ANNALES
POLONICI MATHEMATICI
LXXIX.1 (2002)

Asymptotics for quasilinear elliptic
non-positone problems

by ZUODONG YANG and QISHAO LU (Beijing)

Abstract. In the recent years, many results have been established on positive solu-
tions for boundary value problems of the form
—div(|Vu(z)[P2Vu(z)) = Mf(u(z)) in 2,
u(x) =0 on 02,
where A > 0, 2 is a bounded smooth domain and f(s) > 0 for s > 0. In this paper, a

priori estimates of positive radial solutions are presented when N > p > 1, {2 is an N-ball
or an annulus and f € C1(0,00) U C%([0,00)) with f(0) < 0 (non-positone).

1. Introduction. In this paper, we consider the set of positive radial
solutions to the following boundary value problem for a quasilinear elliptic
PD.E.

(1.1) div(|VulP2Vu) + Af(u) =0  in £2,
(1.2) u=0 on 012,

where §2 denotes an annulus or a ball in RY (N > p > 1), and A > 0.

The problem (1.1)—(1.2) arises in the theory of quasiregular and quasi-
conformal mappings or in the study of non-Newtonian fluids. In the latter
case, the quantity p is a characteristic of the medium. Media with p > 2
are called dilatant fluids and those with p < 2 are called pseudoplastics (see
[1-2]). When p # 2, the problem becomes more complicated since certain
nice properties inherent to the case p = 2 seem to be invalid or at least diffi-
cult to verify. The main differences between p = 2 and p # 2 are discussed in
[6, 8]. The existence and uniqueness of positive solutions of (1.1)—(1.2) have
been studied by many authors, for example, [4-10, 13-21] and the references
therein.
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By a positive solution u of (1.1)—(1.2), we mean a function u € C}(2)
with w > 0 in {2 which satisfies

X IVuP~2VuVo = A S f(u)v
%) %)

for any v € C§°(§2). Thus, these solutions are considered in a weak sense.
By a small solution uy of (1.1)—(1.2), we mean that limy_, o+ [|ux]|ec = 0 (or
limy oo ||ualloo = 0). By a large positive solution uy of (1.1)—(1.2), we mean
that limy g+ [|ux]|eo = 00 (or imy— o [[Uur]|co = 0).

When f is strictly increasing on RT, f(0) = 0, lim,_,o+ f(s)/sP"1 =0
and f(s) < ag + ags”, where 0 < p < p—1 and ag,ay > 0, it has been
shown in [6] that there exist at least two positive solutions for (1.1)—(1.2)
when ) is sufficiently large. If liminf, o+ f(s)/s?~ > 0, f(0) = 0 and the
monotonicity hypothesis (f(s)/s?P~!)" < 0 holds for all s > 0, it has been
proved in [8] that the problem (1.1)—(1.2) has a unique positive solution when
A is sufficiently large. If f(s) > 0 for s > 0 and limsup,_,+(f(s)/sP~2)" <0,
it has been proved in [9] that the problem (1.1)—(1.2) has a unique small
solution when A is sufficiently small. It also has been proved that there exists
at least one large positive radial solution of (1.1)—(1.2) for {2 being an N-ball
or an annulus when ) is sufficiently small. If f(0) < 0, related results have
been obtained in [7, 20].

A natural question is to determine how A and d = maxpu(-,\) =
llu(-,A)]|oo are related. When p = 2, f(0) < 0 or f(0) = 0 and 2 is a
unit ball in RY, the related results have been obtained by [11, 12]. In [21],
the author studied this problem for the case where 2 is a unit ball in RY
and f(0) < 0, p > 1. In this paper, we further study this problem for {2
being an N-ball (N > p > 1) or an annulus and f(0) < 0 (non-positone).
This extends and complements previous results in the literature [11, 12, 21].

Consider a positive radial solution w of (1.1)—(1.2); thus u = u(r,\)
satisfies

(1.3) (PN P2+ AN () = 0.

If (2 is an annulus 0 < r; < r < ry, we introduce the transformation of
variables

(1.4) s =r@=N/=1 () = u(s).

Thus (1.3) becomes

(1.5)  (W'()P72(8)) + A(p = 1)/ (N = p))Ps PV =D/ f(0(5)) = 0
and the boundary conditions become

(1.6) v(s1) =0, w(s2)=0.



Asymptotics for quasilinear elliptic non-positone problems 87

If 2 = B;(0), the boundary condition (1.2) becomes
w'(0)=0, wu(l)=0.

2. A priori estimates for {2 being an annulus. In this section, we
consider the set of radially symmetric positive solutions to the equation

(2.1) —div(|Vu[P™2Vu) = Af(u) in (2,
' u=20 on 012,

where 2 denotes an annulus in RY (N > p > 1) and A > 0. Here f :
[0,00) — R satisfies the following assumptions:

(A) f € C*0,00) N C([0,00)), f(0) < 0, and there exists a > 0 such
that f(s) < 0 for 0 < s < a, f(a) = 0, f is increasing for s > « and
limg o f(s) = 0.

(B) There are constants Ly >0 and p—1 < ¢ < ((p—1)N +p)/(N —p)
such that lim, o f(u)/u? = L.

THEOREM 2.1. Suppose that conditions (A) and (B) hold. Then there
exist positive constants Ky and Ko such that for small A,
K1 < Mu( ML < Ko,

where {u(-,\) | A € (0, o)} is an arbitrary positive radially symmetric solu-
tion of (1.1)—(1.2). Furthermore, for any sequence {\;} with lim; oo \; = 0,
there exists a subsequence, still denoted by {\;}, a constant 6, and a positive
function w such that

(1) w is a solution of the problem
—div(|VulP72Vu) = 0Lou?  in £,
u=0 on 02,
(2) {u(-, M)/ ||u(-, ) ||oo} converges to w in CH(£2) as i — oo.
To obtain Theorem 2.1, the following lemma is established:

LEMMA 2.2. Let f satisfy condition (A) and uy € CZ(£2) be a radially
symmetric positive solution of (1.1)—(1.2). Then limy g+ ||ur]cc = 0.

Proof. On the contrary, assume that there exist sequences {\,} and
{un} = {un, } € C4(2) such that A, — 0 and |Ju,|| < M, where M > 0 is
independent of n. Then |u,||s 7 0 as n — oco. Indeed, suppose this does
not hold; by the regularity of —div(|V -|P~2V+) (see [6]), there exists w > 0
in 2 such that Ap /" Py, — win C(£2) as n — oco. Moreover, w satisfies
the problem

—div(|Vw[P72Vw) = f(0) <0 in £,

w=0 ondf.
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It follows from the maximum principle that w < 0 in 2. This is impos-
sible. Now, since u,, is uniformly bounded in {2 and A, — 0 as n — oo,
it follows from the regularity of —div(|V - [P72V:) again that there exists
we CYHN) with @w > 0 in 2 such that u, — @ in C1(N2) as n — co and ©
satisfies

—div(|Vo[P2V@) =0  in £,
w=0 on 0f2.
Thus, @ = 0 in 2. This also implies that u,, — 0 in C1(£2) as n — oco. But

the above argument implies that this is impossible. Hence, we conclude that
[tun]|co — 00 as n — oo.

LEMMA 2.3. Let a > 0. Then, for any 6 <0, the equation
(Ju'[P72u) + au(s)* =0 in (0, 00)

has no bounded positive solution u € C1(6,00) with u/(0) = 0. Moreover,
the equation
(' [P72u") + au(s)* =0 in (—o0,00)

has no bounded positive entire solution u € C1(—o00,00) with u'(0) = 0.

Proof. Suppose that such a solution u(s) exists. Let @,(y) = |y|P~2y.
Then

(2.2) G, (u'(s)) = — {au()* d§  for s € (0, 00).
0

Thus, ®,(u'(s0)) = —k < 0 for some sy > 0 where k = a ;" u(¢)* d¢. By
(2.2), Dp(v(s)) < —k for s > sq, since u(s) > 0 for s > 0. Then

(2.3) W(s) < Bt (—k) = —kYP7D for s > sp.

Integrating (2.3) over (so, s), we obtain u(s) — —oo as s — 00, contrary to
the assumption that u(s) is a bounded solution.

Proof of Theorem 2.1. By the standard estimates for elliptic equations
and condition (B), it follows that

lu( MIEST < CAANS (ul M)l
= C(Q)A[Lou(-; N)* + {f(u(-, A)) = Lou(, A)*}|co-

That is,
1 < o()ze 1M e
Ju(, M5
flu(,A) = Lou(, )| [Ju( M) + 1
R R o el NIE?
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By (B), there exists a positive constant K such that
|(f(u) — Lou?)/(u! +1)| < Ky for u € RT.
Then

1< COMu(, NI + C(Q)AKO{IIU(', LT + ;_1}
lu(-, A5
From limy_q ||u(-, A)||cc = 00, it follows that there exists a positive constant
K such that, for any X € (0, o), K1 < AJu(-, \)||45PT.

Thus, the left-hand inequality in Theorem 2.1 is established.

To obtain the other half of Theorem 2.1, we show that T = \||u|4P*!
is bounded as A — 0. Let uy be a positive radial solution of (1.1)-(1.2)
satisfying ||ua|loc — 00 as A — 0. Then there exists a positive solution v
of (1.5)-(1.6) satisfying ||vx]lcc — 00 as A — 0T. Let (A\,,v,) be a positive
solution of (1.5)—(1.6) with A\ = \,, satisfying A, — 0" and ||v,||cc — o0 as
n — 00. Then w,, = v, /||vn||s satisfies

(@ (w () = a—p+1 (P LN pvonyv—p) S(n).
24) ~@uf ) = Ml (B2 f),
and wy,(s1) = wp(s2) =0, [|[wy || = 1.

Now, we show that {T,,} = {\,||v.||%5P*!} is bounded. We prove this
by a blowing up argument as in [3]. Suppose that T}, — oo as n — co. Let
Sp € (s1,52) be such that w,(s,) =1, y, = Té/p(s — 5p) and Wy, (yn) =
wp(s). Then w,(0) =1, w,,(0) = 0 and w,(y,) satisfies

_ P
(2.5) —(Qﬁp(ﬁ}\;))/ = <p 1 ) (ynTn*l/P + gn)*P(Nfl)/(pr)
N—p
o« LUonlloc@n(yn))
l[vn 1%

Since S, € [s1,s2] and f(s) < (1 + [2s? and ||v,]|ec — 00 as n — oo, the
right-hand side of (2.5) is uniformly bounded. Thus, there exist subsequences
(still denoted by {5,},{@,} and {v,}) such that @, — @ in CL_ (—o0,6)
(or C} (—00,00) or CL _(0,00)) as n — oo. Here § < 0 is a fixed number
since the limit of 5,, may be s; or s3 and T,, — co. If 5,, — s1 as n — oo, we
assume that lim,,_, Tﬁ/p(sl —5p) =0 <0 (or § = —00). Otherwise, we can
choose a subsequence of {Tﬁ/ P(s1—3,)} whose limit exists (or is —o0). If the
limit of s, is so, and if we set y,, = Tﬁ/p(fs\n — 832), it follows that w, — w
in O _(—00,00) (or CL_(0,00), # < 0) as n — oo. Therefore, we assume
that @, — @ in CL.(#,00) (or CL_.(—00,))). Since w € C'(#, ) (or
C'(—o0, 00)) satisfies —(®,(@’))’ > 0 in (0, 00) (or (—00,00)), and W(0) = 1
and w’(0) = 0, the strong maximum principle as in Lemma 2.3 of [6] implies
that w > 0 in (A,00) (or (—o0,00)). Thus, for any interval in (6, 00) (or
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(—00,00)), there exists an w > 0 such that w(x) > w in this interval. This
implies that

f(”vnHogwn) — Low?
[[on 5

in Cloc(0,00) (or Cioe(—00,0)) as n — oo. Therefore, w satisfies
~(@y(@")) = Lo((p = 1)/ (N = p))Ps. "N e
in (0, 00) (or (—o0,0)). Here s, = lim,,_,~ Sy,. This contradicts Lemma 2.3.
Thus, {7},} is bounded. Therefore
Ky < Mlup]|i5P < K.
Finally, let {\;} be a sequence with lim; ., A; = 0 and denote the quan-
tity Ai|lv(-, Ai)[|95PTE by 6;. Suppose that 6 € [K, K»] is any accumulation
point of {f;}. Thus there exists a subsequence of {6;} (still denoted by

{6;} later) which converges to 6. Let w(z,A) = v(x,\)/||v(-,A)||oo- Then
lw(-, A)]]eoc = 1 and

oo _ g @A)
div([VuP~*Va) = e S

Using the same idea as above for (2.4), we find a function w(-) and a sub-
sequence of {w(-, A;)} (still denoted by {w(-, A;)}) such that {w(-, \;)} con-
verges to w in C(sy, s2) as i — oo. By condition (B), it follows that
LU G A [loow (i, Ai))
lim = Low?.
i—oo [0 M)l
Therefore w(+) is a positive solution of the problem
—div(|Vw|P~2Vw) = Low? in £,
w=0 on 042,

and ||lw()]|eo = 1.

3. A priori estimates for {2 being a ball. In this section, consider
the set of radially symmetric positive solutions to the equation

(3.1) —div(|VulP72Vu) = Af(u) for z € 2,

(3.2) ulpn =0,

where 2 denotes the unit ball in RY (N > 1), centered at the origin, and

A > 0. Here f:]0,00) — R is assumed to satisfy

(3.3) f(0)<0 (non—positone) f'(u) >0, and f(ug) > 0 for some ug > 0.
Let F be defined as F(t) = So s)ds, and let 5 and 0 (5 < 6) be the

unique positive zeros of f and F, respectlvely.
In this section, the following theorem is proved:
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THEOREM 3.1. Let u be a radially symmetric positive solution of (3.1)—
(3.2) with u(0) = d and suppose f satisfies (3.3). Then for large A,

(3.4) (LY—I(N <M

p—1 - gr-1

(o (Y
- drl \p-—1 Qf(s)l/(l’—l)

REMARK. If f(u) < M for all u, or if f(u) = u*—1 where 0 < a < p—1,
then f(d)d~P=1 ({5 f(s)~/@=1) ds)P=1 is finite.
Note that radially symmetric positive solutions of (3.1)—(3.2) are strictly
decreasing in r for r € (0,1) where r = ||z||. Thus, they satisfy
N-—-1
(3.5) (@ () + ——=Pp(u) + Af(u) =0 in (0,1),
(3.6) w(0)=d, 4 (0)=0, wu(l)=0, «(r)<0 in(0,1).

where @,(s) = |s|P72s, p > 1.
If u is a solution of (3.5)(3.6), then multiplying (3.5) by 7V~! and
integrating from 0 to ¢ gives

— S (rN e, (u')) dr = S MV E () dr.
0 0

Since u is decreasing and f is increasing, it follows that
t t

—tN1, (u) = AS VU (u) dr > M f(u(t)) S rN =t dr = —/\tN_]\lfﬂu) )
Hence 0 :
At
(3.7) (—u)P1 > %
Next, multiplying (3.5) by v’ and integrating over [0, 1] yields
(3.8) 7% /(1) + § N; L ar = AF(a).
0

Note that this implies
(3.9) d>0.
To prove Theorem 3.1, we need the following lemma:

LEMMA 3.2 (see [19]). Let u be a radially symmetric positive solution of
(3.1)(3.2). Then there exists M > 0 such that for large X,

/(1) > AV P=D g,
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The proof of Theorem 3.1 is based upon a modification of the method
of Iaia [12].

Proof of Theorem 3.1. First, Holder’s inequality gives

1 1,
d=u(0) —u(l) = —{u'(t)dt = | tl%tl/p dt
0 0

1 1/p 1 _
|u'|P > 1 (p—1) (p—1)/p
< dt t dt .
()" (o )

Next, it follows from (3.8

)
—-11 p—1
p= NP (p— 1\ AR
P | — < | — R m—
re (21§ s (20) AR

p p
Thus AF(d) -
T (p f 1> V=1
Finally, since f’ > 0,
d d
(3.10) F(d) =\ f(s)ds = df (d) — { sf'(s)ds < df (d).
0 0

This proves the left-hand inequality of (3.4).
In order to establish the right-hand inequality of (3.4), from (3.7) we get

i 2 (ML02) T

Let gx € (0,1) be such that u(gy) = 6. Then u(t) > 0 > 3 on [0,¢g,]. Thus
f(u(t)) > f(0) > f(B) =0 on [0,¢x]. So, on [0, gx] we have

ax — ax ﬁ 1/(p—1) B i 1/(p—1) p—1 o/ (p—1)
——dt > dt = — |q .
/(p—1) A
5 flu)t/p 5 N N D

Changing variables in the first integral via s = u(t) gives
d _
S ds N <i)1/(p 1)<p_1>qp/(p1)
2 f(s)V/ =D = AN p )

f(d)l/(p_l)il ds @)YV (p—1N\
d JEYeD = TNVeha \"p )™

Thus,

(3.11)

Therefore, the proof of Theorem 3.1 will be completed once the following
lemma is established.
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LEMMA 3.3. limy_ .o g\ = 1.

From this lemma, for large A, we have ¢§ > 1/2. Substituting this into
(3.11), one can deduce

M(d) _ 2Nf(d) (p=1\""" ¢ s p—1
0 2ty ey

which completes the proof of Theorem 3.1.

Proof of Lemma 3.3. Multiplying (3.5) by v’ and integrating from ¢ to 1
gives
1

| )+ 1

T_l |u’|p} dr =\ (~Af(u)u) dr.
Thus

p—= 1 1p _ u/ p ‘
> [[u'[P(1) — o] (75)]+§

Since F(u(1)) = F(0) = 0, it follows that

N -1

|o'[? dr = —A[F(u(1)) — F(u(t))].

P (1) = P ()] < AP (u(®).

Now, for g <t < 1, it follows that 8 = u(gx) > u(t) > u(1) = 0, and then
F(u(t)) < 0. Hence,

(3.12) |/|P(1) < |W/[P(t)  for t € [gn, 1].
Now Lemma 3.2 shows that there exists a ¢ > 0 independent of A such that
—u/(1) > eAV®P"Y  for large A
Consequently, it follows from (3.12) that
(= (£))P > (= (1))P > PAP/ =D for t € [ga, 1].

Integrating on [gy, 1] gives

1 1
0 =u(gy) =— S o' (t) dt > S AV g = XV (1 — gy).
ax ax
Thus
0<1 < 0
S1l=gx > W-

As \ — oo the right-hand side of the above expression tends to zero; hence
limy_. - gx = 1 and this completes the proof of the lemma.
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