 16s/π − 1 + s)/8s < 1 and
G(s) > 1 for 0 < s < 1, the inequality (4.4) certainly holds.

Define a function f0 ∈ UCV by the relation

1 +
zf ′′0 (z)
f ′0(z)

= P (z2) = 1 +
2
π2

(
log

1 + z

1− z

)2

.

Then we have

f0(z) = z +
4

3π2
z3 +

(
4

15π2
+

8
5π4

)
z5 + · · ·

and thus Sf0(0) = 8/π2 so that ‖Sf0‖ = 8/π2.
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