FUNCTIONAL ANALYSIS

The Dual of a Non-reflexive L-embedded Banach Space Contains l^{∞} Isometrically

by

Hermann PFITZNER

Presented by Stanisław KWAPIEŃ

Summary. A Banach space is said to be L-embedded if it is complemented in its bidual in such a way that the norm between the two complementary subspaces is additive. We prove that the dual of a non-reflexive L-embedded Banach space contains l^{∞} isometrically.

This note is an afterthought to a result of Dowling [2] according to which a dual Banach space contains an isometric copy of c_0 if it contains an asymptotic one. (For definitions see below.) It is known ([7] or [4, Th. IV.2.7]) that the dual of a non-reflexive L-embedded Banach space contains c_0 isomorphically. For a special class of L-embedded Banach spaces the construction of the c_0 -copy has been improved so as to yield an asymptotic one ([8, Prop. 6]) and it turns out that this improvement is possible in the general case, which together with Dowling's result yields isometric copies of c_0 in the dual of an L-embedded Banach space. As in [7], we will prove a bit more by constructing the c_0 -copy within the context of Pełczyński's property (V^{*}), that is, the c_0 -basis will be constructed so as to behave approximately like biorthogonal functionals on the basis of a given l^1 -basis in X; see (3) and (4) below where in particular the value $\tilde{c}_J(x_n)$ in (3) is optimal. (For the definition and some basic results on Pełczyński's property (V^{*}) see [4].)

Preliminaries. A projection P on a Banach space Z is called an L-projection if ||Pz|| + ||z - Pz|| = ||z|| for all $z \in Z$. A Banach space X is called L-embedded (or an L-summand in its bidual) if it is the image of an

DOI: 10.4064/ba58-1-4

²⁰¹⁰ Mathematics Subject Classification: Primary 46B20; Secondary 46B03, 46B04, 46B26. Key words and phrases: L-embedded Banach spaces, L-summand, isometric copies of c_0 .

L-projection on its bidual. In this case we write $X^{**} = X \oplus_1 X_s$. Among classical Banach spaces, the Hardy space H_0^1 , L^1 -spaces and, more generally, the preduals of von Neumann algebras or of JBW*-triples serve as examples of L-embedded spaces. A sequence (x_n) in a Banach space X is said to span c_0 asymptotically isometrically (or just to span c_0 asymptotically) if there is a null sequence (δ_n) in [0, 1] such that

$$\sup (1 - \delta_n) |\alpha_n| \le \left\| \sum \alpha_n x_n \right\| \le \sup (1 + \delta_n) |\alpha_n|$$

for all $(\alpha_n) \in c_0$. X is said to contain c_0 asymptotically if it contains such a sequence (x_n) . Recall the routine fact that if (x_n^*) in X^* is equivalent to the canonical basis of c_0 then $\sum \alpha_n x_n^*$ makes sense for all $(\alpha_n) \in l^\infty$ in the w^* -topology of X^* , and by lower w^* -semicontinuity of the norm an estimate $\|\sum \alpha_n x_n^*\| \leq M \sup |\alpha_n|$ that holds for all $(\alpha_n) \in c_0$ extends to all $(\alpha_n) \in l^\infty$. The Banach spaces we consider in this note are real or complex; the set \mathbb{N} starts at 1.

To a bounded sequence (x_n) in a Banach space X we associate its James constant

$$c_J(x_n) = \sup c_m$$
 where $c_m = \inf_{\sum_{n \ge m} |\alpha_n| = 1} \left\| \sum_{n \ge m} \alpha_n x_n \right\|$

(the sequence (c_m) is increasing). If (x_n) is equivalent to the canonical basis of l^1 then $c_J(x_n) > 0$; more specifically, $c_J(x_n) > 0$ if and only if there is an integer m such that $(x_n)_{n\geq m}$ is equivalent to the canonical basis of l^1 . (Roughly speaking, the number $c_J(x_n)$ may be thought of as the "approximately best l^1 -basis constant" of (x_n) ; more precisely, there is a null sequence (τ_m) in [0,1[(determined by $c_m = (1-\tau_m)c_J(x_n))$ such that $\|\sum_{n=m}^{\infty} \alpha_n x_n\| \ge (1-\tau_m)c_J(x_n)\sum_{n=m}^{\infty} |\alpha_n|$ for all $(\alpha_n) \in l^1$ and $m \in \mathbb{N}$, and $c_J(x_n)$ cannot be replaced by a strictly greater constant.) It is immediate from the definition of the James constant of an l^1 -sequence (x_n) that there are pairwise disjoint finite sets $A_l \subset \mathbb{N}$ and a sequence (λ_n) of scalars such that $\sum_{k\in A_l} |\lambda_k| = 1$ and $\tilde{z}_l \to c_J(x_n)$ where $\tilde{z}_l = \sum_{k\in A_l} \lambda_k x_k$. James' l^1 -distortion theorem states that an appropriate subsequence of the sequence (z_l) defined by $z_l = \tilde{z}_l/\|\tilde{z}_l\|$ spans l^1 almost isometrically in the sense that

(1)
$$(1-2^{-m})\sum_{l=m}^{\infty} |\alpha_l| \le \left\|\sum_{l=m}^{\infty} \alpha_l z_l\right\| \le (1+2^{-m})\sum_{l=m}^{\infty} |\alpha_l|$$

for all $m \in \mathbb{N}$ and all $(\alpha_n) \in l^1$. We will need the fact that if (z_l) spans l^1 almost isometrically in an L-embedded space X and if $x^{**} \in X^{**}$ is a w^* -accumulation point of the z_l then $x^{**} \in X_s$ and $||x^{**}|| = 1$. This follows from the proof of [8, Lem. 1] (or from a more elementary argument proving that dist $(x^{**}, X) = ||x_s|| = 1$ where $x^{**} = x + x_s$).

If one passes to a subsequence (x_{n_k}) of (x_n) then $c_J(x_{n_k}) \ge c_J(x_n)$; hence it makes sense to define

$$\tilde{c}_J(x_n) = \sup_{n_k} c_J(x_{n_k}).$$

The standard reference for L-embedded Banach spaces is the monograph [4, Chap. IV]. For general Banach space theory and undefined notation we refer to [1], [5], or [6].

The main result of this note is

THEOREM 1. Let X be an L-embedded Banach space and let (x_n) be equivalent to the canonical basis of l^1 . Then there is a sequence (x_n^*) in X^* that generates l^{∞} isometrically, more precisely

(2)
$$\left\|\sum \alpha_n x_n^*\right\| = \sup |\alpha_n| \quad \text{for all } (\alpha_n) \in l^{\infty},$$

and there is a strictly increasing sequence (p_n) in \mathbb{N} such that

(3)
$$\lim |x_n^*(x_{p_n})| = \tilde{c}_J(x_m),$$

(4)
$$x_n^*(x_{p_l}) = 0 \quad \text{if } l < n.$$

In particular, the dual of a non-reflexive L-embedded Banach space contains an isometric copy of l^{∞} .

In order to prove the theorem we first state and prove Dowling's result in a way which fits our purpose.

PROPOSITION 2. Let (ε_n) be a null sequence in [0,1[, let (N_n) be a sequence of pairwise disjoint infinite subsets of \mathbb{N} and let (y_n^*) in the dual of a Banach space Y span c_0 such that

(5)
$$\left\|\sum \alpha_n y_n^*\right\| \le \sup (1 + \varepsilon_n) |\alpha_n| \quad and \quad \|y_n^*\| \to 1$$

for all $(\alpha_n) \in c_0$. Then the elements

(6)
$$x_n^* = \sum_{k \in N_n} \frac{y_k^*}{1 + \varepsilon_k}$$

generate l^{∞} isometrically (as in (2)).

Proof. Clearly, $||x_n^*|| \leq 1$ for all $n \in \mathbb{N}$ by the first half of (5). For the inverse inequality we have

$$\|x_n^*\| \ge \left\|2\frac{y_m^*}{1+\varepsilon_m}\right\| - \left\|\frac{y_m^*}{1+\varepsilon_m} - \sum_{k \in N_n, \, k \neq m} \frac{y_k^*}{1+\varepsilon_k}\right\| \ge 2\frac{\|y_m^*\|}{1+\varepsilon_m} - 1$$

for all $m \in N_n$, hence $||x_n^*|| \ge 1$ by the second half of (5), which proves $||x_n^*|| = 1$.

Similarly we show (2): First, " \leq " of (2) follows from the first half of (5); second, by the inequality just shown we have

$$\left\|\sum \alpha_n x_n^*\right\| \ge 2|\alpha_m| - \left\|\alpha_m x_m^* - \sum_{n \neq m} \alpha_n x_n^*\right\| \ge 2|\alpha_m| - \sup |\alpha_n|$$

for all $m \in \mathbb{N}$, giving " \geq " of (2).

Proof of the Theorem. Let (δ_n) be a sequence in]0,1[converging to 0. Suppose (x_n) is an l^1 -basis and write $\tilde{c} = \tilde{c}_J(x_n)$ for short.

Observation. Given $\tau > 0$ there is a subsequence (x_{n_k}) of (x_n) such that $|\tilde{c} - c_J(x_{n_k})| < \tau$. By James' l^1 -distortion theorem, as described above, there are pairwise disjoint finite sets $A_l \subset \{n_k \mid k \in \mathbb{N}\}$ and a sequence (λ_n) of scalars such that (1) holds with λ_n , \tilde{z}_l , z_l as above; furthermore $\|\tilde{z}_l\| \to c_J(x_{n_k})$, whence the existence of l' such that $|\tilde{c} - \|\tilde{z}_{l'}\| | < \tau$.

By induction over $n \in \mathbb{N}$ we will construct finite sequences $(y_i^{(n)*})_{i=1}^n$ in X^* , a sequence (\tilde{y}_n) in X, pairwise disjoint finite sets $C_n \subset \mathbb{N}$ and a scalar sequence (μ_n) such that, with the notation $y_n = \tilde{y}_n / \|\tilde{y}_n\|$,

(7)
$$\sum_{k \in C_n} |\mu_k| = 1, \quad \tilde{y}_n = \sum_{k \in C_n} \mu_k x_k, \quad |\tilde{c} - \|\tilde{y}_n\| | < \delta_n,$$

(8)
$$|y_i^{(n)*}(y_i)| > 1 - \delta_i \quad \forall i \le n,$$

(9)
$$y_i^{(n)*}(y_l) = 0 \qquad \forall l < i \le n,$$

(10)
$$y_i^{(n)*}(x_p) = 0$$
 $\forall p \in C_l, \forall l < i \le n,$

(11)
$$\left\|\sum_{i=1}^{m} \alpha_i y_i^{(n)*}\right\| \le \max_{i \le m} \left(1 + (1 - 2^{-n})\delta_i\right) |\alpha_i| \quad \forall m \le n, \ \alpha_i \text{ scalars.}$$

For n = 1 we use the observation above with $\tau = \delta_1$ and choose l_1 such that $|||\tilde{z}_{l_1}|| - \tilde{c}| < \delta_1$. Then we choose $y_1^{(1)*}$ such that $||y_1^{(1)*}|| = 1$ and $y_1^{(1)*}(z_{l_1}) = ||z_{l_1}||$. It remains to set $C_1 = A_{l_1}$, $\mu_k = \lambda_k$ for $k \in C_1$ and $\tilde{y}_1 = \tilde{z}_{l_1}$.

For the induction step $n \mapsto n+1$ we recall that $(P^*)_{|X^*}$ is an isometric isomorphism from X^* onto X_s^{\perp} , that $X^{***} = X^{\perp} \oplus_{\infty} X_s^{\perp}$ and that $(P^*x^*)_{|X} = (x^*)_{|X}$ for all $x^* \in X^*$. Let (z_l) be as in the observation above with $\tau = \delta_{n+1}$ and let $z_s \in X^{**}$ be a w^* -accumulation point of the z_l . Then $z_s \in X_s$ and $||z_s|| = 1$ (as explained in the preliminaries). Choose $t \in \ker P^* \subset X^{***}$ such that ||t|| = 1 and $t(z_s) = ||z_s||$. Put

$$E = \ln(\{P^* y_i^{(m)*} \mid i \le m \le n\} \cup \{t\}) \subset X^{***},$$

$$F = \ln(\{z_s\} \cup \{x_p \mid p \in \bigcup_{l \le n} C_l\}) \subset X^{**}$$

and choose $\eta > 0$ such that

$$(1+\eta)(1+(1-2^{-n})\delta_i) < 1+(1-2^{-(n+1)})\delta_i$$
 and $\eta < (1-2^{-(n+1)})\delta_{n+1}$

for all $i \leq n.$ The principle of local reflexivity provides an operator $R: E \to X^*$ such that

(12)
$$(1-\eta) \|e^{***}\| \le \|Re^{***}\| \le (1+\eta) \|e^{***}\|,$$

(13)
$$f^{**}(Re^{***}) = e^{***}(f^{**}),$$

for all $e^{***} \in E$ and $f^{**} \in F$.

We define $y_i^{(n+1)*} = R(P^*y_i^{(n)*})$ for $i \leq n$ and $y_{n+1}^{(n+1)*} = Rt$ and obtain $(11)_{n+1}$ (with $\alpha_i = 0$ if $m < i \leq n+1$) by

$$\begin{aligned} \left\|\sum_{i=1}^{n+1} \alpha_{i} y_{i}^{(n+1)*}\right\| &\stackrel{(12)}{\leq} (1+\eta) \left\| \left(\sum_{i=1}^{n} \alpha_{i} P^{*} y_{i}^{(n)*}\right) + \alpha_{n+1} t \right\| \\ &= (1+\eta) \max\left(\left\|\sum_{i=1}^{n} \alpha_{i} P^{*} y_{i}^{(n)*}\right\|, \|\alpha_{n+1} t\| \right) \\ &= (1+\eta) \max\left(\left\|\sum_{i=1}^{n} \alpha_{i} y_{i}^{(n)*}\right\|, \|\alpha_{n+1} t\| \right) \\ &\stackrel{(11)}{\leq} (1+\eta) \max\left(\max_{i \leq n} (1+(1-2^{-n}) \delta_{i}) |\alpha_{i}|, |\alpha_{n+1}| \right) \\ &\leq \max_{i \leq n+1} (1+(1-2^{-(n+1)}) \delta_{i}) |\alpha_{i}|. \end{aligned}$$

Since z_s is a w^* -cluster point of (z_l) we have

$$|y_{n+1}^{(n+1)*}(z_l)| > |z_{\rm s}(y_{n+1}^{(n+1)*})| - \delta_{n+1}$$

$$\stackrel{(13)}{=} |t(z_{\rm s})| - \delta_{n+1} = 1 - \delta_{n+1}$$

for infinitely many l; furthermore, an l_{n+1} can be chosen among those l so as to obtain $|\|\tilde{z}_{l_{n+1}}\| - \tilde{c}| < \delta_{n+1}$. Set $C_{n+1} = A_{l_{n+1}}$, $\tilde{y}_{n+1} = \tilde{z}_{l_{n+1}}$, $\mu_k = \lambda_k$ for $k \in C_{n+1}$. Then (7)_{n+1} holds and (8)_{n+1} holds for i = n + 1. For $i \leq n$, (8)_{n+1} follows from

$$y_i^{(n+1)*}(y_i) = (P^* y_i^{(n)*})(y_i) = y_i^{(n)*}(y_i) \stackrel{(8)}{>} 1 - \delta_i$$

Condition $(10)_{n+1}$ holds for i = n+1 by

$$y_{n+1}^{(n+1)*}(x_p) = (Rt)(x_p) \stackrel{(13)}{=} t(x_p) = 0 \quad \forall p \in C_l, \, \forall l < n+1$$

and it holds for i < n+1 by

$$y_i^{(n+1)*}(x_p) = (P^* y_i^{(n)*})(x_p) = y_i^{(n)*}(x_p) \stackrel{(10)}{=} 0 \quad \forall p \in C_l, \, \forall l < i.$$

Condition $(9)_{n+1}$ follows from $(10)_{n+1}$. This ends the induction.

Now we define $y_i^* = \frac{1}{1+\delta_i} \lim_{n \in \mathcal{U}} y_i^{(n)*}$ for all $i \in \mathbb{N}$ where \mathcal{U} is a fixed nontrivial ultrafilter on \mathbb{N} and where the limit is understood in the w^* -topo-

logy of X^* . Then by w^* -lower semicontinuity of the norm and by (11),

$$\left\|\sum \alpha_i y_i^*\right\| \le \sup \left(1 + \delta_i\right) \frac{|\alpha_i|}{1 + \delta_i} = \sup |\alpha_i|$$

for all $(\alpha_i) \in l^{\infty}$. In particular, $||y_i^*|| \leq 1$, hence $||y_i^*|| \to 1$ by (8) and (y_i^*) satisfies (5) for $\varepsilon_n = 0$.

Let (N_n) be a sequence of pairwise disjoint infinite subsets of \mathbb{N} such that (i_n) increases strictly where $i_n = \min N_n$. By the proposition the sequence defined by

$$x_n^* = \sum_{i \in N_n} y_i^*$$

generates l^{∞} isometrically and we have

$$|x_n^*(y_{i_n})| \stackrel{(9)}{=} |y_{i_n}^*(y_{i_n})| \stackrel{(8)}{\geq} \frac{1 - \delta_{i_n}}{1 + \delta_{i_n}}$$

By construction of the y_i there is, for each $n \in \mathbb{N}$, an index $p_n \in C_{i_n}$ such that

$$(1+\delta_{i_n})|x_n^*(x_{p_n})| \ge (1-\delta_{i_n})\|\tilde{y}_{i_n}\| \stackrel{(7)}{\ge} (1-\delta_{i_n})(\tilde{c}-\delta_{i_n}),$$

which will yield " \geq " of (3). In order to show " \leq " of (3) suppose to the contrary that $x_{n_m}^*(x_{p_{n_m}}) > \kappa + \tilde{c}$ for appropriate subsequences, all m and $\kappa > 0$. According to an extraction lemma of Simons [10] we may furthermore suppose that $\sum_{j \neq m} |x_{n_j}^*(x_{p_{n_m}})| < \kappa/2$ for all m. Then given (α_m) and θ_m such that $\theta_m \alpha_m = |\alpha_m|$ we obtain

(14)
$$\left\|\sum \alpha_m x_{p_{n_m}}\right\| \ge \left(\sum_j \theta_j x_{n_j}^*\right) \left(\sum_m \alpha_m x_{p_{n_m}}\right)$$
$$\ge (\kappa + \tilde{c}) \sum_m |\alpha_m| - \sum_m \sum_{j \ne m} |\alpha_m| |x_{n_j}^*(x_{p_{n_m}})$$
$$\ge (\kappa/2 + \tilde{c}) \sum_m |\alpha_m|,$$

which yields the contradiction $c_J(x_{p_{n_m}}) > \tilde{c}$ and thus shows " \leq " and all of (3), whereas (4) follows from (10) via $y_i^*(x_p) = 0$ for $p \in C_l, l < i$.

The last assertion of the theorem is immediate from the fact that non-reflexive L-embedded spaces contain l^1 isomorphically [4, IV.2.3].

REMARKS. 1. It is not clear whether (4) can be obtained also for l > n. What can be said by Simons' extraction lemma (used in the proof) is that, under the assumptions of the theorem and given $\varepsilon > 0$, it is possible (after passing to appropriate subsequences) to deduce in addition to (4) that $\sum_{n=1}^{l-1} |x_n^*(x_{p_l})| = \sum_{n \neq l} |x_n^*(x_{p_l})| < \varepsilon$ for all l. In case $\tilde{c}_J(x_n) = 1 = \lim ||x_n||$ (which happens when the x_n span l^1 almost isometrically) this can be improved to

(15)
$$\sum_{n \neq l} |x_n^*(x_{p_l})| = \left(\sum_n |x_n^*(x_{p_l})|\right) - |x_l^*(x_{p_l})| \le ||x_{p_l}|| - |x_l^*(x_{p_l})| \to 0.$$

One might also construct straightforward perturbations of the x_n^* in order to get (4) for $l \neq n$ but then it is not clear whether these perturbations can be arranged to span c_0 isometrically, not just almost isometrically.

Since in general L-embedded spaces do not contain l^1 isometrically (see below, last remark) it is not in general possible, in case all x_n have the same norm, to improve (3) and (4) so as to obtain $x_n^*(x_{p_l}) = \tilde{c}(x_m)$ if l = n and = 0 if $l \neq n$.

2. As already alluded to in the introduction, the construction of c_0 in this paper bears much resemblance to the one of [7]. A different way to construct c_0 is contained in [9] but it seems unlikely that this construction can be improved to yield an isometric c_0 -copy.

3. It follows from (3) (or rather from a reasoning similar to the one in (14)) that $c(x_{p_n}) \geq \tilde{c}(x_n)$, which means that in L-embedded spaces the sup in the definition of \tilde{c}_J is attained by the James constant of an appropriate subsequence. For general Banach spaces this is not known, although it can be shown by a routine diagonal argument that each bounded sequence (x_n) admits a c_J -stable subsequence (x_{n_k}) (meaning that $\tilde{c}_J(x_{n_k}) = c_J(x_{n_k})$) whose James constant is arbitrarily near to $\tilde{c}(x_n)$.

4. Each normalized sequence (x_n) in an L-embedded Banach space that spans l^1 almost isometrically contains a subsequence each of whose w^* accumulation points in the bidual attains its norm on the dual unit ball. To see this, let (x_n^*) and (x_{p_n}) be the sequences given by the theorem and by Simons' extraction lemma (see (15) above), let x_s be a w^* -accumulation point of the x_{p_n} and let $x^* = \sum x_n^*$; then $||x^*|| = 1$ and on the one hand $||x_s|| = 1$ by [8] and on the other hand $x_s(x^*) = \lim x^*(x_{p_n}) \stackrel{(15)}{=} \lim x_n^*(x_{p_n}) \stackrel{(3)}{=} c_J(x_n) = 1$.

It would be interesting to know whether this remark holds for the whole sequence (x_n) instead of only a subsequence (x_{p_n}) . A kind of converse follows from [9, Rem. 2] for separable X: If $x_s \in X_s$ attains its norm on the dual unit ball then it does so on the sum of a wuC-series.

5. Let us finally note that the presence of isometric c_0 -copies in X^* does not necessarily entail the presence of isometric copies of l^1 in X even if X is the dual of an M-embedded Banach space. This follows from [4, Cor. III.2.12], which states that there is an L-embedded Banach space which is the dual of an M-embedded space (to wit, the dual of c_0 with an equivalent norm) which is strictly convex and therefore does not contain l^1 isometrically although it contains, as do all non-reflexive L-embedded spaces, l^1 asymptotically ([8], see [3] for the definition of asymptotic copies $(^1)$ and the difference from almost isometric ones).

References

- [1] J. Diestel, Sequences and Series in Banach Spaces, Springer, Berlin, 1984.
- [2] P. N. Dowling, Isometric copies of c₀ and ℓ[∞] in duals of Banach spaces, J. Math. Anal. Appl. 244 (2000), 223–227.
- [3] P. N. Dowling, W. B. Johnson, C. J. Lennard, and B. Turett, *The optimality of James's distortion theorems*, Proc. Amer. Math. Soc. 125 (1997), 167–174.
- [4] P. Harmand, D. Werner, and W. Werner, *M-ideals in Banach Spaces and Banach Algebras*, Lecture Notes in Math. 1547, Springer, 1993.
- [5] W. B. Johnson and J. Lindenstrauss (eds.), Handbook of the Geometry of Banach Spaces, Volumes 1 and 2, North-Holland, 2001, 2003.
- [6] J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces I and II*, Springer, Berlin, 1977, 1979.
- [7] H. Pfitzner, L-summands in their biduals have Pełczyński's property (V*), Studia Math. 104 (1993), 91–98.
- [8] —, A note on asymptotically isometric copies of l^1 and c_0 , Proc. Amer. Math. Soc. 129 (2001), 1367–1373.
- [9] —, Separable L-embedded Banach spaces are unique preduals, Bull. London Math. Soc. 39 (2007), 1039–1044.
- [10] S. Simons, On the Dunford-Pettis property and Banach spaces that contain c₀, Math. Ann. 216 (1975), 225–231.

Hermann Pfitzner Université d'Orléans BP 6759 F-45067 Orléans Cedex 2, France E-mail: hermann.pfitzner@univ-orleans.fr

> Received January 8, 2010; received in final form March 25, 2010 (7744)

 $^(^{1})$ In the literature there is another notion of "asymptotic l^{p} " which is quite different from the one of this note.