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Invariant measures related with randomly
connected Poisson driven differential equations

by Katarzyna Horbacz (Katowice)

Abstract. We consider the stochastic differential equation

(1) du(t) = a(u(t), ξ(t))dt+
�

Θ

σ(u(t), θ)Np(dt, dθ) for t ≥ 0

with the initial condition u(0) = x0. We give sufficient conditions for the existence of
an invariant measure for the semigroup {P t}t≥0 corresponding to (1). We show that the
existence of an invariant measure for a Markov operator P corresponding to the change
of measures from jump to jump implies the existence of an invariant measure for the
semigroup {P t}t≥0 describing the evolution of measures along trajectories and vice versa.

0. Introduction. We will consider the stochastic differential equation

(0.1) du(t) = a(u(t), ξ(t))dt+
�

Θ

σ(u(t), θ)Np(dt, dθ) for t ≥ 0

with the initial condition

(0.2) u(0) = x0,

where {u(t)}t≥0 is a stochastic process with values in Rm and {ξ(t)}t≥0

is a stochastic process with values in {1, . . . , N} which describes random
switching at random moments tn. The precise assumptions concerning the
coefficients a : Rm × {1, . . . , N} → Rm and σ : Rm × Θ → Rm and the
Poisson random measure Np will be formulated in Section 2.

Our main aim is to study the problem of the existence of an invariant
measure for the Markov semigroup {P t}t≥0 associated with equation (0.1).

We reduce the problem to a similar problem for a simpler Markov chain
{xn}n≥1, where

xn = u(tn) for n = 1, 2, . . .
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and tn are the jump times. Then there exists an operator P corresponding
to the change of measures from jump to jump.

We show that the semigroup {P t}t≥0 has an invariant measure if and
only if the operator P has the same property.

The similar problem for a simpler equation was considered in [4].
In the case when the coefficient a : Rm × {1, . . . , N} → Rm does not

depend on the second variable, that is, the differential equations do not ran-
domly switch at random jump moments, we obtain the stochastic equation
considered by A. Lasota and J. Traple [10].

We also discuss the relations between the generalized Rényi dimension
(the L∞-dimension) of the invariant measure of {P t}t≥0 if the dimension of
the invariant measure of P is known and vice versa.

Finally observe that there are numerous phenomena that can be rea-
sonally modeled as a response to the points of a marked point process. For
instance in [14] there are many examples of problems which generate such
equations. Recently equations of type (0.1) have appeared in a model of the
growth of a size-structured population of cells [1].

The organization of the paper is as follows: Section 1 contains some no-
tation and definitions from the theory of Markov operators. In Section 2 we
specify the problem to be considered. The relationship between the transi-
tion operator and the semigroup generated by (0.1) is formulated in Sec-
tion 3. In Section 4 we give sufficient conditions for the existence of an
invariant measure for the transition operator. In Section 5 we find the rela-
tions between the generalized Rényi dimensions of the invariant measure of
{P t}t≥0 and P .

1. Preliminaries. Let (Y, %) be a separable metric space. Throughout
this paper we assume that K(x, r) stands for the closed ball in Y with center
at x and radius r. We denote by B(Y ) the σ-algebra of Borel subsets of Y ,
by M(Y ) the family of all finite Borel measures (nonnegative, σ-additive)
on Y , and by M1(Y ) the subset of those µ ∈ M(Y ) such that µ(Y ) = 1.
The elements of M1(Y ) will be called distributions. Further

Msig(Y ) = {µ1 − µ2 : µ1, µ2 ∈ M(Y )}
is the space of finite signed measures.

As usual, B(Y ) denotes the space of all bounded Borel measurable func-
tions f : Y → R, C(Y ) the subspace of all bounded continuous functions
with the supremum norm ‖ · ‖C , and C0(Y ) the subspace of functions with
compact support C(Y ).

C
(1)
0 (Rm × {1, . . . , N}) is the subspace of C0(Rm × {1, . . . , N}) of all

functions with continuous and bounded first derivatives. For f ∈ C (1)
0 (Rm×

{1, . . . , N}) we denote by fx the gradient of the function x 7→ f(x, k).
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For f ∈ B(Y ) and µ ∈ Msig(Y ) we write

〈f, µ〉 =
�

Y

f(x)µ(dx).

A linear mapping P :Msig(Y ) →Msig(Y ) is called a Markov operator
if P (M1(Y )) ⊂ M1(Y ). Thus, for every distribution µ the measure Pµ is
also a distribution.

A measure µ∗ ∈ M(Y ) is called invariant or stationary with respect to
a Markov operator P if Pµ∗ = µ∗. A stationary probabilistic measure is
called a stationary distribution.

A Markov operator P is called a Feller operator if there is an operator
U : B(Y )→ B(Y ) (dual to P ) such that

〈Uf, µ〉 = 〈f, Pµ〉 for f ∈ B(Y ), µ ∈ Msig(Y ),(1.1)

Uf ∈ C(Y ) for f ∈ C(Y ).(1.2)

Setting µ = δx in (1.1) we obtain

(1.3) Uf(x) = 〈f, Pδx〉 for f ∈ B(Y ), x ∈ Y
where δx ∈M1(Y ) is the point (Dirac) measure at x.

From (1.3) it follows immediately that U is a linear operator satisfying

Uf ≥ 0 for f ∈ B(Y ), f ≥ 0,(1.4)

U1Y = 1Y .(1.5)

Further, applying the Lebesgue monotone convergence theorem to the inte-
gral 〈f, Pδx〉, we obtain the implication

(1.6)

fn ∈ B(Y )

fn+1 ≤ fn
lim
n→∞

fn(x) = 0





⇒ lim
n→∞

Ufn(x) = 0.

Conditions (1.4)–(1.6) are quite important. They allow one to reverse the
roles of P and U . Namely assume that a linear operator U : B(Y )→ B(Y )
satisfying (1.4)–(1.6) is given. Then we may define P :Msig(Y )→Msig(Y )
by setting

(1.7) Pµ(A) = 〈U1A, µ〉 for µ ∈ Msig(Y ), A ∈ B(Y ).

It is easy to show that P satisfies (1.1). Moreover, if U satisfies (1.2) then
P is a Markov operator.

A family {P t}t≥0 of Markov operators is called a semigroup if P t+s =
P t ◦ P s for t, s ∈ R+ and P 0 = I is the identity operator on M1(Y ). If the
operators P t, t ≥ 0, are Feller, we say that {P t}t≥0 is a Feller semigroup.
{T t}t≥0 denotes the semigroup dual to {P t}t≥0, i.e.

〈T tf, µ〉 = 〈f, P tµ〉 for f ∈ C(Y ), µ ∈ M1(Y ).
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Given µ ∈M1(Y ) we define

dim∞ µ = lim sup
r→0

log(sup{µ(K(x, r)) : x ∈ Y })
log r

,(1.8)

dim∞ µ = lim inf
r→0

log(sup{µ(K(x, r)) : x ∈ Y })
log r

.(1.9)

If dim∞ µ = dim∞ µ, then the common value is called the generalized Rényi
dimension (the L∞-dimension) of µ and it is denoted by dim∞ µ ([12], [13]).
In many papers dim∞ µ is called the Lévy concentration dimension of µ ([9],
[10]).

2. Formulation of the problem. We consider the differential equation
with Poisson type perturbations

(2.1) du(t) = a(u(t), ξ(t))dt+
�

Θ

σ(u(t), θ)Np(dt, dθ) for t ≥ 0

with the initial condition

(2.2) u(0) = x0.

We make the following assumptions:

(i) The coefficient a : Rm × {1, . . . , N} → Rm is Lipschitzian with
respect to the Rm variable:

‖a(x, k)− a(y, k)‖ ≤ L‖x− y‖ for (x, k), (y, k) ∈ Rm × {1, . . . , N}.
(ii) There are given a probability space (Ω,F ,prob) and a sequence

{tn}n∈N of random variables such that the variables ∆ti = ti− ti−1 (t0 = 0)
are nonnegative, independent and equally distributed with density g(t) =
λe−λt for t ≥ 0.

(iii) Let (Θ,G, ν) be a finite measure space with ν(Θ) = 1. Let {θi}i∈N be
a sequence of random elements with values in Θ. The elements θi are inde-
pendent and equally distributed with distribution ν. The sequences {ti}i∈N
and {θi}i∈N are independent.

(iv) Moreover, suppose we are given a probability matrix [pij(x)]Ni,j=1
such that

pij(x) ≥ 0,
N∑

j=1

pij(x) = 1 for x ∈ Rm and i, j = 1, . . . , N.

Denote by vk(t) = Πk(t, x) the solution of the unperturbed Cauchy problem

(2.4) dvk(t) = a(vk(t), k)dt, vk(0) = x, x ∈ Rm, k = 1, . . . , N.

Set
q(x, θ) = x+ σ(x, θ) for x ∈ Rm, θ ∈ Θ.
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We consider a sequence of random variables xn : Ω → Rm and a stochastic
process ξ(t) : Ω → {1, . . . , N} related by

(2.5)

ξ(0) = k,

ξ(t) = ξ(tn) for tn ≤ t < tn+1,

xn = q(Πξ(tn−1)(tn − tn−1, xn−1), θn),

and

prob{ξ(tn) = s |xn = y and xn = q(Πk(tn − tn−1, xn−1), θn)} = pks(y),

for n = 1, . . . , N.
(v) Let q : Rm × Θ → Rm be a measurable function such that q(x, ·) ∈

L1(ν) and

‖q(x, ·)− q(y, ·)‖L1(ν) ≤ Lq‖x− y‖ for all x, y ∈ Rm

for some constant Lq ≥ 0.

Conditions (iii) and (iv) imply that for each measurable set Z⊂(0,∞)×Θ
the variable

Np(Z) = {i : (ti, θi) ∈ Z}
is Poisson distributed. It is called the Poisson random counting measure.

By a solution of (2.1), (2.2) we mean a proces {X(t)}t≥0 with values in
Rm such that with probability one the following two conditions are satisfied:

(a) The sample path is a right-continuous function such that for t > 0
the limit X(t−) = lims→t− X(s) exists and

(b) X(t) = x0 + � t0 a(x(s), ξ(s)) ds+ � t0 �
Θ
σ(ξ(s−), θ)Np(ds, dθ) for t ≥ 0.

Observe that the solution X(t) on each interval [tk, tk+1), k = 0, 1, . . . ,
satisfies one of the ordinary differential equations

dvs(t) = a(vs(t), s)dt, t ∈ R, s = 1, . . . , N,

and the initial condition

vs(tk) = X(tk−) + σ(X(tk−), θk).

We can give an explicit formula for the solution X(t) : Ω → Rm of (2.1),
(2.2):

X(t) = Πξ(tn−1)(t− tn−1, xn−1) for tn−1 < t < tn,

X(tn) = xn.

We now recall the definition of the semigroup of Markov operators gen-
erated by the family of solutions of (2.1).

Let Y = Rm × {1, . . . , N} be equipped with the metric % given by

%((x, i), (y, j)) = ‖x− y‖+ %0(i, j) for x, y ∈ Rm and i, j ∈ {1, . . . , N}
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where

%0(i, j) =
{
b for i 6= j,
0 for i = j,

and b > 0 is some constant. For x ∈ Rm and k ∈ {1, . . . , N} denote by
(X(t), ξ(t))(x,k) the solution of the initial value problem (2.1), (2.2). The
process (X(t), ξ(t))(x,k) generates a semigroup {T t}t≥0 defined by

T tf(x, k) = E(f((X(t), ξ(t))(x,k))) for f ∈ C(Y ),

where E(f((X(t), ξ(t))(x,k))) denotes the mean value of f((X(t), ξ(t))(x,k)).
It is well known that {T t}t≥0 is a semigroup of operators from C(Y ) into

itself and for every t > 0 the operator T t is a contraction, i.e. ‖T tf‖C ≤
‖f‖C .

Now we define P t :M1(Y )→M1(Y ) by

(2.7) 〈P tµ, f〉 = 〈µ, T tf〉 for f ∈ C(Y ) and µ ∈ M1(Y ).

Setting
G(t, (x, k), A) = prob{(X(t), ξ(t))(x,k) ∈ A}

we obtain

P tµ(A) =
�

Y

G(t, (x, k), A) dµ(x, k) for µ ∈ M1(Y ) and A ∈ B(Y ).

The semigroup {P t}t≥0 is called the Markov semigroup generated by the
problem (2.1), (2.2).

Moreover using (2.7) the semigroup {P t}t≥0 can be easily extended to
the vector spaceMsig(Y ). For the first switching point t1 there is a constant
k1 such that

prob{(X(h), ξ(h))(x,k) = (Πξ(t1)(h− t1, q(Πk(t1, x), θ1)), ξ(t1))1[0,h](t1)

+ (Πk(h, x), k)1[h,+∞)(t1)} ≥ 1− k1h
2.

Since f ∈ C(Y ) is bounded and t1 has density distribution function λe−λt,
we obtain

Thf(x, k) =
�

Θ

h�

0

N∑

s=1

f(Πs(h− t, q(Πk(t, x), θ)), s)(2.8)

× pks(q(Πk(t, x), θ))λe−λt dt dν(θ)

+ f(Πk(h, x), k)e−λt + ε1(h)

where |ε1(h)| ≤ ‖f‖Ck1h
2.

We will reduce the problem of the existence of an invariant measure
for the semigroup {P t}t≥0 to the problem of the existence of an invariant
measure for the Markov operator P corresponding to the change of measures
from jump to jump.
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Since

X(tn) = xn = q(Πξ(tn−1)(tn − tn−1, xn−1), θn) for n ∈ N,
setting

µn(A×{s}) = prob{xn ∈ A and xn = q(Πs(∆tn, xn−1), θn)}, n = 1, 2, . . . ,

we obtain
µn+1 = Pµn,

where

(2.9) Pµ(A) =
N∑

s=1

�

Θ

�

Y

∞�

0

1A(q(Πs(t, x), θ), s)λe−λtpks(x) dt dν(θ) dµ(x, k)

for µ ∈ M(Y ) and A ∈ B(Y ). Analogously for every f ∈ C(Y ) we may
calculate the conditional mean value of f(X(tn+1), ξ(tn+1)) with respect to
(X(tn), ξ(tn)). Namely

E(f(X(tn), ξ(tn)) |X(tn−1) = x, ξ(tn−1) = k) = Uf(x, k)

where

(2.10) Uf(x, k) =
N∑

s=1

+∞�

0

�

Θ

f(q(Πs(t, x), θ), s)λe−λtpks(x) dt dν(θ)

for f ∈ C(Y ), (x, k) ∈ Y . From (2.8) and (2.9) it follows that 〈f, Pµ〉 =
〈Uf, µ〉 for f ∈ C(Y ), µ ∈ M1(Y ). Thus the adjoint operator U∗ is equal
to P on M1(Y ).

3. Main results. In order to formulate the main result of our paper we
introduce two operators H,G :M1(Y )→M1(Y ) by

Hµ(A) =
�

Y

�

Θ

1A(q(x, θ), k) dν(θ) dµ(x, k),(3.1)

Gµ(A) =
N∑

s=1

�

Y

∞�

0

1A(Πs(t, x), s)pks(x)λe−λt dt dµ(x, k)(3.2)

for A ∈ B(Y ). The following theorem shows the one-to-one correspondence
between the set of P -invariant measures and the set of invariant measures
with respect to {P t}t≥0.

Theorem 3.1. If µ0 ∈M1(Y ) satisfies the condition

(3.3) Pµ0 = µ0

and if µ̃ = Gµ0, then

(3.4) P tµ̃ = µ̃ for t ∈ R+.

On the other hand if µ̃∈M1(Y ) satisfies (3.4), then µ0 =Hµ̃ satisfies (3.3).



38 K. Horbacz

Proof. Denote by {St}t≥0 the semigroup of operators corresponding to
the unperturbed system (2.4), i.e.

(3.5) Stf(x, k) = f(Πk(t, x), k) for f ∈ C(Y ), (x, k) ∈ Y.
Denote by {U t}t≥0 the semigroup of operators corresponding to the stochas-
tic differential equation du(t) = a(u(t), ξ(t))dt, that is,

(3.6) U tf(x, k) =
N∑

s=1

f(Πs(t, x), s)pks(x).

Just as {T t}t≥0, the families {St}t≥0 and {U t}t≥0 are continuous semigroups
of linear operators acting on C(Y ). For every continuously differentiable
function f with compact support, the infinitesimal generators A of {U t}t≥0

and A0 of {St}t≥0 are given by

Af(x, k) =
N∑

s=1

〈a(x, s) | fx(x, s)〉pks(x),(3.7)

A0f(x, k) = 〈a(x, k) | fx(x, k)〉,(3.8)

where 〈· | ·〉 denotes the scalar product in Rm.
Denote by B the infinitesimal generator for the semigroup {T t}t≥0 on

C0(Y ). Since C(1)
0 (Y ) ⊂ D(B), B is given by

Bf(x, k) = 〈a(x, k) | fx(x, k)〉 − λf(x, k)

+ λ
N∑

s=1

�

Θ

f(q(x, θ), s)pks(q(x, θ)) dν(θ)

for f ∈ C(1)
0 (Y ). Thus

(3.9) Bf = A0f − λf + λQWf

where Q : C(Y )→ C(Y ) is the bounded linear operator given by

(3.10) Qf(x, k) =
�

Θ

f(q(x, θ), k) dν(θ) for f ∈ C(Y ) and (x, k) ∈ Y

and

(3.11) Wf(x, k) =
N∑

s=1

f(x, s)pks(x) for f ∈ C(Y ) and (x, k) ∈ Y.

The domains D(B),D(A) and D(A0) are identical.
Let µ0 be the invariant measure for P . Define µ̃ = Gµ0. Since

R(λ,A)f(x, k) =
∞�

0

e−λtU tf(x, k) dt =
N∑

s=1

∞�

0

e−λtf(Πs(t, x), s)pks(x) dt
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for f ∈ C(Y ), from (2.9), (3.7) and (3.10) we obtain

Pµ = λQ∗R∗(λ,A)µ, µ ∈ M1(Y ),

Gµ = λR∗(λ,A)µ, µ ∈ M1(Y ),

where Q∗ and R∗(λ,A) are the operators adjoint to Q and R(λ,A). Hence

µ̃ = λR∗(λ,A)Q∗µ̃.

From this we have

〈f, µ̃〉 = 〈λQR(λ,A)f, µ̃〉 for f ∈ C(Y ).

Since R(λ,A) = WR(λ,A0) we obtain

〈f, µ̃〉 = 〈λQWR(λ,A0)f, µ̃〉 for f ∈ C(Y ).

Substituting f = (λI − A0)g we have

〈λI − A0g, µ̃〉 = 〈λQWg, µ̃〉 for g ∈ C(1)
0 (Y ),

which according to (3.9) reduces to

〈Bg, µ̃〉 = 0 for g ∈ D(B).

Now, since T sh ∈ D(B) for h ∈ D(B) and

T th− h =
t�

0

BT sh ds for h ∈ D(B),

we obtain 〈T th− h, µ̃〉 = 0. This is equivalent to

〈h, P tµ̃〉 = 〈h, µ̃〉 for h ∈ D(B).

Since the set D(B) is dense in C(Y ), this implies P tµ̃ = µ̃ for t ∈ R+.
Next, we show that if µ̃ is an invariant measure for the semigroup {P t}t≥0

then µ0 = Q∗µ̃ is an invariant measure for the operator P . From P tµ̃ = µ̃
it follows that

〈T tg − g, µ̃〉 = 0 for g ∈ C(Y ).

Since B is the infinitesimal generator of the semigroup {T t}t≥0, this implies

〈Bg, µ̃〉 = 0 for g ∈ D(B).

According to (3.9) this equality may be rewritten in the form

〈(λI − A0)g, µ̃〉 = 〈λQWg, µ̃〉 for g ∈ D(B) = D(A0).

Substituting g = R(λ,A0)f gives

〈f, µ̃〉 = 〈λQWR(λ,A0)f, µ̃〉 = 〈λQR(λ,A)f, µ̃〉, f ∈ C(Y ).

This implies µ̃ = λR∗(λ,A)Q∗µ̃. From this we obtain immediately

µ0 = Q∗µ̃ = λQ∗R∗(λ,A)µ0 = Pµ0.
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By Theorem 3.1 the existence of an invariant measure for P implies
the existence of an invariant measure for the continuous time semigroup
{P t}t≥0. In particular we have the following result.

Theorem 3.2. Assume that there exist nonnegative constants α < 1 and
β such that

(3.12)
N∑

s=1

�

Θ

∞�

0

‖q(Πs(t, x), θ)‖pks(x)λe−λt dt dν(θ) ≤ α‖x‖+ β

for x ∈ Rm, k ∈ {1, . . . , N}. Then P has an invariant measure µ0 and
µ̃ = Gµ0 is an invariant distribution with respect to {P t}t≥0.

Proof. The operator U defined by (2.10) is a Feller operator. Thus it can
be extended to all continuous nonnegative functions f : Y → Y by

Uf(x, k) = lim
n→∞

Ufn(x, k)

where {fn}n∈N ⊂ C(Y ) is an arbitrary increasing sequence converging point-
wise to f . Evidently this extension is given by the same formula (2.10). Thus
setting h(x, k) = ‖x‖ we may rewrite inequality (3.12) in the form

Uh(x, k) ≤ αh(x, k) + β for x ∈ Rm, k ∈ {1, . . . , N}.
According to Proposition 7.1 of [11] this implies the existence of an invariant
measure µ0 for P . A straightforward application of Theorem 3.1 completes
the proof.

Remark 3.3. Assume that the solutions Πk : R+ × Rm → Rm of the
equations (2.4) and the transition probabilities pks : Rm → [0, 1] satisfy

(3.13)
N∑

k=1

pik(y)‖Πk(t, x)−Πk(t, y)‖ ≤ Le−ηt‖x− y‖

for x, y ∈ Rm and i = 1, . . . , N and the function q : Rm ×Θ → Rm satisfies

(3.14) sup
t≥0

�

Θ

‖q(Πs(t, 0), θ)‖ dν(θ) <∞ for s = 1, . . . , N.

If in addition the positive constants η, λ, L, Lq satisfy

(3.15) LLq − η/λ < 1

then the condition (3.12) of Theorem 3.2 is satisfied.

4. The generalized Rényi dimension of invariant measures.
Theorem 3.1 allows us to evaluate the generalized Rényi dimension of the
measure µ̃ if the dimension of µ0 is known and vice versa.

We use the Lévy concentration function to calculate the dimension of a
probability measure [9]. Given µ ∈ M1(Y ) we define the Lévy concentration
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function Qµ : R+ → R+ by

Qµ(r) = sup{µ(K(x, r)) : x ∈ Y }.
Then

dim∞ µ = lim sup
r→0

logQµ(r)
log r

, dim∞ µ = lim inf
r→0

logQµ(r)
log r

.

The dimension dim∞ µ has two important properties. First, it is relatively
easy to calculate. Second, it is strongly related to the Hausdorff dimension
of sets.

Recall that the Hausdorff dimension of a measure µ ∈ M1(Y ) is given by

(4.1) dimH µ = inf{dimH A : A ∈ B(Y ), µ(A) = 1}
where dimH A is the Hausdorff dimension of the set A.

It can be easily proved [9] that

Proposition 4.1. For every µ ∈ M1(Y ) we have

dimH suppµ ≥ dim∞ µ.

We are going to prove only some results concerning the generalized Rényi
dimensions.

We will assume that the solutions Πk : R×Rm → Rm of equations (2.4)
satisfy
(4.2) ‖Πk(−t, x)−Πk(−t, y)‖ ≤ ckeβt‖x− y‖
for x, y ∈ Rm, k ∈ {1, . . . , N} and t ≥ 0, where β ∈ R and ck > 0 are
constants. Since for every fixed k ∈ {1, . . . , N} the coefficient a(x, k) is
Lipschitzean this inequality is automatically satisfied for sufficiently large β.

Theorem 4.1. If λ > β dim∞ µ0 then

(4.3) dim∞ µ̃ ≥ dim∞ µ0.

Proof. Fix h < dim∞ µ0 such that λ > βh. From the definition of
dim∞ µ0 it follows that there is 0 < r0 < b (where b = %0(k, l) for k 6= l)
such that

(4.4) Qµ0(r) ≤ rh for r ∈ (0, r0).

Since µ̃ = Gµ0 where

Gµ(A) =
N∑

s=1

�

Y

∞�

0

1A(Πs(t, x), s)pks(x)λe−λt dt dµ(x, k) for A ∈ B(Y )

we have

µ̃(K((x, k), r))

=
∞�

0

�

Rm×{1,...,N}
1K((x,k),r)(Πk(t, x), k)λe−λtpkk(x) dt dµ0(x, k).
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Set
γs = sup{pks(x) : (x, k) ∈ Rm × {1, . . . , N}}.

Then we obtain

µ̃(K((x, k), r)) ≤ γk
∞�

0

µ0(Πk(−t,K(x, r))× {1, . . . , N})λe−λt dt.

Consequently, by (4.2) we have

Πk(−t,K(x, r)) ⊂ K(Πk(−t, x), ckre
βt).

Thus

µ̃(K((x, k), r)) ≤ γkN
∞�

0

Qµ0(ckre
βt)λe−λt dt.

Let
r < min{r0, r0/max

k
ck}.

Consider first the case β > 0 and define T (rk) = β−1 log(r0/ckr). Then

µ̃(K((x, k), r))≤γkN
( T (rk)�

0

Qµ0(ckre
βt)λe−λt dt+

∞�

T (rk)

Qµ0(ckre
βt)λe−λt dt

)
.

To estimate the first integral we may use inequality (4.4). Then an elemen-
tary calculation gives

µ̃(K((x, k), r)) ≤
(
γkN

λ

λ− βh (ck)h
)
rh + γkN

∞�

T (rk)

Qµ0(ckre
βt)λe−λt dt.

Since ckr < r0 and λ > βh we obtain

(4.6) µ̃(K((x, k), r)) ≤ Crh for r < min{r0, r0/max
k

ck}

where

C =
λN maxk(ck)hγk

λ− βh +
N maxk(ck)hγk

rh0
.

Since the inequality (4.6) is satisfied for every (x, k) ∈ Rm × {1, . . . , N},
according to the definition of Qµ̃(r) we obtain

(4.7) Qµ̃(r) ≤ Crh.
If β ≤ 0 the calculation is even simpler and gives (4.7) with

C =
λN maxk(ck)hγk

λ− βh .

From inequality (4.7) it follows that dim∞ µ̃ ≥ h. Passing to the limit as
h→ dim∞ µ0 we obtain (4.3).
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Define

(4.8) L(θ) = inf
{‖q(x, θ)− q(y, θ)‖

‖x− y‖ : x 6= y

}
.

Theorem 4.2. Assume that

(4.9) L0 = ess inf
θ∈Θ

L(θ) > 0.

Then

(4.10) dim∞ µ̃ ≤ dim∞ µ0 and dim∞ µ̃ ≤ dim∞ µ0.

Proof. From (4.8) and (4,9) it follows that almost everywhere with re-
spect to ν,

diam{(x, k) : (q(x, θ), k) ∈ K((x, k), r)} ≤ 2rL−1
0

for every (x, k) ∈ Rm × {1, . . . , N} and 0 < r < b. Thus according to the
definition of Qµ̃,

(4.11) µ̃({(x, k) : (q(x, θ), k) ∈ K((x, k), r)}) ≤ Qµ̃(2rL−1
0 ).

Since µ0 = Hµ̃ where

Hµ(A) =
�

Y

�

Θ

1A(q(x, θ), k) dν(θ) dµ(x, k),

we obtain

µ0(K((x, k), r)) =
�

Θ

µ̃({(x, k) : (q(x, θ), k) ∈ K((x, k), r)}) dν(θ).

From (4.11) we have µ0(K((x, k), r)) ≤ Qµ̃(2rL−1
0 ) for (x, k) ∈ Rm ×

{1, . . . , N} and 0 < r < b. Consequently, Qµ0(r) ≤ Qµ̃(2rL−1
0 ), which im-

plies (4.10).
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