A Remark on a Paper of Crachiola and Makar-Limanov by
 Robert DRYŁO
 Presented by Andrzej BIAEYNICKI-BIRULA

Summary. A. Crachiola and L. Makar-Limanov [J. Algebra 284 (2005)] showed the following: if X is an affine curve which is not isomorphic to the affine line \mathbb{A}_{k}^{1}, then $\operatorname{ML}(X \times Y)=k[X] \otimes \operatorname{ML}(Y)$ for every affine variety Y, where k is an algebraically closed field. In this note we give a simple geometric proof of a more general fact that this property holds for every affine variety X whose set of regular points is not k-uniruled.

1. Introduction. Let k be an algebraically closed field. The MakarLimanov invariant of an affine variety X, denoted $\operatorname{ML}(X)$, is defined to be the ring of all regular functions on X that are constant on orbits of every algebraic k^{+}-action on X. Equivalently, it consists of the regular functions on X that are invariant for all exponential maps on the coordinate ring $k[X]$; in characteristic 0 these functions are exactly in the kernels of all locally nilpotent derivations on $k[X]$.

In this note we focus on the following property due to A. Crachiola and L. Makar-Limanov [2]:

Proposition 1. If X is an affine curve which is not isomorphic to the affine line \mathbb{A}^{1}, then

$$
\operatorname{ML}(X \times Y)=k[X] \otimes \operatorname{ML}(Y)
$$

for every affine variety Y.
The proof given in [2] is based on algebraic methods. We give a simple geometric proof of a more general fact, which partially answers a question in [2] on a higher-dimensional analogue of Proposition 1. For this purpose we make use of the notion of k-uniruledness introduced by Jelonek [6]. An

[^0]algebraic variety X is said to be k-uniruled if for a generic point $x \in X$ there exists a non-constant regular map $f: \mathbb{A}^{1} \rightarrow X$ such that $x \in f\left(\mathbb{A}^{1}\right)$. If k is uncountable, then X is k-uniruled if and only if there exists a variety Y of dimension $\operatorname{dim} X-1$ and a dominant regular map $Y \times \mathbb{A}^{1} \rightarrow X$ (see [6, Prop. 5.1] or [7. Th. 3.1]). We show the following:

Theorem 2. If X is an affine variety whose set of regular points $\operatorname{Reg}(X)$ is not k-uniruled, then

$$
\operatorname{ML}(X \times Y)=k[X] \otimes \operatorname{ML}(Y)
$$

for every affine variety Y.
Note that this implies Proposition 1 , since for an affine curve X we have $X \cong \mathbb{A}^{1}$ iff $\operatorname{Reg}(X)$ is k-uniruled. (Namely, if $f: \mathbb{A}^{1} \rightarrow \operatorname{Reg}(X)$ is a nonconstant regular map, then $f\left(\mathbb{A}^{1}\right)=X$, since the image of \mathbb{A}^{1} in every affine variety is closed. Thus X is smooth and has only one point at infinity. By Lüroth's theorem a smooth compactification of X is isomorphic to \mathbb{P}^{1}, so $X \cong \mathbb{P}^{1}-\{\infty\} \cong \mathbb{A}^{1}$.)

The main application of Proposition 1]given in [2] was a new proof of the cancellation theorem for curves due to Abhyankar, Eakin and Heinzer [1: if X, Y are affine curves such that $X \times Z \cong Y \times Z$ and $\operatorname{ML}(Z)=k$, then $X \cong Y$ (originally this was proved in [1] for $Z=\mathbb{A}^{n}$). Analogously, we get the following:

Corollary 3. Let X, Z be affine varieties such that $\operatorname{Reg}(X)$ is not k uniruled and $\operatorname{ML}(Z)=k$. If $f: X \times Z \rightarrow Y \times Z$ is an isomorphism, then there exists an induced isomorphism $\tilde{f}: X \rightarrow Y$ such that $\pi_{Y} \circ f=\tilde{f} \circ \pi_{X}$, where π_{X}, π_{Y} are the projections.

For $Z=\mathbb{A}^{n}$ this fact was obtained in [3. Note that it is related to the following Iitaka-Fujita theorem [4]: if X is an affine variety over \mathbb{C} with the logarithmic Kodaira dimension $\bar{\kappa}(X) \geq 0$ and $f: X \times \mathbb{A}^{n} \rightarrow Y \times \mathbb{A}^{n}$ is an isomorphism, then there exists an induced isomorphism $\tilde{f}: X \rightarrow Y$ such that $\pi_{Y} \circ f=\tilde{f} \circ \pi_{X}$.

If X is a \mathbb{C}-uniruled affine variety, then $\bar{\kappa}(X)=-\infty$, since there exists a dominant generically finite regular map $Y \times \mathbb{A}^{1} \rightarrow X$, which implies that $\bar{\kappa}(X) \leq \bar{\kappa}\left(Y \times \mathbb{A}^{1}\right)=\bar{\kappa}(Y)+\bar{\kappa}\left(\mathbb{A}^{1}\right)=-\infty$ (see [5] for properties of the Kodaira dimension).
2. Proofs. We will need the following facts.
(2.1) If $f: X \times Y \rightarrow Z$ is a regular map of affine varieties, then

$$
W=\{x \in X: f(x \times Y) \text { is a point }\}
$$

is closed in X.

Proof. If $Z \subset \mathbb{A}^{n}$ and $f=\left(f_{1}, \ldots, f_{n}\right)$, then

$$
W=\bigcap_{i=1}^{n} \bigcap_{y, z \in Y}\left\{x \in X: f_{i}(x, z)=f_{i}(x, y)\right\}
$$

(2.2) $\mathrm{ML}(X \times Y) \subset \mathrm{ML}(X) \otimes \mathrm{ML}(Y)$ for arbitrary affine varieties X, Y.

Proof. This fact appeared in [2], but the proof seems to be slightly incomplete, therefore we give an alternative argument. This is obvious if X and Y each have no non-trivial k^{+}-actions. Suppose to the contrary that $\operatorname{ML}(Y) \neq$ $k[Y]$ and there exists a regular function $f \in \operatorname{ML}(X \times Y) \backslash(\mathrm{ML}(X) \otimes \mathrm{ML}(Y))$. Write $f=\sum_{i=1}^{n} f_{i} \otimes g_{i}$ with minimal n, where $f_{i} \in k[X], g_{i} \in k[Y]$. By symmetry we may assume that $g_{1} \notin \mathrm{ML}(Y)$. Let τ be a k^{+}-action on Y such that g_{1} is not constant on the orbit of τ passing through a point $y \in Y$. Let $h_{i}(t)=g_{i}(\tau(y, t)) \in k[t], i=1, \ldots, n$. Then $h_{1} \in k[t] \backslash k$ and for each $x \in X$ the polynomial $f(x, \tau(y, t))=\sum_{i=1}^{n} f_{i}(x) h_{i}(t) \in k[t]$ is constant (since f is invariant for the k^{+}-action $\left.((x, y), t) \mapsto(x, \tau(y, t))\right)$. This implies that $\sum_{i=1}^{n} a_{i} f_{i}=0$, where $a_{i} \in k$ is the coefficient of $t^{\operatorname{deg} h_{1}}$ in h_{i}. Hence $f_{1}=-\sum_{i=2}^{n} \frac{a_{i}}{a_{1}} f_{i}$, so

$$
f=\sum_{i=1}^{n} f_{i} \otimes g_{i}=\sum_{i=2}^{n} f_{i} \otimes\left(g_{i}-\frac{a_{i}}{a_{1}} g_{1}\right)
$$

which contradicts the minimality of n.
Lemma 4. Let X be as in Theorem 2. Then every k^{+}-action on $X \times Y$ is induced by the trivial action on X and an action on Y.

Proof. Let σ be a k^{+}-action on $X \times Y$ and Z be the set of points $z \in$ $X \times Y$ such that the orbit of σ passing through z is contracted to a point by the projection $\pi: X \times Y \rightarrow X$. We have to show that $Z=X \times Y$. Suppose that $Z \neq X \times Y$. Applying (2.1) to the map $\pi \circ \sigma: X \times Y \times \mathbb{A}^{1} \rightarrow X$, we see that Z is closed in $X \times Y$. Clearly, Z and the singular locus $\operatorname{Sing}(X \times Y)$ are invariant for σ, hence so is the open set $U=(X \times Y) \backslash(Z \cup \operatorname{Sing}(X \times Y))$. Then $\pi(U)$ has nonempty interior and is the union of k-uniruled curves that are images of σ 's orbits in U. Since $\operatorname{Sing}(X \times Y)=(\operatorname{Sing}(X) \times Y) \cup$ $(X \times \operatorname{Sing}(Y))$, we have $\pi(U) \subset \operatorname{Reg}(X)$, which contradicts the fact that $\operatorname{Reg}(X)$ is not k-uniruled.

This lemma implies that $k[X] \otimes \operatorname{ML}(Y) \subset \operatorname{ML}(X \times Y)$ in Theorem 2 , the opposite inclusion is a consequence of (2.2).

In the proof of Corollary 3 we use the following:
(2.3) $k[X]$ is algebraically closed in $k[X \times Y]$ for affine varieties X, Y.

Proof. Suppose that there exists $f \in k[X \times Y] \backslash k[X]$ satisfying an equation $a_{n} f^{n}+\cdots+a_{0}=0$ with $a_{i} \in k[X], a_{n} \neq 0$. By (2.1) the set of points
$x \in X$ such that f is constant on $x \times Y$ is a proper closed subset of X. It follows that the map

$$
F: X \times Y \rightarrow X \times \mathbb{A}^{1}, \quad F(x, y)=(x, f(x, y)),
$$

is dominant. Then for the monomorphism $F^{*}: k[X][t] \rightarrow k[X \times Y]$ we have

$$
F^{*}\left(a_{n} t^{n}+\cdots+a_{0}\right)=a_{n} f^{n}+\cdots+a_{0}=0,
$$

contradiction.
Proof of Corollary 3. Let $\varphi: k[X \times Z] \rightarrow k[Y \times Z]$ be an isomorphism. We have to show that $\varphi(k[X])=k[Y]$. By Theorem 2, $\operatorname{ML}(X \times Z)=k[X] \otimes$ $\operatorname{ML}(Z)=k[X]$. From (2.2) it follows that $\varphi(k[X])=\varphi(\operatorname{ML}(X \times Z))=$ $\operatorname{ML}(Y \times Z) \subset \operatorname{ML}(Y) \otimes \operatorname{ML}(Z) \subset k[Y]$. Obviously, X and Y have equal dimensions, so the extension $\varphi(k[X]) \subset k[Y]$ is algebraic. By (2.3), $\varphi(k[X])$ is algebraically closed in $k[Y \times Z]$, which implies that $\varphi(k[X])=k[Y]$.

References

[1] S. S. Abhyankar, P. Eakin and W. Heinzer, On the uniqueness of the coefficient ring in a polynomial ring, J. Algebra 23 (1972), 310-342.
[2] A. Crachiola and L. Makar-Limanov, On the rigidity of small domains, ibid. 284 (2005), 1-12.
[3] R. Dryło, Non-unirulednees and the cancellation problem (II), Ann. Polon. Math. 92 (2007), 41-48.
[4] T. Fujita and S. Iitaka, Cancellation theorem for algebraic varieties, J. Fac. Sci. Univ. Tokyo 24 (1977), 123-127.
[5] S. Iitaka, An Introduction to Birational Geometry of Algebraic Varieties, Springer, New York, 1982.
[6] Z. Jelonek, Testing sets for properness of polynomial mappings, Math. Ann. 315 (1999), 1-35.
[7] A. Stasica, Geometry of the Jelonek set, J. Pure Appl. Algebra 137 (2005), 49-55.

Robert Dryło
Instytut Matematyczny PAN
Śniadeckich 8
00-956 Warszawa, Poland
and
Instytut Matematyki
Uniwersytet Jana Kochanowskiego w Kielcach
Świętokrzyska 15
25-406 Kielce, Poland
E-mail: r.drylo@impan.pl

[^0]: 2010 Mathematics Subject Classification: 13A50, 14R10, 14R20.
 Key words and phrases: Makar-Limanov invariant, additive group actions, cancellation problem.

