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Summary. A. Crachiola and L. Makar-Limanov [J. Algebra 284 (2005)] showed the
following: if X is an affine curve which is not isomorphic to the affine line A1

k, then
ML(X ×Y ) = k[X]⊗ML(Y ) for every affine variety Y , where k is an algebraically closed
field. In this note we give a simple geometric proof of a more general fact that this property
holds for every affine variety X whose set of regular points is not k-uniruled.

1. Introduction. Let k be an algebraically closed field. The Makar-
Limanov invariant of an affine variety X, denoted ML(X), is defined to be
the ring of all regular functions on X that are constant on orbits of every
algebraic k+-action onX. Equivalently, it consists of the regular functions on
X that are invariant for all exponential maps on the coordinate ring k[X];
in characteristic 0 these functions are exactly in the kernels of all locally
nilpotent derivations on k[X].

In this note we focus on the following property due to A. Crachiola and
L. Makar-Limanov [2]:

Proposition 1. If X is an affine curve which is not isomorphic to the
affine line A1, then

ML(X × Y ) = k[X]⊗ML(Y )

for every affine variety Y .

The proof given in [2] is based on algebraic methods. We give a simple
geometric proof of a more general fact, which partially answers a question
in [2] on a higher-dimensional analogue of Proposition 1. For this purpose
we make use of the notion of k-uniruledness introduced by Jelonek [6]. An
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algebraic variety X is said to be k-uniruled if for a generic point x ∈ X there
exists a non-constant regular map f : A1 → X such that x ∈ f(A1). If k
is uncountable, then X is k-uniruled if and only if there exists a variety Y
of dimension dimX − 1 and a dominant regular map Y ×A1 → X (see [6,
Prop. 5.1] or [7, Th. 3.1]). We show the following:

Theorem 2. If X is an affine variety whose set of regular points Reg(X)
is not k-uniruled, then

ML(X × Y ) = k[X]⊗ML(Y )

for every affine variety Y .

Note that this implies Proposition 1, since for an affine curve X we have
X ∼= A1 iff Reg(X) is k-uniruled. (Namely, if f : A1 → Reg(X) is a non-
constant regular map, then f(A1) = X, since the image of A1 in every affine
variety is closed. Thus X is smooth and has only one point at infinity. By
Lüroth’s theorem a smooth compactification of X is isomorphic to P1, so
X ∼= P1 − {∞} ∼= A1.)

The main application of Proposition 1 given in [2] was a new proof of the
cancellation theorem for curves due to Abhyankar, Eakin and Heinzer [1]:
if X,Y are affine curves such that X ×Z ∼= Y ×Z and ML(Z) = k, then
X ∼= Y (originally this was proved in [1] for Z = An). Analogously, we get
the following:

Corollary 3. Let X,Z be affine varieties such that Reg(X) is not k-
uniruled and ML(Z) = k. If f : X ×Z → Y ×Z is an isomorphism, then
there exists an induced isomorphism f̃ : X → Y such that πY ◦ f = f̃ ◦ πX ,
where πX , πY are the projections.

For Z = An this fact was obtained in [3]. Note that it is related to the
following Iitaka–Fujita theorem [4]: if X is an affine variety over C with the
logarithmic Kodaira dimension κ(X) ≥ 0 and f : X ×An → Y ×An is an
isomorphism, then there exists an induced isomorphism f̃ : X → Y such
that πY ◦ f = f̃ ◦ πX .

If X is a C-uniruled affine variety, then κ(X) = −∞, since there exists
a dominant generically finite regular map Y ×A1 → X, which implies that
κ̄(X) ≤ κ̄(Y ×A1) = κ̄(Y ) + κ̄(A1) = −∞ (see [5] for properties of the
Kodaira dimension).

2. Proofs. We will need the following facts.

(2.1) If f : X ×Y → Z is a regular map of affine varieties, then

W = {x ∈ X : f(x×Y ) is a point}
is closed in X.
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Proof. If Z ⊂ An and f = (f1, . . . , fn), then

W =
n⋂

i=1

⋂
y,z∈Y

{x ∈ X : fi(x, z) = fi(x, y)}.

(2.2) ML(X ×Y ) ⊂ ML(X)⊗ML(Y ) for arbitrary affine varieties X, Y .

Proof. This fact appeared in [2], but the proof seems to be slightly incom-
plete, therefore we give an alternative argument. This is obvious if X and Y
each have no non-trivial k+-actions. Suppose to the contrary that ML(Y ) 6=
k[Y ] and there exists a regular function f ∈ ML(X ×Y )\(ML(X)⊗ML(Y )).
Write f =

∑n
i=1 fi⊗gi with minimal n, where fi ∈ k[X], gi ∈ k[Y ]. By sym-

metry we may assume that g1 /∈ ML(Y ). Let τ be a k+-action on Y such
that g1 is not constant on the orbit of τ passing through a point y ∈ Y .
Let hi(t) = gi(τ(y, t)) ∈ k[t], i = 1, . . . , n. Then h1 ∈ k[t] \ k and for each
x ∈ X the polynomial f(x, τ(y, t)) =

∑n
i=1 fi(x)hi(t) ∈ k[t] is constant

(since f is invariant for the k+-action ((x, y), t) 7→ (x, τ(y, t))). This implies
that

∑n
i=1 aifi = 0, where ai ∈ k is the coefficient of tdeg h1 in hi. Hence

f1 = −
∑n

i=2
ai
a1
fi, so

f =
n∑

i=1

fi ⊗ gi =
n∑

i=2

fi ⊗
(
gi −

ai

a1
g1

)
,

which contradicts the minimality of n.

Lemma 4. Let X be as in Theorem 2. Then every k+-action on X × Y
is induced by the trivial action on X and an action on Y .

Proof. Let σ be a k+-action on X ×Y and Z be the set of points z ∈
X ×Y such that the orbit of σ passing through z is contracted to a point by
the projection π : X ×Y → X. We have to show that Z = X × Y . Suppose
that Z 6= X ×Y . Applying (2.1) to the map π ◦σ : X ×Y ×A1 → X, we see
that Z is closed in X ×Y . Clearly, Z and the singular locus Sing(X ×Y ) are
invariant for σ, hence so is the open set U = (X ×Y ) \ (Z ∪ Sing(X ×Y )).
Then π(U) has nonempty interior and is the union of k-uniruled curves
that are images of σ’s orbits in U . Since Sing(X ×Y ) = (Sing(X)×Y ) ∪
(X ×Sing(Y )), we have π(U) ⊂ Reg(X), which contradicts the fact that
Reg(X) is not k-uniruled.

This lemma implies that k[X] ⊗ML(Y ) ⊂ ML(X × Y ) in Theorem 2;
the opposite inclusion is a consequence of (2.2).

In the proof of Corollary 3 we use the following:

(2.3) k[X] is algebraically closed in k[X ×Y ] for affine varieties X,Y .

Proof. Suppose that there exists f ∈ k[X ×Y ] \k[X] satisfying an equa-
tion anf

n + · · · + a0 = 0 with ai ∈ k[X], an 6= 0. By (2.1) the set of points
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x ∈ X such that f is constant on x×Y is a proper closed subset of X. It
follows that the map

F : X ×Y → X ×A1, F (x, y) = (x, f(x, y)),

is dominant. Then for the monomorphism F ∗ : k[X][t]→ k[X ×Y ] we have
F ∗(ant

n + · · ·+ a0) = anf
n + · · ·+ a0 = 0,

contradiction.
Proof of Corollary 3. Let ϕ : k[X ×Z] → k[Y ×Z] be an isomorphism.

We have to show that ϕ(k[X]) = k[Y ]. By Theorem 2, ML(X ×Z) = k[X]⊗
ML(Z) = k[X]. From (2.2) it follows that ϕ(k[X]) = ϕ(ML(X ×Z)) =
ML(Y ×Z) ⊂ ML(Y ) ⊗ ML(Z) ⊂ k[Y ]. Obviously, X and Y have equal
dimensions, so the extension ϕ(k[X]) ⊂ k[Y ] is algebraic. By (2.3), ϕ(k[X])
is algebraically closed in k[Y × Z], which implies that ϕ(k[X]) = k[Y ].
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