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Homology of representable sets

by Marian Mrozek and Bogdan Batko (Nowy Sącz and Kraków)

Abstract. We generalize the notion of cubical homology to the class of locally com-
pact representable sets in order to propose a new convenient method of reducing the
complexity of a set while computing its homology.

1. Introduction. In this note we present a new reduction method for
preprocessing homology computations. The method is based on the notion
of the homology of representable sets modelled on the single space homology
theory (see [6, 11]). In this theory there is no need for relative homology to
build the long exact sequence. We make use of this in a purely combinatorial
and self-contained setting. Such an approach enables a deeper reduction than
in the classical case of cubical homology.

The need for very efficient homology algorithms arises from many ap-
plications, in particular to rigorous numerics of dynamical systems, where
one can easily encounter cubical sets consisting of millions of cubes. The
existing methods are not good enough to find homology of such sets in rea-
sonable time. The classical algorithm for homology computations is based
on Smith diagonalization of the matrix of the boundary homomorphism [13,
Section 1.11]. The computational complexity of the best available Smith
diagonalization algorithm is O(n3.376...) ([14]). Various alternatives for the
classical approach have also been developed [7, 1, 5, 3, 15]. Delfinado and
Edelsbrunner [2] present an algorithm for Betti numbers which runs in near
linear time, but the applicability of this algorithm is restricted to dimension
three. Some improvements in the Smith algorithm may be obtained by ap-
plying probabilistic methods [3, 4]. Unfortunately, such methods cannot be
used in rigorous numerics.

Smith diagonalization is a purely algebraic method. To speed up algo-
rithmic homology computations one may consider methods specific to com-
putational topology. The methods of chain complex reduction originated in
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[9] and then developed in [10, 8, 12] constitute such an approach. They
consist in iterating the process of replacing the chain complex by a smaller
one with the same homology and computing the homology only when no
more reductions are possible. This way one postpones the process of com-
puting the homology of the chain complex until the complex is acceptably
small.

In this paper we show how one can benefit from the elementary reductions
in homology computations by extending the cubical homology introduced in
[8] to locally compact representable sets. This larger class of sets enables
significantly deeper reductions than in the realm of cubical homology. This
results in much faster homology algorithms for cubical sets.

This paper concentrates on the theoretical foundations of the new
method. Details of the algorithm, numerical experiments and generalizations
are in progress and will be published elsewhere.

2. Homology of representable sets. In what follows, essential use
will be made of the notion of cubical homology introduced in [8].

If I is an interval then the associated elementary cell is (cf. [8, Defini-
tion 2.13])

I̊ =
{

(l, l + 1) if I = [l, l + 1],
[l] if I = [l, l].

For a general elementary cube Q = I1×· · ·×Id ⊂ Rd we define the associated
elementary cell as

Q̊ = I̊1 × · · · × I̊d.
We let the dimension of Q̊ be the number of nondegenerate components in Q.
Elementary cells in R2 are shown in Figure 1.

Fig. 1. Cells in R2: 0-dimensional, 1-dimensional and 2-dimensional

Definition 1 (cf. [8, Definition 6.1]). A set X ⊂ Rd will be called
representable if it is a finite union of elementary cells (see Figure 2).

We denote the set of all k-dimensional cells of X by

K̊k(X) := {Q̊ ⊂ X : dim Q̊ = k}
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Fig. 2. A representable set in R2

and the set of all cells of X by

K̊(X) :=
d⋃

k=0

K̊k(X).

It is obvious that every cubical set is representable but the converse is not
true.

We are going to endow a representable set X with an algebraic structure
identifying any elementary cell Q̊ ∈ K̊(X) with an algebraic object Q̂. Let
K̂(X) := {Q̂ : Q̊ ∈ K̊(X)}. A finite sum

c =
m∑

i=1

αiQ̂i with Q̂i ∈ K̂k(X), αi ∈ Z

will be called a k-chain of the representable set X. We will denote by Ck(X)
the set of all k-chains of X. Observe that Ck(X) is a free abelian group gen-
erated by K̂k(X), with respect to the ordinary chain addition as group oper-
ation. Going towards the homology we connect the algebra and the topology
of X by defining the boundary of a chain. Observe that at least on the level
of algebra it does not matter if a given chain is generated by elementary
cells or elementary cubes. Thus, one may treat any chain of a representable
set as a cubical one. Keeping this in mind we define the boundary ∂̊X

k (c) of
a chain c ∈ Ck(X) as the cubical boundary ∂k(c) projected onto K̊k−1(X).
For instance, if X = (1, 2] we let ∂̊X

1 ((̂1, 2)) = [̂2].

Definition 2. Given k ∈ Z, we define the cell boundary operator

∂̊X
k : Ck(X)→ Ck−1(X)

by

(1) ∂̊X
k (c) :=

∑
Q̊∈K̊k−1(X)

〈∂k(c), Q̂〉Q̂

where ∂k stands for the ordinary cubical boundary operator and 〈·, ·〉 denotes
the scalar product of chains, i.e. 〈c1, c2〉 :=

∑m
i=1 αiβi for c1 =

∑m
i=1 αiQ̂i

and c2 =
∑m

i=1 βiQ̂i.

If X is a cubical set then ∂̊X ≡ ∂X . Therefore we simplify the notation
in the sequel and omit “◦”. Similarly, if the set X is clear from context we
will write ∂ instead of ∂X .
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The linearity of both the cubical boundary operator and the scalar prod-
uct of chains implies

Proposition 1. ∂k : Ck(X)→ Ck−1(X) is linear.

One of the most required properties of the boundary operator is ∂◦∂ ≡ 0.
Observe that in general this is not true.

Fig. 3. X = [2, 3]× [1, 2] \ (2, 3)× [1]

Example 1. Consider the representable setX = [2, 3]×[1, 2]\(2, 3)×[1].
Then

∂(∂( ̂(2, 3)× (1, 2))) = ̂[2]× [1]− ̂[3]× [1].

We write Q ≺ R if a cube Q is a proper face of a cube R, i.e. Q ⊂ R and
Q 6= R.

Lemma 1. A representable set X ⊂ Rd is locally compact if and only if
for arbitrary cubes Q ≺ R ≺ S with Q̊, S̊ ∈ K̊(X) we have R̊ ∈ K̊(X).

Proof. Assume that X is locally compact and consider arbitrary cubes
Q ≺ R ≺ S with Q̊, S̊ ∈ K̊(X). We need to prove that R̊ ∈ K̊(X). Suppose
the contrary and consider z ∈ Q̊. There exists a sequence (zn)n∈N in R̊ such
that z = limn→∞ zn as z ∈ Q̊ ⊂ R = cl R̊. Now, since for each n ∈ N we
have zn ∈ R̊ ⊂ S = cl S̊, there exists a sequence (znm)m∈N in S̊ convergent
to zn. Thus, in an arbitrary neighborhood of z ∈ X there exists a limit of
points in X which does not belong to X. This means that X is not locally
compact and brings a contradiction.

To prove the converse assume that for arbitrary cubes Q ≺ R ≺ S with
Q̊, S̊ ∈ K̊(X) we have R̊ ∈ K̊(X). If clX \ X is closed then X is locally
compact as a difference of compact sets. Thus, assume the contrary and
consider R̊ ⊂ clX \ X with R ∩ X 6= ∅. One can find Q ⊂ R such that
Q̊ ⊂ X. On the other hand, there exists S̊ ⊂ X with R ⊂ S, as R̊ ⊂ clX.
But this results in R̊ ⊂ X, which contradicts our assumption.

Theorem 1. If X ⊂ Rd is representable and locally compact then
∂ ◦ ∂ ≡ 0.
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Proof. Since ∂ is linear, it suffices to prove that ∂k−1(∂k(Ŝ)) = 0 for any
given elementary cell S̊ ∈ K̊(X), k ∈ Z. Let us observe that

∂S
k−1(∂S

k (Ŝ)) = ∂S
k−1

( ∑
R∈Kk−1(S)

〈∂S
k Ŝ, R̂〉R̂

)
=

∑
R∈Kk−1(S)

〈∂S
k Ŝ, R̂〉

∑
Q∈Kk−2(S)

〈∂S
k−1R̂, Q̂〉Q̂

=
∑

Q∈Kk−2(S)

( ∑
R∈Kk−1(S)

〈∂S
k Ŝ, R̂〉〈∂S

k−1R̂, Q̂〉
)
Q̂

=
∑

Q∈Kk−2(S)

( ∑
R∈Kk−1(S) : Q≺R≺S

〈∂S
k Ŝ, R̂〉〈∂S

k−1R̂, Q̂〉
)
Q̂.

This means that for each elementary cube Q with dimQ = k − 2 we have

(2)
∑

R∈Kk−1(S) : Q≺R≺S

〈∂S
k Ŝ, R̂〉〈∂S

k−1R̂, Q̂〉 = 0

as ∂S ◦∂S ≡ 0 in a cubical set S. On the other hand, proceeding in a similar
way with respect to ∂X we have

∂X
k−1(∂X

k (Ŝ)) =
∑

Q̊∈K̊k−2(X)

( ∑
R̊∈K̊k−1(X) : Q≺R≺S

〈∂S
k Ŝ, R̂〉〈∂S

k−1R̂, Q̂〉
)
Q̂.

Now it is enough to show that

(3)
∑

R̊∈K̊k−1(X) : Q≺R≺S

〈∂S
k Ŝ, R̂〉〈∂S

k−1R̂, Q̂〉 = 0

for each Q̊ ∈ K̊k−2(X). Assume the contrary. Then comparing (2) and (3) we
infer that there exists R̊ /∈ K̊k−1(X) such that Q ≺ R ≺ S, which contradicts
the local compactness of X and completes the proof.

Now we are in a position to define the homology of X.

Definition 3. Let X ⊂ Rd be representable and locally compact. The
kth cell homology group of X is the quotient group

Hk(X) := Zk(X)/Bk(X),

where Zk(X) := ker ∂k is the set of all k-cycles of X and Bk(X) := im ∂k+1

is the set of all k-boundaries of X. Observe that both Zk(X) and Bk(X) are
subgroups of Ck(X). The sequence of all homology groups of X is called the
homology of X and is denoted by

H(X) := {Hk(X)}k∈Z.
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3. Exact sequence

Theorem 2. If X,A ⊂ Rd are representable and locally compact and A
is closed in X then X \ A is representable and locally compact. Moreover,
there exists a long exact sequence

(4) · · · → Hk(A)→ Hk(X)→ Hk(X \A)→ Hk−1(A)→ · · · .

Proof. Under the assumptions of the theorem, X \A is locally compact.
By Proposition 6.3 in [8] it is representable. Consider the sequence

(5) 0→ C(A) i→ C(X)
j→ C(X \A)→ 0,

where i : C(A)→ C(X) is inclusion and j : C(X)→ C(X \A) is the linear
extension of

j(Q̂) :=

{
Q̂ if Q̂ ∈ K̂(X \A),
0 if Q̂ ∈ K̂(A).

Since X, A and X \ A are representable and locally compact, {C(A), ∂A},
{C(X), ∂} and {C(X \ A), ∂X\A} are chain complexes. It is easy to prove
that i is a chain map and the sequence (5) is exact. We will show that j
is a chain map. Indeed, if Q̂ ∈ K̂(A) then ∂

X\A
k (jk(Q̂)) = ∂k(0) = 0. On

the other hand, since A is closed we have ∂k(Q̂) =
∑

P≺Q αP P̂ for suitable
αP and jk−1(∂k(Q̂)) = jk−1(

∑
P≺Q αP P̂ ) =

∑
P≺Q αP jk−1(P̂ ) = 0. Now let

Q̂ ∈ K̂(X \A). We have

∂k(jk(Q̂)) = ∂k(Q̂) =
∑

P̊∈K̊k−1(X\A)

〈∂Q
k (Q̂), P̂ 〉P̂

and

jk−1(∂k(Q̂)) = jk−1

( ∑
P̊∈K̊k−1(X)

〈∂Q
k (Q̂), P̂ 〉P̂

)
=

∑
P̊∈K̊k−1(X)

〈∂Q
k (Q̂), P̂ 〉jk−1(P̂ ) =

∑
P̊∈K̊k−1(X\A)

〈∂Q
k (Q̂), P̂ 〉P̂ .

Now the exactness of (4) follows from basic homological algebra.

4. Relative homology. As we saw in Section 3 there is no need of
relative homology in building the exact sequence. In this section we show how
the homology of representable sets may be compared with relative homology.

Let X,A ⊂ X be a pair of representable and locally compact sets. As-
sociated to these sets are the groups C(X) and C(A) with bases K̂(X) and
K̂(A), respectively. Since K̂(A) ⊂ K̂(X), the quotient group Ck(X)/Ck(A)
is a free abelian group. Thus we have the following definitions.
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Definition 4. Let X and A ⊂ X be representable and locally compact
sets. The relative chains of X modulo A are the elements of the free abelian
groups

Ck(X,A) := Ck(X)/Ck(A).

The relative chain complex of X modulo A is given by

{Ck(X,A), ∂(X,A)
k }

where ∂(X,A)
k : Ck(X,A) → Ck−1(X,A) is the boundary map induced by

the standard boundary map on Ck(X). One can verify that the induced
boundary map is well defined and ∂(X,A)

k−1 ∂
(X,A)
k = 0. We define the relative

k-cycles
Zk(X,A) := ker ∂(X,A)

k ,

the relative k-boundaries

Bk(X,A) := im ∂
(X,A)
k+1 ,

and finally the relative homology groups

Hk(X,A) := Zk(X,A)/Bk(X,A).

We now prove that the cell homology is actually the relative homology.

Theorem 3. Let X,A ⊂ X be a pair of representable and locally compact
sets such that X \A is locally compact. Then

H(X,A) ∼= H(X \A).

Proof. Consider the map fk : Ck(X,A)→ Ck(X \A) given by

fk([c]) :=
∑

Q̊∈K̊k(X\A)

〈c, Q̂〉Q̂ for [c] ∈ Ck(X,A).

One can show that f is well defined and is an isomorphism. Moreover,

fk−1∂
(X,A)
k = ∂(X\A)fk,

thus f is a chain isomorphism, so it induces an isomorphism in homology.

Observe that if a set X is representable and locally compact then clX\X
is locally compact and, by Proposition 6.3 in [8], representable. Thus, as an
immediate consequence of Theorem 3 we have the following corollary.

Corollary 1. If X is a representable and locally compact set then
H(X) ∼= H(clX, clX \X).

5. Reduction method

Definition 5. A representable set A will be called a 0-space if Hk(A)
= 0 for each k ∈ Z.

The existence of a long exact sequence results in the following theorem.
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Theorem 4. Let X ⊂ Rd be a representable and locally compact set and
let A ⊂ X be a 0-space. If A is either closed or open in X then

H(X) ∼= H(X \A).

Proof. If A is closed in X then by Theorem 2 the sequence

· · · → 0→ Hk(X)
ϕ∗→ Hk(X \A)→ 0→ · · ·

is exact. Hence ϕ∗ : Hk(X) → Hk(X \ A) is an isomorphism. If A is open
in X then one can apply Theorem 2 with respect to X \ A and proceed as
above to finish the proof.

The above theorem provides us with a convenient method to reduce the
complexity of a set while computing its homology.

Fig. 4. Reduction via 0-spaces

Example 2. Let us find the homology of X = (1, 3) × [1, 2]. Step by
step we eliminate closed or open 0-spaces (see Figure 4). Finally, we get

Hk(X) ∼=
{

Z for k = 1,
0 for k 6= 1.

As was mentioned in the introduction, our approach enables a deeper
reduction than in the classical case of cubical homology, which results in
much faster homology algorithms for cubical sets. In order to visualize this,
consider the cubical set Γ 1 shown in Figure 5. First observe that no classical
reduction is possible as each vertex belongs to the boundary of exactly two
edges, so there are no free faces. However, by the exact sequence (4) one can
see that, for any vertex v of Γ 1, we have Hk(Γ 1) = Hk(Γ 1 \v) for k 6= 0 and
the difference between the homology groups in dimension 0 is Z. Thus in
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Fig. 5. Γ 1

order to find H(Γ 1) it is enough to compute the homology of the set Γ 1 \ v
which admits reductions. The resulting sequence of reductions is presented in
Figure 6. Now the outcome is a complex consisting of exactly one edge whose

Fig. 6. Reduction of Γ 1 via 0-spaces

boundary is zero. Therefore this generator is also a homology generator.
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