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Summary. Exhaustive and uniformly exhaustive elements are studied in the setting of
locally solid topological Riesz spaces with the principal projection property. We study the
structure of the order interval [0, z] when z is an exhaustive element and the structure of
the solid hull of a set of uniformly exhaustive elements.

1. Introduction. In functional analysis there has been a large amount
of study on the embeddability of the classical Banach spaces ¢y, ¢1 and £
in other Banach spaces. Because of results from vector measure theory such
as the Diestel-Faires theorem [8], these studies are often done in conjunction
with studies on strongly additive measures. In many of these studies the main
emphasis is on normed vector spaces, or more specifically, Banach spaces.
Although many of these spaces are partially ordered, less attention has been
given to the properties that are inherent to the partial ordering on the space.
In the 1940’s mathematicians began studying these partially ordered vector
spaces in more detail and many results have been obtained, especially in
the study of Banach lattices. In this paper we specifically want to study the
concepts of exhaustivity, (absolute) continuity, and strong additivity in the
more general setting of topological Riesz spaces. Many of these results will
generalize results known for Banach lattices.

As is pointed out in the introduction of [9], early interest in weak and
weak™® compactness was often motivated by vector measure theory. This is
illustrated by the following two well-known results.
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THEOREM 1.1. A set K C ca(X) is weakly sequentially compact iff it is
bounded and the countable additivity of u on X is uniform for u € K.

THEOREM 1.2. A set K C ca(X) is weakly sequentially compact iff it is
bounded and, for some positive A € ca(X), u < X uniformly for u € K.

As the following theorems illustrate, there is a strong connection between
strong additivity and countable additivity. These theorems can be extended
to the setting of topological Riesz spaces. The extensions use the lattice
properties of the space of vector-valued measures and minimize set-theoretic
manipulations.

THEOREM 1.3 (Bell-Bilyeu-Lewis [3]). A positive element k of a o-
Dedekind complete Banach lattice X is exhaustive if and only if the norm is
countably order continuous on the order interval [0, k].

THEOREM 1.4 (Brooks [5], Drewnowski [11]). Suppose (i) is a sequence
of countably additive scalar functions on the o-algebra X, and  is a finitely
additive (possible infinite) measure on X such that pu, < p for each n. Then
Un K W uniformly.

A recent extension of Theorem 1.4 has been made in the study of sub-
measures [13]. Also, Drewnowski and Labuda [12] proved a result similar
to Theorem 1.3 for a disjointly o-Dedekind complete TRS. Their methods
were quite different due to the difference in hypotheses. Also the emphasis
on exhaustivity in [12] is on vector measures and not exhaustive elements in
a TRS. In [12], a characterization of exhaustive vector measures is made for
Lebesgue and pre-Lebesgue topologies. That connection will also be made
in the setting of this paper. For more on Lebesgue and pre-Lebesgue topolo-
gies see Aliprantis and Burkinshaw [1]. Also the question was raised in [3] of
whether or not [0, k] must be separable whenever k is exhaustive. A coun-
terexample will be provided in Section 3.

2. Continuity in topological Riesz spaces. If X is a Riesz space,
X is said to have the principal projection property (PPP) provided that for
each pair of z and y in X = {2 : 2 > 0} the element \/, nx Ay exists. This
definition is equivalent to that found in [17]. If X is a Riesz space with the
PPP, define P,(y) =/, ne Ay for all z,y € X . For arbitrary y € X define
P.(y) to be P.(y") — P.(y~). These projections have proved to be useful
in many different areas. For instance, if ;4 and v are scalar valued measures
these projections can be used to find the absolutely continuous and singular
parts of v with respect to p only using the order properties of the reals.
These projections have also been applied to abstract L-spaces [14], measure
spaces [4], and more recently, submeasures [13]. Note that if z,y € X, the
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following properties hold. The majority of them can be found in the results
of Kakutani [14].

a) 2Py (y) Ny = Pu(y)-
b) Puly) A (y — Puly)) = 0.
c) sAN(y—Py(y) =xANy—x A Py(y) =0.
d) If x = ¢p+n, where pAn = 0, then Py (y)+ Py, (y) = Pu(y) = Pyvn(y)-
) Py is linear.
) PP(y)_PPy—P:v/\y
) 1Pe(y)] = P(lyl)-

Let O = {P; : x € X, }. A sequence (F;) from O is said to be disjoint
(or pairwise disjoint) if P,P; = 0 for ¢ # j. Assume that (X,7) is a TRS
with the PPP.

DEFINITIONS.

(
(
(
(
(e
(f
(g

(1) A subset K of X is said to be (uniformly) continuous with respect to
an element m € X if P;(u) — 0 (uniformly) for v € K whenever P;
is a sequence from O such that P;(m) — 0.

(2) A subset K of X is said to be (uniformly) exhaustive if P;j(u) — 0
(uniformly) for uw € K whenever (P;) is a disjoint sequence from O.
If K = {k} is a singleton we say that k is ezhaustive.

Note that if X = ba(X), then p € X is exhaustive if and only if it is
strongly additive and p is absolutely continuous with respect to v € X if
and only if it is continuous with respect to v using the above definition.
The following lemmas will be helpful in establishing the main result of this
section. The first lemma is true for any Riesz space with the PPP and can be
found in [3]. For the remaining results we will assume that we have a TRS.

LEMMA 2.1. Suppose X is a Riesz space with the PPP. If x and y are
in X and 0 <y < x, then there is a z in X4 so that P, — P, = P..

Proof. Suppose the hypotheses are satisfied. From property (b) above we
see that Py()A(z—Py(z)) = 0 and from (d) we have P, = Pp (4)+ Py p,(2)-
Using property (f) and the fact that y < x we obtain Pp, ;) = Prry = Py,
Therefore P, = Py + P,_p, (). Since Py(x) <z we have P, — P, € O. u

LEMMA 2.2. Suppose X is a TRS with the PPP. If K is a uniformly
erhaustive subset of X, then |K| = {|z|:z € K} is uniformly exhaustive.

Proof. Suppose K is uniformly exhaustive. Suppose (z,) is a disjoint
sequence from X,. Let V be a solid neighborhood of the origin. From (g)
we have |P,(u)| = Py(Ju|) for all u € K. Choose a natural number N such
that P, (u) € V for every n > N and every u € K. Recall that V' is solid,
P, (lu|) = | Py, (u)|, and Py, (u) € V. Therefore P, (|u|) € V for all n € N
and all u € K. Consequently, |K| is uniformly exhaustive. m
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THEOREM 2.3. Suppose that X is a TRS with the PPP and K is a
subset of X. If K is a uniformly exhaustive subset of X and (Py,) is a
sequence from O, then for every solid neighborhood V of the origin there
exists a natural number N so that (Py, — Py ayr 2,)(w) €V for all u € K
whenever k > n > N.

Proof. Suppose the conclusion is false. Then there is a solid neighbor-
hood V of the origin, an increasing sequence (n;) of positive integers, and

a sequence (u;) from K so that for all 4, (P, — P, /\\/ni_lwk)(ui) is not
¢ MV k=1

in V. A calculation using properties (c), (d), and (f) shows that the above
projections are pairwise disjoint. Lemma 2.1 shows the projections are in O.
This contradicts the uniform exhaustivity of K. m

The following theorem is the main result of this section. If X is a Banach
lattice and |z| < |y|, we have by definition ||z|| < ||y||. In many cases when
working with Banach lattices, it is this property of the norm that is used
and not the fact that the norm is complete. In particular, if X is a TRS
and y belongs to a locally solid neighborhood V' of the origin, then z € V'
whenever |z| < |y|. This property facilitates the proof of the following gen-
eralization of Theorem 1.4. Theorem 1.4 was established independently by
L. Drewnowski [11] and James K. Brooks [5]. This argument also simplifies
arguments in [6].

THEOREM 2.4. Suppose that X is a metrizable TRS with the PPP and
K is a uniformly exhaustive subset of X. If K is continuous with respect to
m € X4, then K is uniformly continuous with respect to m.

Proof. Suppose that o is a metric for the TRS X. Further suppose that
m € X4 and that K is a uniformly exhaustive subset of X so that K is
continuous with respect to m but not uniformly continuous with respect
to m. Then there exists a sequence z; from X, a locally solid neighborhood
V of the origin, and a sequence y; from K so that Py, (m) — 0 and

(I) P, (y;) ¢ 2V for all i.

We can assume without loss of generality that

(I1) > 0(0, Py (m)) < o
Applying Theorem 2.3, let n; be a positive integer so that if n > n; then
(Po, = Py aym o (W) € 3V forall u e K.

T
Let z1 = /L, 2;. Then from (I) and the statement above we find that
P, nz, (yn) is not in (2 — %)V for all n > ny. Now let a1 = 21 A xp,, ag =
21 N\ Tpy41,- - .. Applying Theorem 2.3 to (P,,), let ny (> n1) be a positive
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integer so that if n > no, then

(P,, — o, (W) € 1V forallu e K.

Pan/\\/Z;
Let 2o = \/}2;ar. By a similar argument to that above, there is a se-
quence (by) in K such that P.,nq, (by) is not in (2— 3 — 2)V for all n > no.
Since (2 — 3 — 1)V is locally solid and |P.,(by)| = Psy(|bn]) > Pa,nzs (bn),
we see that |P.,(b,)| is not in (2 — 3 — 2)V for all n > ny.

Continue inductively to manufacture a sequence (zj) from X, and a
subsequence (dj) of (y,) such that
(I1I) 2l S 2
(IV) P, (|dx]) ¢V for each k.

Next observe that if {g1,...,¢:} € X4+, u € Xy, and w =/ ¢, then P, (u) <
St _, Py (u). Therefore, using (II) and the fact that the sequence (z;,) was

defined inductively in terms of (zy) (2x < V%, | i), we get
(V) P,, (m) — 0.

Now use (IV), (V), and the fact that K (and therefore |K|) is continuous
with respect to m to select subsequences (P, ) of (P.,) and (dy,) of (dy)
such that

(Pa, = Pa, )di,]) € 3V for each i.

But (III) implies this sequence of differences of projections is a disjoint se-
quence from O. This contradicts the uniform exhaustivity of |K|. m

3. Exhaustivity. The results of this section further characterize exhaus-
tivity in a TRS. If A is a subset of X, then A denotes the solid hull of A,
ie. A={y e X :|y| < |a| for some z € A}. The next theorem describes the
structure of K when K is a uniformly exhaustive subset of X. Recall that
an ideal in a TRS X is a solid vector subspace of X.

THEOREM 3.1. Suppose X is a TRS with the PPP. A subset K of X
1s uniformly exhaustive iff each disjoint sequence in K converges to zero.
Furthermore, if I is an ideal in X and K is a subset of I so that Py, (k) — 0
uniformly for k € K whenever (x;) is a disjoint sequence from I, then K
1s uniformly exhaustive in X.

Proof. First suppose K is uniformly exhaustive and (z;) is a disjoint
sequence from K (|z| A |zj| = 0 if i # j). For each i choose y; € K so that
|zi| < |yi|. Since P,(u) = u for all u € X and P,, is monotone on X, it
follows that

0 < fail = P (|i]) < Py (19:]) = [Pay (wi)]-
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Since (z;) is a disjoint sequence, property (f) ensures (P,) is a disjoint
sequence from O. Suppose V is a solid neighborhood of the origin. Choose a
natural number N so that for every i > N, P, (y) € V for all y € K. Then
clearly P, (y;) € V for all i > N. Since V' is solid we infer that z; is in V
for all 7+ > N. Consequently, x,, — 0.

Conversely, suppose that each disjoint sequence in K converges to zero.
Suppose P, is a disjoint sequence from O, and (|u;|) is a sequence from K.
Then (z;) is a disjoint sequence from X, and P, (|u;|) is a disjoint se-
quence. Since Py, (|ui]) < |ui| and |u| is in K, we have P, (Ju;]) € K.
Thus Py, (Ju;]) — 0. Again using property (g) and the fact that X has a
locally solid topology, we find that P, (u;) — 0. Since the choice of the

sequence |u;| from K was arbitrary, it follows that K is uniformly exhaus-
tive.

Next suppose [ is an ideal in X, K is a subset of I satisfying the hy-
potheses of the final statement of the theorem, and (1);) is a disjoint sequence
in X;. Let (u;) be an arbitrary sequence in K. Then v¢; A |u;| € I for all
and (¢; A |u;]) is a disjoint sequence. By the hypothesis Py, z[y,|(|ui]) — 0.
Also

Py, (Juil) = \/ i A Jus| = \[[n(hi A [uil) A Jus]] = Py, g ().
Since X has a locally solid topology, Py, (Ju;|) — 0. =

The next main result characterizes exhaustivity in a TRS with the PPP.
The final statement of Theorem 3.3 is similar to the results in [12] for vector
measures. However, the initial statement of Theorem 3.3 sheds light on the
structure of the order interval [0, k] when k is exhaustive. This theorem is
closely akin to some of the major theorems on Banach lattices in Section 5 of
Chapter 2 of [19]. If a space X is not pre-Lebesgue, the exhaustive elements
in X are often of interest. Note that the set of exhaustive elements of X = [
is cg. In order to prove Theorem 3.3, we use the following lemma, which can
be found in [16]. It is a generalization of the Meyer-Nieberg lemma found on
page 92 of [19].

LEMMA 3.2. Let (X, 7) be a locally solid topological Riesz space. Suppose
that vy, is a sequence in X4 with v, # 0 and {>__,v; | n € N} bounded.
Suppose further that one of the following conditions is satisfied:

(i) (vpn) is majorized by some x € X .
(ii) X is Dedekind o-complete with an order continuous topology on [0, vy]
for each n.

Then there exists a sequence (k(n)) of natural numbers and a disjoint se-
quence () in Xy so that xp, /> 0 and x, < vy, for every n.
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THEOREM 3.3. Suppose X is a TRS with the PPP. A positive element k
is ezhaustive iff (u;) is Cauchy whenever 0 < u;T < k. Consequently, X is
pre-Lebesque iff every positive element of X 1is exhaustive.

Proof. Suppose 0 < u;1 < k implies (u,) is Cauchy, and suppose k is
not exhaustive. Then there is a disjoint sequence (z,,) from X, and a solid
neighborhood V' of the origin so that P,, (k) ¢ V for all i € N. Let

un =Y Pp(k)=Psn (k) <k
=1

Then 0 < w;T < k. By our hypothesis, (u,) is a Cauchy sequence. Choose
an N so that if m,n > N, then u, —u,, € V. If n > m, then u,, — u,, =
> iyt Pe; (k) € V. Since V is solid, P, (k) € V, which contradicts the
assumption.

Conversely, suppose k is exhaustive and suppose there is a sequence (uy,)
so that 0 < u;T < k and (uy,) is not Cauchy. Choose a solid neighborhood V/
of the origin and intertwining sequences (n;) and (m;) so that y; = uy, — um,
¢ V for each i. Then for all n, > " | y; < k. Now apply Lemma 3.2 to find
a disjoint sequence (x,) in Xy and (k(n)) so that =, ¢ V for all n and
T < Yy < k. Consequently, Py, (k) > P, (vn) = z, ¢ V and k is not
exhaustive. m

We can now use the above theorem to establish a generalization of The-
orem 1.3. It is known that X is Lebesgue iff each element of X is exhaustive
whenever X is a sequentially complete and Dedekind o-complete TRS. The
following result investigates the structure of the order interval [0, k] if & is
exhaustive.

COROLLARY 3.4. Suppose X is a sequentially complete and Dedekind o -
complete TRS. A positive element k is ezhaustive iff y; — 0 whenever y; | 0
in the order interval [0, k].

Proof. Suppose k is exhaustive and (y,,) is a sequence from [0, k] so that
Yn | 0. Then k—y,, is an increasing sequence in [0, k]. By Theorem 3.3, k—y,
is Cauchy. Since X is sequentially complete, k —y,, converges. Therefore (yy,)
converges. Since y, | 0, we have y, — 0.

Now suppose for every sequence (y,,) in [0, k] with y,, | 0 we have y,, — 0.
Suppose that k is not exhaustive. Then there is a disjoint sequence (P, ) from
O and a solid neighborhood V' of the origin so that P, (k) ¢ V for each i. Let
ln=Pyn »(k)and I =/, l,. Then [—1, | 0. By our assumption {—[,, — 0.
Then [,, is a Cauchy sequence. However, l,, 41—l = Py, (k) & V. Therefore
we have a contradiction and k is exhaustive. =

When studying uniform absolute continuity and uniform exhaustivity, it
is natural to consider the following two classical results from measure theory.
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THEOREM 3.5 (Vitali-Hahn-Saks). Let (S, X, i) be a measure space and
(A\n) a sequence of p-continuous vector or scalar valued additive set functions
on X. If the limit lim \,,(E) exists for each E in X then X\, is uniformly
absolutely continuous with respect to .

THEOREM 3.6 (Brooks-Jewett, [6]). Let (\,) be a sequence of strongly
additive vector or scalar valued set functions defined on X. If the limit
lim A\, (E) ezists for each E in X, then the sequence (\y) is uniformly ex-
haustive.

Recall that in ca(X') weak convergence and setwise convergence are equiv-
alent. Consider the unit vector basis (e;) in ¢o. Each e; is exhaustive and (e;)
is weakly convergent, but P, (e;) = e;, which implies (e;) is not uniformly
exhaustive. Therefore, the Brooks—Jewett theorem does not hold in arbitrary
Banach lattices if we replace setwise convergence with weak convergence. If
X is a Schur space then weak and norm convergence will coincide. There-
fore in a Schur space, the weak convergence of the sequence (z;) is suffi-
cient to guarantee that the sequence is uniformly exhaustive. Again consider
(e;) in ¢o and let z = (1/n), be in ¢yo. Each e; is continuous with respect
to x. However, P, (z) — 0 and P, (e;) = e; # 0. Therefore the continu-
ity is not uniform. Thus the Vitali-Hahn—-Saks theorem does not hold in
arbitrary Banach lattices if we replace setwise convergence with weak con-
vergence.

Now note that by combining Lemma I1.5.4 of [19], and Theorem 3.1
and Corollary 3.4 above, we find that a positive element x of the Dedekind
o-complete Banach lattice X is exhaustive whenever [0, z] is separable. This
is due to the fact that separability of the order interval [0,z] yields the
separability of the principal ideal I, generated by x. Therefore I, is Lebesgue
and each element of I, is exhaustive. The question was raised in [3] of whether
or not it is also true that [0, x] is separable whenever z is exhaustive. The
following counterexample resolves this question.

Let R represent the real numbers. Also let A represent Lebesgue measure
on the interval [0, 1]. Using the results of Kakutani in [15], we can define
a countably additive measure m on the product space ([0,1],\)X. Let X
denote the measurable sets in ([0, 1], \)®. Then m is an exhaustive element
of ca(X). However, [0, m] is not separable in ca(X). To see this let m, = m|g,
where E,, is the element of X’ whose ath projection is [0, 1/2] and whose Gth
projection is [0, 1] if & # 3. Therefore we have an uncountable number of
elements of [0, m] with [[m, — mg| > 1/4 whenever v # 3. Consequently,
[0, m] is not separable.

Finally, Theorem 2.4(vi) in [3] is false as stated. It states that if X is
a Dedekind o-complete Banach lattice and K is a subset of the exhaustive
elements of X, then K is continuous with respect to some exhaustive element
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in X iff each pairwise disjoint subset of K is countable. For a counterexample
again let R be the set of real numbers and let X = [(R). Let K = {eg+eq :
a € R}. Then each element of K is exhaustive. Vacuously, each disjoint
subset of K is countable. However, K is not continuous with respect to any
exhaustive element of /o, (R). The theorem should have read as follows: If X
is a Dedekind o-complete Banach lattice and K is a subset of the exhaustive
elements of X, then K is continuous with respect to some exhaustive element
in X iff each pairwise disjoint subset of K is countable. The proof runs as

before.
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