Bundle functors with the point property which admit prolongation of connections

by W. M. MIKULSKI (Kraków)

Abstract. Let $F : \mathcal{M}f \to \mathcal{F}\mathcal{M}$ be a bundle functor with the point property F(pt) = pt, where pt is a one-point manifold. We prove that F is product preserving if and only if for any m and n there is an $\mathcal{F}\mathcal{M}_{m,n}$ -canonical construction D of general connections $D(\Gamma)$ on $Fp: FY \to FM$ from general connections Γ on fibred manifolds $p: Y \to M$.

1. Introduction. A general connection on a fibred manifold $p: Y \to M$ is a smooth section $\Gamma: Y \to J^1 Y$ of the first jet prolongation of Y, which can also be interpreted as the lifting map (denoted by the same symbol) $\Gamma:$ $Y \times_M TM \to TY$, or as the connection projection affinor $\Gamma: TY \to VY \subset$ TY on Y, or as the horizontal distribution $\Gamma \subset TY$ with $\Gamma \oplus VY = TY$, [3].

Let $F: \mathcal{M}f \to \mathcal{F}\mathcal{M}$ be a bundle functor and let $\Gamma: Y \times_M TM \to TY$ be a general connection on $p: Y \to M$. If F preserves products, then Γ induces a connection $\mathcal{F}\Gamma$ on $Fp: FY \to FM$. More precisely, there is the canonical flow identification TFM = FTM and the product preserving identification $F(Y \times_M TM) = FY \times_{FM} FTM$, and the lifting map of $\mathcal{F}\Gamma$ is $F\Gamma: FY \times_{FM} TFM \to TFY$ (modulo the identifications). We recall that the connection $\mathcal{F}\Gamma$ has been constructed by I. Kolář [2] in the case of higher order velocities functor and then by J. Slovák [5] in the general case.

A simple example of a bundle functor $F : \mathcal{M}f \to \mathcal{F}\mathcal{M}$ with the point property F(pt) = pt (where pt is a one-point manifold) which is not product preserving is the vector second order tangent functor $T^{(2)} = (J^2(-\mathbb{R})_0)^* :$ $\mathcal{M}f \to \mathcal{VB}$. In [4], we gave a negative answer to the question (formulated by I. Kolář) about the existence of natural operators D transforming general connections Γ on fibred manifolds $p: Y \to M$ into general connections $D(\Gamma)$ on $T^{(2)}p: T^{(2)}Y \to T^{(2)}M$. In fact, in [4], we proved the following general result.

²⁰¹⁰ Mathematics Subject Classification: Primary 58A20.

Key words and phrases: general connection, natural operator.

THEOREM A. A vector bundle functor $F : \mathcal{M}f \to \mathcal{VB}$ with the point property is product preserving if and only if for any m and n there is an $\mathcal{FM}_{m,n}$ -natural operator D transforming general connections Γ on (m, n)dimensional fibred manifolds $p : Y \to M$ into general connections $D(\Gamma)$ on $Fp : FY \to FM$.

In [4], to prove Theorem A we used essentially an $\mathcal{M}f_m$ -canonical identification $F(M \times \mathbb{R}^n) = \ker(F \operatorname{pr}_1 : F(M \times \mathbb{R}^n) \to FM) \oplus_M FM$, defined by means of operations in the vector bundle $F(M \times \mathbb{R}^n)$. For other (not vector) bundle functors $F : \mathcal{M}f \to \mathcal{F}\mathcal{M}$ with the point property we do not know similar identifications. So, it seems that the proof from [4] works in the vector bundle functor situation only.

The purpose of the present note is to extend the result of Theorem A to all (not necessarily vector) bundle functors $F : \mathcal{M}f \to \mathcal{F}\mathcal{M}$ with the point property.

In the present note we use the terminology and notations from the book [3]. In particular, $\mathcal{M}f$ is the category of all manifolds and all maps, \mathcal{FM} is the category of all fibred manifolds and fibred maps and $\mathcal{FM}_{m,n}$ is the category of all fibred manifolds with *m*-dimensional bases and *n*-dimensional fibres and their fibred local diffeomorphisms. All manifolds and maps are assumed to be of class C^{∞} .

2. The main result. Let $F : \mathcal{M}f \to \mathcal{F}\mathcal{M}$ be a bundle functor with the point property, which means that F(pt) = pt, where pt is a one-point manifold.

Given a manifold M we have a canonical section $e_M : M \to FM$ of $FM \to M$ given by $e_M(x) \in \operatorname{im}(Fx), x \in M$, where $x : pt \to M$ is the constant map. (Since F satisfies the point property, $\operatorname{im}(Fx)$ is a one-point set. Consequently, $e_M(x)$ is well-defined.) Hence $M \subset FM$ modulo the embedding $e_M : M \to FM$. Then given a fibred manifold $p : Y \to M$ we have obvious fibred manifolds $Fp : FY \to FM$ and $\tilde{F}Y := (Fp)^{-1}(M) \to Y$, the restriction of the bundle functor projection $FY \to Y$. If $f : Y \to Y_1$ is a fibred map between fibred manifolds $p : Y \to M$ and $p_1 : Y_1 \to M_1$ with the base map $\underline{f} : M \to M_1$ we have the fibred map $Ff : FY \to FM_1$ covering $F\underline{f} : FM \to FM_1$. Since $Ff(\tilde{F}Y) \subset \tilde{F}Y_1$, we have (by restriction of Ff) the fibred map $\tilde{F}f : \tilde{F}Y \to \tilde{F}Y_1$ covering $f : Y \to Y_1$. Consequently, we have the bundle functor $\tilde{F} : \mathcal{F}M \to Y_1$.

EXAMPLE 1. Any general connection $\Theta : TFY \to V(FY \to FM) \subset TFY$ on $Fp : FY \to FM$ induces (by restriction) a general connection $\tilde{\Theta} : T\tilde{F}Y \to V\tilde{F}Y \subset T\tilde{F}Y$ on $\tilde{F}Y \to M$. More precisely, given $v \in \tilde{F}_xY$, $x \in M$, we have $V_v(FY \to FM) = V_v(\tilde{F}Y \to M)$ as $V_v(FY \to FM) =$

 $T_v(F_{e_M(x)}Y) = T_v\tilde{F}_xY = V_v(\tilde{F}Y \to M)$. So, given $w \in T_v\tilde{F}Y$ and $v \in \tilde{F}Y \subset FY$, we can put $\tilde{\Theta}(w) := \Theta(w) \in V_v(FY \to FM) = V_v(\tilde{F}Y \to M) \subset T_v\tilde{F}Y$. The main result of the present note is the following theorem.

The main result of the present note is the following theorem.

THEOREM 1. Let $F : \mathcal{M}f \to \mathcal{F}\mathcal{M}$ be a bundle functor with the point property. The following conditions are equivalent.

- (i) For any non-negative integers m and n there is an *FM*_{m,n}-canonical construction (an *FM*_{m,n}-natural operator) D of general connections D(Γ) on Fp : FY → FM from general connections Γ on *FM*_{m,n}-objects p : Y → M.
- (ii) For any non-negative integers m and n there is an $\mathcal{FM}_{m,n}$ -canonical construction \tilde{D} of general connections $\tilde{D}(\Gamma)$ on $\tilde{F}Y \to M$ from general connections Γ on $\mathcal{FM}_{m,n}$ -objects $p: Y \to M$.
- (iii) For any non-negative integers m and n the bundle functor \tilde{F} : $\mathcal{FM}_{m,n} \to \mathcal{FM}$ is of order (0,s,0) for some finite s = s(m,n,F).
- (iv) F is product preserving.

Proof. Condition (i) implies (ii) because of Example 1. More precisely, suppose we have D. Then given a general connection Γ on $p: Y \to M$ we have the general connection $D(\Gamma)$ on $Fp: FY \to FM$. Then (by Example 1 for $\Theta = D(\Gamma)$) we have the general connection $\tilde{D}(\Gamma)$ on $\tilde{F}Y \to M$. Clearly, the construction \tilde{D} is $\mathcal{FM}_{m,n}$ -canonical.

Condition (ii) implies (iii) by Corollary 2 in [1] for $\tilde{F} : \mathcal{FM}_{m,n} \to \mathcal{FM}$ inplace of $G : \mathcal{FM}_{m,n} \to \mathcal{FM}$.

Now, we prove that (iii) implies (iv). We recall that a bundle functor $G: \mathcal{FM}_{m,n} \to \mathcal{FM}$ is said to be of order (0, s, 0) if for any $\mathcal{FM}_{m,n}$ -map $f: Y \to \overline{Y}$ between $\mathcal{FM}_{m,n}$ -objects $p: Y \to M$ and \overline{Y} and any point $w \in GY$ over $y \in Y$, the value Gf(w) depends on the s-jet $j_y^s(f|Y_x)$ at y of the restriction $f|Y_x$ of f to the fibre Y_x of Y over x = p(y). Assume (iii), i.e. that $\tilde{F}: \mathcal{FM}_{m,n} \to \mathcal{FM}$ is of order (0, s, 0) for some finite s. Let $\mathbb{R}^{m,n}$ be the trivial bundle $\mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^m$. Then $\tilde{F}_0(\mathbb{R}^{m,n}) = F(t \operatorname{id}_{\mathbb{R}^m} \times \operatorname{id}_{\mathbb{R}^n})(\tilde{F}_0(\mathbb{R}^{m,n}))$ for $t \neq 0$. Letting $t \to 0$ we obtain $\tilde{F}_0(\mathbb{R}^{m,n}) = F(\{0\} \times \mathbb{R}^n) = F\mathbb{R}^n$. Then $\dim(F_{(0,0)}(\mathbb{R}^m \times \mathbb{R}^n)) = \dim(F_0\mathbb{R}^m) + \dim(F_0\mathbb{R}^n)$, and Proposition 38.14 in [3] completes the proof of (iv).

Finally, if $F : \mathcal{M}f \to \mathcal{F}\mathcal{M}$ is product preserving, then there is a wellknown (mentioned in the Introduction) canonical construction by J. Slovák [4] of general connections $\mathcal{F}\Gamma$ on $Fp: FY \to FM$ from general connections Γ on $p: Y \to M$. Thus (iv) implies (i).

EXAMPLE 2. Let us observe that the assumption "F has the point property" is essential. For example, given a general connection Γ on $Y \to M$ we have the general connection $\mathcal{T}\Gamma$ on $TY \to TM$ (because the tangent bundle functor $T : \mathcal{M}f \to \mathcal{F}\mathcal{M}$ is product preserving), and then we have the general connection $\mathcal{T}\Gamma \times \Gamma_o$ on $TY \times \mathbb{R} \to TM \times \mathbb{R}$, where Γ_o is the trivial general connection on id : $\mathbb{R} \to \mathbb{R}$. On the other hand, the bundle functor $F := T \times \mathbb{R} : \mathcal{M}f \to \mathcal{F}\mathcal{M}$ is not product preserving.

References

- M. Doupovec and W. M. Mikulski, On the existence of prolongations of connections, Czechoslovak Math. J. 56 (131) (2006), 1323–1334.
- [2] I. Kolář, On generalized connections, Beiträge Algebra Geom. 11 (1981), 29–34.
- [3] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, Berlin, 1993.
- W. M. Mikulski, Non-existence of some canonical constructions on connections, Comment. Math. Univ. Carolin. 44 (2003), 691–695.
- J. Slovák, Prolongations of connections and sprays with respect to Weil functors, Suppl. Rend. Circ. Mat. Palermo (2) 14 (1987), 143–155.

W. M. Mikulski Institute of Mathematics Jagiellonian University Łojasiewicza 6 30-348 Kraków, Poland E-mail: Wlodzimierz.Mikulski@im.uj.edu.pl

> Received 24.2.2009 and in final form 30.4.2009

(1983)