Remarks on the Stone Spaces of the Integers and the Reals without AC

by
Horst HERRLICH, Kyriakos KEREMEDIS and Eleftherios TACHTSIS
Presented by Czestaw RYLL-NARDZEWSKI

Summary. In ZF, i.e., the Zermelo-Fraenkel set theory minus the Axiom of Choice AC, we investigate the relationship between the Tychonoff product $\mathbf{2}^{\mathcal{P}(X)}$, where $\mathbf{2}$ is $2=\{0,1\}$ with the discrete topology, and the Stone space $S(X)$ of the Boolean algebra of all subsets of X, where $X=\omega, \mathbb{R}$. We also study the possible placement of well-known topological statements which concern the cited spaces in the hierarchy of weak choice principles.

1. Notation and terminology. Let $\mathbf{X}=(X, T)$ be a topological space. Throughout the paper, we shall denote topological spaces by bold letters and underlying sets by non-bold letters.

A space \mathbf{X} is said to be compact iff every open cover \mathcal{U} of X has a finite subcover \mathcal{V}. Equivalently, \mathbf{X} is compact iff every family \mathcal{G} of closed subsets of X with the finite intersection property, fip for abbreviation, has a non-empty intersection.

Furthermore, \mathbf{X} is said to be a Loeb space iff $\mathcal{K}(\mathbf{X}) \backslash\{\emptyset\}$, where $\mathcal{K}(X)$ is the family of all closed subsets of \mathbf{X}, has a choice function. A choice function f of $\mathcal{K}(\mathbf{X}) \backslash\{\emptyset\}$ is called a Loeb function.

Given a set $X, \mathbf{2}^{X}$ will denote the Tychonoff product of the discrete space $2(2=\{0,1\})$, and

$$
\mathcal{B}_{X}=\{[p]: p \in \operatorname{Fn}(X, 2)\}
$$

where $\operatorname{Fn}(X, 2)$ is the set of all finite partial functions from X into 2 and $[p]=\left\{f \in 2^{X}: p \subset f\right\}$, will denote the standard base for the product topology on 2^{X}.

2010 Mathematics Subject Classification: 03E25, 54B10, 54D30, 54D80.
Key words and phrases: Axiom of Choice, weak axioms of choice, compactness, filters, ultrafilters, Stone spaces, Boolean prime ideal theorem, Loeb spaces.

If $X \neq \emptyset$ then $S(X)$ will denote the Stone space of the Boolean algebra of all subsets of X, i.e., the set of all ultrafilters on X together with the topology having as a base the collection of all (clopen) sets of the form

$$
[Z]=\{\mathcal{F} \in S(X): Z \in \mathcal{F}\}, \quad Z \subseteq X
$$

A family \mathcal{F} of subsets of X is independent if for any two finite, disjoint sets $\mathcal{A}, \mathcal{B} \subseteq \mathcal{F}$ the set $(\bigcap \mathcal{A}) \cap\left(\bigcap\left\{B^{c}: B \in \mathcal{B}\right\}\right)$ is infinite.

Next we list the choice principles we shall be using in the paper.

1. CAC (Form 8 in [4]): AC restricted to countable families of non-empty sets.
2. DC (Principle of Dependent Choices and form 43 in [4): For every set $X \neq \emptyset$, for every binary relation R on X such that $\operatorname{Dom}(R)$ $=X$, there is a sequence $\left(x_{n}\right)_{n \in \omega} \subseteq X$ such that $\forall n \in \omega, x_{n} R x_{n+1}$.
3. $\operatorname{SPFB}(X)$: For every family $\left\{\mathcal{H}_{i}: i \in I\right\}$ of filterbases of X there exists a family $\left\{\mathcal{F}_{i}: i \in I\right\}$ of ultrafilters of X satisfying $\mathcal{H}_{i} \subseteq \mathcal{F}_{i}$ for all $i \in I$.
4. WSPFB (X) : For every family $\left\{\mathcal{H}_{i}: i \in I\right\}$ of filterbases of X such that for every $i \in I$, there exists an ultrafilter \mathcal{F} of X extending \mathcal{H}_{i}, there exists a family $\left\{\mathcal{F}_{i}: i \in I\right\}$ of ultrafilters of X satisfying $\mathcal{H}_{i} \subseteq \mathcal{F}_{i}$ for all $i \in I$.
5. $\mathbf{B P I}(X)$: Every filterbase of X is included in an ultrafilter of X.
6. BPI (Boolean Prime Ideal Theorem and form 14 in [4]): Every Boolean algebra has a prime ideal. Equivalently, for every set X, BPI (X).
7. $\mathbf{U F}(X)$: There is a free ultrafilter on X.

Note that $\mathbf{B P I} \rightarrow \mathbf{B P I}(\mathbb{R}) \rightarrow \mathbf{B P I}(\omega) \rightarrow \mathbf{U F}(\omega)$. In [1] it is shown that $\mathbf{U F}(\omega)$ is equivalent to $\mathbf{U F}(\mathbb{R})$ and in [6] it is shown that $\operatorname{BPI}(\omega)$ does not imply $\mathbf{B P I}(\mathbb{R})$ in $\mathbf{Z F}$. Whether $\mathbf{U F}(\omega) \rightarrow \mathbf{B P I}(\omega)$ is an open problem.

Throughout the paper \aleph will always denote a well-ordered infinite cardinal number. As usual, ω denotes the set of natural numbers and \mathbb{N} denotes the set of positive integers.
2. Introduction and some preliminary results. In this paper we study the relationship between the spaces $2^{\mathcal{P}(X)}$ and $S(X)$, where $X=\omega, \mathbb{R}$, with respect to compactness, the Loeb property, embeddings, and cardinality of $S(X)$ and of infinite closed subsets of $S(X)$. Moreover, we are interested in the placement of well-known topological results concerning $\mathbf{2}^{\mathcal{P}(X)}$ and $S(X)$ in the hierarchy of weak choice principles.

Some of the goals we intend to meet in the current investigation are listed below:
(1) In ZF and for $X=\omega, \mathbb{R}$, the principle $\mathbf{B P I}(X)$ implies " $\mathbf{2}^{\mathcal{P}(X)}$ is a continuous image of $S(X)$ " (Theorem 6(i)).
(2) In ZF and for $X=\omega, \mathbb{R}$, if $S(X)$ is compact and Loeb then $|S(X)|=$ $\left|2^{\mathcal{P}(X)}\right|$, which in turn implies $\mathbf{U F}(X)$ (Theorem 6 (iii)).
(3) In $\mathbf{Z F}$, for every infinite set $X, S(X)$ embeds as a closed subspace of $2^{\mathcal{P}(X)}$ (Theorem $7(\mathrm{i})$).
(4) $\operatorname{In} \mathbf{Z F C}(=\mathbf{Z F}+\mathbf{A C}), \mathbf{2}^{\mathcal{P}(X)}$ does not embed as a subspace of $S(X)$, $X=\omega, \mathbb{R}$ (Corollary 11(ii)).
(5) DC implies that every infinite closed subset of $S(\omega)$ contains a topological copy of $S(\omega)$ (Theorem 10(i)).
(6) DC and " $S(\omega)$ is compact and Loeb" together imply that every infinite closed subset of $S(\omega)$ has size $\left|2^{\mathbb{R}}\right|$ (Theorem 10\rangle (ii)).
(7) $\operatorname{BPI}(\omega)$ implies that $S(\omega) \backslash \omega$ contains a topological copy of $S(\omega)$, which in turn implies UF (ω) (Theorem 10(iii)).
(8) CAC implies that for every infinite set X and for every countably infinite relatively discrete subspace G of $S(X), \bar{G}$ is homeomorphic to $S(\omega)$ (Theorem 10 (iv)).
Before launching into the proofs of the main results we present some preliminary facts. The first one, Proposition 1 below, is a good reason for studying Loeb spaces. In addition, this kind of space is useful because of Proposition 2 which is a ZF result concerning Tychonoff products of compact spaces.

Proposition 1.
(i) For every set $X, S(X)$ is Loeb iff $\mathbf{W S P F B}(X)$.
(ii) For every set $X, S(X)$ is compact and Loeb iff $\mathbf{S P F B}(X)$.
(iii) For every set $X, \mathbf{W S P F B}(X)$ and $\mathbf{B P I}(X)$ iff $\mathbf{S P F B}(X)$.
(iv) $\mathbf{W S P F B}(\omega)$ does not imply $\mathbf{S P F B}(\omega)$. Equivalently, " $S(\omega)$ is Loeb" does not imply " $S(\omega)$ is compact". In particular, WSPFB (ω) does not imply $\mathbf{B P I}(\omega)$.

Proof. (i) (\rightarrow) Fix a family $\left\{\mathcal{H}_{i}: i \in I\right\}$ of filterbases of X as in $\operatorname{WSPFB}(X)$ and let f be a Loeb function of $S(X)$. Clearly, $G_{i}=\bigcap\{[H]$: $\left.H \in \mathcal{H}_{i}\right\}$ is a non-empty closed subset of $S(X)$. It is straightforward to see that $\left\{\mathcal{F}_{i}=f\left(G_{i}\right): i \in I\right\}$ satisfies the conclusion of $\operatorname{WSPFB}(X)$ for the family $\left\{\mathcal{H}_{i}: i \in I\right\}$.
$(\mathrm{i})(\leftarrow)$ Since, for every $K \in \mathcal{K}(S(X)) \backslash\{\emptyset\}, K=\bigcap\{[A]: A \in \mathcal{P}(X)$ and $K \subset[A]\}$, it follows that $\mathcal{H}_{K}=\{A \in \mathcal{P}(X): K \subset[A]\}$ is a filterbase of X included in every element of K. Hence, $\left\{\mathcal{H}_{K}: K \in \mathcal{K}(S(X)) \backslash\{\emptyset\}\right\}$ satisfies the hypotheses of $\operatorname{WSPFB}(X)$. Let $\left\{\mathcal{F}_{K}: K \in \mathcal{K}(S(X)) \backslash\{\emptyset\}\right\}$ satisfy the conclusion of $\operatorname{WSPFB}(X)$ for the collection $\left\{\mathcal{H}_{K}: K \in \mathcal{K}(S(X)) \backslash\{\emptyset\}\right\}$. It is straightforward to verify that the function $f: \mathcal{K}(S(X)) \backslash\{\emptyset\} \rightarrow S(X)$, $f(K)=\mathcal{F}_{K}$, is a Loeb function of $S(X)$.
(ii) is straightforward in view of (i) and the observation that $\operatorname{SPFB}(X)$ implies that every filterbase of X can be extended to an ultrafilter (equivalently, $S(X)$ is compact).
(iii) is obvious.
(iv) Any ZF model, such as Solovay's Model $\mathcal{M} 5(\aleph)$ in 4], satisfying the negation of UF (ω) satisfies WSPFB (ω) and the negation of $\operatorname{SPFB}(\omega)$ and of $\operatorname{BPI}(\omega)$.

Proposition $2([3],[10]) .(\mathbf{Z F})$ Let $\left(\mathbf{X}_{i}\right)_{i \in \mathcal{N}}$ be a family of compact T_{1} spaces. Then the product $\mathbf{X}=\prod_{i \in \aleph} \mathbf{X}_{i}$ is compact and Loeb iff there exists a family $\left(f_{i}\right)_{i \in \aleph}$ such that for all $i \in \aleph, f_{i}$ is a Loeb function for \mathbf{X}_{i}. In particular:
(i) $\mathbf{2}^{\aleph}$ (resp. $\left.[\mathbf{0}, \mathbf{1}]^{\aleph}\right)$ is compact and Loeb.
(ii) AC restricted to families of non-empty sets of reals (equivalently, " \mathbb{R} is well-orderable") implies " $\mathbf{}^{\mathbb{R}}$ is compact and Loeb".
In view of (ii) of Proposition 2, a number of questions arise at this point.
Question 1.
(i) Is any of the statements " $\mathbf{2}^{\mathbb{R}}$ is Loeb", " $\mathbf{2}^{\mathbb{R}}$ is compact" provable in ZF?
(ii) Does any of the statements " $\mathbf{2}^{\mathbb{R}}$ is Loeb", " $\mathbf{2}^{\mathbb{R}}$ is compact" imply $\mathrm{AC}(\mathbb{R})$?
(iii) Does the conjunction " $\mathbf{2}^{\mathbb{R}}$ is Loeb" and " $\mathbf{2}^{\mathbb{R}}$ is compact" imply $\mathbf{A C}(\mathbb{R})$?
(iv) Does " $\mathbf{2}^{\mathbb{R}}$ is Loeb" imply " $\mathbf{2}^{\mathbb{R}}$ is compact"?
(v) Does " $2^{\mathbb{R}}$ is compact" imply " $2^{\mathbb{R}}$ is Loeb"?

Regarding Question 1 (i), that " $2^{\mathbb{R}}$ is compact" is not provable in $\mathbf{Z F}$ has been established in [5], and that " $2^{\mathbb{R}}$ is Loeb" is not provable in ZF has been established in [8] (both fail in Cohen's Second Model $\mathcal{M} 7$ in [4]).

Regarding (ii) and (iii) the answer is in the negative. Indeed, BPI implies " $\boldsymbol{2}^{\mathbb{R}}$ is Loeb" and " $\boldsymbol{2}^{\mathbb{R}}$ is compact" and it is known that in Cohen's Basic Model $\mathcal{M 1}$ in [4], BPI holds but $\mathbf{A C}(\mathbb{R})$ fails.

Taking into account the following result from [6], we get a partial answer to Question 1(v):

THEOREM 3 ([6]). The following statements are pairwise equivalent:
(i) $\mathbf{2}^{\mathbb{R}}$ is compact.
(ii) $\operatorname{BPI}(\omega)$.
(iii) For every separable compact T_{2} space $\mathbf{X}, \mathbf{X}^{\mathbb{R}}$ is compact.
(iv) In a Boolean algebra \mathcal{B} of size $\leq|\mathbb{R}|$ every filter can be extended to an ultrafilter.
(v) Tychonoff products of finite subspaces of \mathbb{R} are compact.

Theorem 3 also justifies the introduction of the principle " $\mathbf{2}^{\mathcal{P}(\mathbb{R})}$ is compact" in the next lemma.

Lemma 4.
(i) " $\mathbf{2}^{\mathbb{R}}$ is compact" implies "for every separable compact T_{2} space \mathbf{X}, for every family $\mathcal{G}=\left\{G_{i}: i \in I \subseteq \mathbb{R}\right\}$ of non-empty closed subsets of \mathbf{X}, there exists a choice function of \mathcal{G} ". In particular, " $2^{\mathbb{R}}$ is compact" implies"every family $\mathcal{G}=\left\{G_{i}: i \in \mathbb{R}\right\}$ of non-empty closed subsets of $\mathbf{2}^{\mathbb{R}}$ has a choice function", and $\mathbf{B P I}(\omega)$ implies "for every family $\mathcal{G}=\left\{\mathcal{G}_{i}: i \in \mathbb{R}\right\}$ of filterbases of ω there exists a family $\left\{\mathcal{F}_{i}: i \in \mathbb{R}\right\}$ $\subset S(\omega)$ such that for every $i \in \mathbb{R}, \mathcal{G}_{i} \subset \mathcal{F}_{i}$ ".
(ii) " $2 \mathcal{P (\mathbb { R })}$ is compact" implies " $\mathbf{2}^{\mathbb{R}}$ is compact" and " $\mathbf{2}^{\mathbb{R}}$ is Loeb". In particular, $\mathbf{B P I}(\mathbb{R})$ implies $\mathbf{S P F B}(\omega)$ (for every family $\left\{\mathcal{H}_{i}: i \in I\right\}$ of filterbases of ω there exists a family $\left\{\mathcal{F}_{i}: i \in I\right\} \subset S(\omega)$ satisfying $\mathcal{H}_{i} \subset \mathcal{F}_{i}$ for all $\left.i \in I\right)$. Moreover, $\mathbf{B P I}(\mathbb{R})$ implies $|S(\omega)|=\left|2^{\mathbb{R}}\right|$.

Proof. (i) By Theorem 3, " $\mathbf{2}^{\mathbb{R}}$ is compact" implies " $\mathbf{X}^{\mathbb{R}}$ is compact". Let $\mathcal{G}=\left\{G_{i}: i \in I \subseteq \mathbb{R}\right\}$ be a family of non-empty closed subsets of \mathbf{X}. Then $\mathcal{S}=\left\{\pi_{i}^{-1}\left(G_{i}\right): i \in I\right\}$ is a family of closed subsets of $\mathbf{X}^{\mathbb{R}}$ with the fip. Thus, $\bigcap \mathcal{S} \neq \emptyset$. Clearly, any $f \in \bigcap \mathcal{S}$ is a choice function of \mathcal{G}.

The assertion about $\operatorname{BPI}(\omega)$ follows from Theorem 7 (i) below, the proof of $(i)(\rightarrow)$ of Proposition 1 and the first (or the second) assertion of (i) of the present lemma.
(ii) We have $2^{\mathbb{R}} \simeq\left(\prod_{x \in \mathbb{R}} 2^{\{x\}}\right) \times\left(\prod_{x \in \mathcal{P}(\mathbb{R}) \backslash \mathbb{R}}\{0\}\right)(\simeq$ means homeomorphic) and the latter set is a closed subset of $\mathbf{2}^{\mathcal{P}(\mathbb{R})}$. Thus, by our assumption, $\mathbf{2}^{\mathbb{R}}$ is compact.

On the other hand, since $\left(\mathbf{2}^{\mathbb{R}}\right)^{\mathcal{P}(\mathbb{R})} \simeq \mathbf{2}^{\mathbb{R} \times \mathcal{P}(\mathbb{R})}$ and $\mathbf{2}^{\mathbb{R} \times \mathcal{P}(\mathbb{R})} \simeq \mathbf{2}^{\mathcal{P}(\mathbb{R})}$ (we have $|\mathbb{R} \times \mathcal{P}(\mathbb{R})|=|\mathcal{P}(\mathbb{R})|$ because $|\mathcal{P}(\mathbb{R})| \leq|\mathbb{R} \times \mathcal{P}(\mathbb{R})|$ and $|\mathcal{P}(\mathbb{R})|=$ $|\mathcal{P}(\mathbb{R} \times \mathbb{R})|=|\mathcal{P}(\bigcup\{\{x\} \times \mathbb{R}: x \in \mathbb{R}\})| \geq|\bigcup\{\mathcal{P}(\{x\} \times \mathbb{R}): x \in \mathbb{R}\}|=$ $|\mathbb{R} \times \mathcal{P}(\mathbb{R})|)$, it follows, by our assumption, that $\left(\mathbf{2}^{\mathbb{R}}\right)^{\mathcal{P}(\mathbb{R})}$ is compact. Taking into account that the size of $\mathcal{K}\left(\mathbf{2}^{\mathbb{R}}\right)$ is $|\mathcal{P}(\mathbb{R})|$, we can finish off the reasoning as in the proof of (i).

The first assertion about $\operatorname{BPI}(\mathbb{R})$ follows from the proof of Proposition 1 and Theorem 7 (i). The second assertion follows from the original assertion of (ii) of the present lemma and Theorems 6 (iii) and 7 (i).

We would like to point out here that in view of Proposition 2 and the fact that \mathbb{R} is well-orderable in every Fraenkel-Mostowski permutation model (see [4]), every permutation model satisfies " $\mathbf{2}^{\mathbb{R}}$ is compact and Loeb".

Clearly, the set $A=\left\{\chi_{\{x\}}: x \in \mathbb{R}\right\}$, where for $U \subset \mathbb{R}, \chi_{U}$ is the characteristic function of U, is a relatively discrete subset of $2^{\mathbb{R}}$ and χ_{\emptyset} is an accumulation point of A such that every neighborhood of χ_{\emptyset} leaves out finitely many members of A. If $\mathbf{U F}(\omega)$ fails, then $|S(\omega)|=\aleph_{0}$ and
$S(\omega)$ cannot have uncountable relatively discrete sets. However, if we assume $\operatorname{BPI}(\omega)$, we find, as a corollary to Lemma $4(\mathrm{i})$, that $S(\omega)$ has uncountable relatively discrete subsets and, in particular, $|\mathbb{R}| \leq|S(\omega)|$.

Corollary 5. BPI (ω) implies " $S(\omega)$ has a relatively discrete subset of size $|\mathbb{R}|$ ". Hence, $|\mathbb{R}| \leq|S(\omega)|$.

Proof. Fix an almost disjoint family $\mathcal{A}=\left\{A_{i}: i \in \mathbb{R}\right\}$ of subsets of ω (for all $i, j \in \mathbb{R}, i \neq j,\left|A_{i} \cap A_{j}\right|<\aleph_{0}$) and choose, by our assumption and Lemma 4, for every $i \in \mathbb{R}$ an ultrafilter $\mathcal{F}_{i} \in S(\omega)$ which extends the family \mathcal{H}_{i} of all cofinite subsets of A_{i}. It can be readily verified that $F=\left\{\mathcal{F}_{i}: i \in \mathbb{R}\right\}$ is a relatively discrete subset of $S(\omega)$.
3. Main results. It is known that in $\mathbf{Z F C}$ the product $2^{\mathbb{R}}$ is a continuous image of $S(\omega)$. We show in the next theorem that, in $\mathbf{Z F}, \operatorname{BPI}(X)$ suffices to make $2^{\mathcal{P}(X)}$ a continuous image of $S(X), X=\omega, \mathbb{R}$.

Theorem 6.

(i) In $\mathbf{Z F}$, for $X=\omega, \mathbb{R}, \mathbf{B P I}(X)$ implies " $\mathbf{2}^{\mathcal{P}(X)}$ is a continuous image of $S(X)$ ".
(ii) It is relatively consistent with $\mathbf{Z F}$ that $S(\omega)$ is Loeb, but $\mathbf{2}^{\mathbb{R}}$ is not Loeb.
(iii) In $\mathbf{Z F}$, for $X=\omega, \mathbb{R}$, " $S(X)$ is compact and Loeb" implies " $|S(X)|=$ $\left|2^{\mathcal{P}(X)}\right| "$, which in turn implies $\mathbf{U F}(X)$.

Proof. (i) We prove the assertion for $X=\mathbb{R}$. The case $X=\omega$ can be treated similarly. Fix an independent family \mathcal{A} in \mathbb{R} of size $|\mathcal{P}(\mathbb{R})|$. Such a family is easily seen to exist in ZF. (If $D \subset \mathbf{2}^{\mathcal{P}(\mathbb{R})}$ is a dense set of size $|\mathbb{R}|$ (use the Hewitt-Marczewski-Pondiczery theorem [2, Theorem 2.3.15]), then the family $\mathcal{A}=\left\{A_{x}: x \in \mathcal{P}(\mathbb{R})\right\}$, where $A_{x}=\{d \in D: d(x)=1\}$, is clearly independent.) It suffices, in view of [9, Proposition 3: if $|X|=|Y|$, i.e., there is a bijection $f: X \rightarrow Y$, then $\mathbf{2}^{X}$ and $\mathbf{2}^{Y}$ are topologically homeomorphic], to show that the product $2^{\mathcal{A}}$ is a continuous image of $S(\mathbb{R})$. For every $\mathcal{F} \in S(\mathbb{R})$ let $f_{\mathcal{F}}=\chi_{\mathcal{F} \cap \mathcal{A}}$. Let $T: S(\mathbb{R}) \rightarrow \mathbf{2}^{\mathcal{A}}$ be the function $T(\mathcal{F})=f_{\mathcal{F}}$. Since \mathcal{A} is independent, it follows that for every $f \in 2^{\mathcal{A}}, \mathcal{W}_{f}=$ $f^{-1}(\{1\}) \cup\left\{A^{c}: f(A)=0\right\}$ has the fip. Hence, by $\operatorname{BPI}(\mathbb{R}), \mathcal{W}_{f}$ can be extended to an ultrafilter \mathcal{F}_{f}. Thus, $T\left(\mathcal{F}_{f}\right)=f$ and T is onto. Furthermore, for every $A \in \mathcal{A}$ and $i \in\{0,1\}$, the set

$$
T^{-1}([\{(A, i)\}])= \begin{cases}{[A]} & \text { if } i=1, \\ {\left[A^{c}\right]} & \text { if } i=0,\end{cases}
$$

is clearly open in $S(\mathbb{R})$. Thus, T is continuous and onto as required.
(ii) It is known that in Feferman's forcing model (Model $\mathcal{M} 2$ in [4) every ultrafilter on ω is principal. Hence $S(\omega)$ is a countable discrete space,
meaning that $S(\omega)$ is Loeb. On the other hand, in $\mathcal{M} 2$ there is a family of two-element subsets of $\mathcal{P}(\mathbb{R})$ having no choice functions (see [4]), hence by Theorem 12(ii) below, $\mathbf{2}^{\mathbb{R}}$ fails to be Loeb in this model.
(iii) For $X=\omega$ and for the first implication, it suffices to show that $\left|2^{\mathbb{R}}\right| \leq|S(\omega)|$. Let \mathcal{A} be an independent family of ω of size $|\mathbb{R}|$. Clearly, for each $h \in 2^{\mathcal{A}}, \mathcal{H}_{h}=h^{-1}(\{1\}) \cup\left\{A^{c}: h(A)=0\right\}$ is a subbase for a filter of ω. By our assumption and Proposition 1 (ii), pick for each $h \in 2^{\mathcal{A}}$ an ultrafilter \mathcal{U}_{h} which includes \mathcal{H}_{h}. Then the mapping $h \mapsto \mathcal{U}_{h}, h \in 2^{\mathcal{A}}$, is one-to-one.

For the second implication, note that if every ultrafilter on ω is fixed, then $|S(\omega)|=\aleph_{0}$, which is impossible in view of our assumption.

The assertions regarding $S(\mathbb{R})$ and $2^{\mathcal{P}(\mathbb{R})}$ are proved similarly upon noting also that $\mathbf{U F}(\omega)=\mathbf{U F}(\mathbb{R})$ (see [1).

Theorem 7. The following are provable in $\mathbf{Z F}$:
(i) For every infinite set $X, S(X)$ embeds as a closed subspace of the product $\mathbf{2}^{\mathcal{P}(X)}$. Hence, if $\mathbf{2}^{\mathcal{P}(X)}$ is compact (or Loeb), then $S(X)$ is compact (resp. Loeb).
(ii) " $S\left(\mathbb{R}\right.$) is Loeb" implies $\mathbf{U F}(\omega)$. Hence, by (i), " $\mathbf{2}^{\mathcal{P}(\mathbb{R})}$ is Loeb" implies $\mathbf{U F}(\omega)$.

Proof. (i) Let $T: S(X) \rightarrow \mathbf{2}^{\mathcal{P}(X)}$ be the function defined by $T(\mathcal{F})=\chi_{\mathcal{F}}$ for all $\mathcal{F} \in S(X)$. Clearly, T is one-to-one, continuous and open (we have $\left.T([A])=\left\{\chi_{\mathcal{F}}: \mathcal{F} \in[A]\right\}=[\{(A, 1)\}] \cap T(S(X))\right)$. Put $F=\left\{T\left(\mathcal{F}_{x}\right):\right.$ $x \in X\}$, where for every $x \in X, \mathcal{F}_{x}$ is the principal ultrafilter generated by x. As in the proof of Theorem 3.5 in [12] one verifies that for every $f \in \bar{F} \backslash F, f^{-1}(\{1\})$ is a free ultrafilter on X. Hence, $T\left(f^{-1}(\{1\})\right)=f$ and $\bar{F} \subseteq T(S(X))$. To complete the proof, it suffices to show that $T(S(X)) \subseteq \bar{F}$. We leave this as an easy exercise for the reader.
(ii) Basing on the fact that $\mathbf{U F}(\omega)=\mathbf{U F}(\mathbb{R})$, assume toward a contradiction that every ultrafilter on \mathbb{R} is principal. This implies that $S(\mathbb{R})$ is homeomorphic to the discrete space \mathbb{R}. By our assumption $(S(\mathbb{R})$ is Loeb), $\mathcal{P}(\mathbb{R}) \backslash\{\emptyset\}$ has a choice function. This means that $\mathcal{P}(\omega)$ is well-orderable, which in turn implies that every filter on ω can be extended to an ultrafilter. But then there is a free ultrafilter on ω, hence on \mathbb{R}, a contradiction. This completes the proof of (ii) and of the theorem.

In view of Theorem 7 it is natural to ask whether $2^{\mathbb{R}}$ embeds in $S(\omega)$, or whether $\mathbf{2}^{\mathcal{P}(\mathbb{R})}$ embeds in $S(\mathbb{R})$. The answer is in the negative even in $\mathbf{Z F C}$ set theory and it is derived from [2, Theorem 3.6.14, Corollary 3.6.15] (Theorem 3.6.14 is due to Novák [11) and the fact that, in ZFC (in particular, in $\mathbf{Z F}+\mathbf{B P I}$), for every set $X, S(X)$ and $\beta(X)$ (the Čech-Stone extension of the discrete space X; see [2]) are homeomorphic.

We also obtain the above result as a by-product of our subsequent Theorem [8. We would like to draw the reader's attention to the fact that Theorem 8 (and the result in Remark 9) is established in the absence of the axiom $\operatorname{BPI}(\omega)$ (resp. $\mathbf{B P I}(X)$), or equivalently of " $S(\omega)$ is compact" (resp. of " $S(X)$ is compact").

TheOrem 8. Let $\mathcal{A}=\left\{A_{n}: n \in \omega\right\}$ be a partition of ω. If $\left\{\mathcal{F}_{n}: n \in \omega\right\}$ is a family such that $\forall n \in \omega, \mathcal{F}_{n} \in S\left(A_{n}\right)$ and \mathcal{F} is an ultrafilter of ω, then:
(i) $\mathcal{W}_{\mathcal{F}}=\left\{F_{w}: F \in \mathcal{F}, w \in W_{F}\right\}$, where $F_{w}=\bigcup\{w(n): n \in F\}$ and $W_{F}=\prod_{n \in F} \mathcal{F}_{n}$, is a filterbase of ω. In addition, if \mathcal{F} is free then $\bigcap \mathcal{W}_{\mathcal{F}}=\emptyset$.
(ii) The filter $\mathcal{H}_{\mathcal{F}}=\left\{H \in \mathcal{P}(\omega): W \subset H\right.$ for some $\left.W \in \mathcal{W}_{\mathcal{F}}\right\}$ generated by $\mathcal{W}_{\mathcal{F}}$ is an ultrafilter of ω. In addition, if \mathcal{F} is free then $\mathcal{H}_{\mathcal{F}}$ is free.
(iii) $\mathcal{H}_{\mathcal{F}} \in \bar{G}$, where $G=\left\{\mathcal{G}_{n}: n \in \omega\right\}$ and \mathcal{G}_{n} is the (unique) ultrafilter of ω generated by \mathcal{F}_{n}.
(iv) The mapping $T: S(\omega) \rightarrow \bar{G}, T(\mathcal{F})=\mathcal{H}_{\mathcal{F}}$, is a homeomorphism. In particular, $|S(\omega)|=|\bar{G}|$.
Proof. (i) Fix $F_{w}, H_{u} \in \mathcal{W}_{\mathcal{F}}$ and let $Q=F \cap H$. Clearly, $Q \in \mathcal{F}, v \in W_{Q}$, where $v(q)=w(q) \cap u(q), q \in Q$ and $Q_{v}=\bigcup\{v(s): s \in Q\} \subseteq F_{w} \cap H_{u}$. Thus, $\mathcal{W}_{\mathcal{F}}$ is a filterbase. The second assertion is straightforward.
(ii) Fix $K \subset \omega$. If $K \notin \mathcal{H}_{\mathcal{F}}$ then $\left\{n \in \omega: K \cap A_{n} \in \mathcal{F}_{n}\right\} \notin \mathcal{F}$. Since \mathcal{F} is maximal, it follows that $\left\{n \in \omega: K^{c} \cap A_{n} \in \mathcal{F}_{n}\right\} \in \mathcal{F}$. Hence, $K^{c} \in \mathcal{H}_{\mathcal{F}}$ and $\mathcal{H}_{\mathcal{F}}$ is an ultrafilter.

The second assertion follows from the second assertion of (i).
(iii) Clearly, if \mathcal{F} is a principal ultrafilter then $\mathcal{H}_{\mathcal{F}} \in G$. So, we assume that \mathcal{F} is a free ultrafilter. Since the family $\mathcal{V}_{\mathcal{F}}=\left\{\left[F_{w}\right]: F \in \mathcal{F}, w \in W_{F}\right\}$ is a neighborhood base of $\mathcal{H}_{\mathcal{F}}$ and $|V \cap G|=\aleph_{0}$ for every $V \in \mathcal{V}_{\mathcal{F}}$, it follows that $\mathcal{H}_{\mathcal{F}} \in \bar{G}$ as required.
(iv) Since for every $\mathcal{F}, \mathcal{S} \in S(\omega), \mathcal{F} \neq \mathcal{S}$ implies $\mathcal{H}_{\mathcal{F}} \neq \mathcal{H}_{\mathcal{S}}$, we see that the mapping T is one-to-one. Since, for every $F \in \mathcal{P}(\omega)$,

$$
\mathcal{F} \in[F] \leftrightarrow F \in \mathcal{F} \leftrightarrow \bigcup\left\{A_{n}: n \in F\right\} \in \mathcal{H}_{\mathcal{F}} \leftrightarrow \mathcal{H}_{\mathcal{F}} \in\left[\bigcup\left\{A_{n}: n \in F\right\}\right]
$$

we see that T maps basic open sets of $S(\omega)$ to basic open sets of $T(S(\omega))$.
To complete the proof of (iv) it suffices to show that T is onto. Fix $\mathcal{H} \in \bar{G}$. It is easy to verify that $\mathcal{W}=\left\{W_{H}: H \in \mathcal{H}\right\}$ is a filterbase of ω, where $W_{H}=\left\{n \in \omega: H \in \mathcal{G}_{n}\right\}$.

We show next that the filter $\mathcal{F}_{\mathcal{W}}$ of ω generated by \mathcal{W} is maximal. Fix $M \subseteq \omega$ and let $F_{M}=\bigcup\left\{A_{n}: n \in M\right\}$. We consider the following two cases:
(a) $F_{M} \in \mathcal{H}$. In this case it is easily seen that $W_{F_{M}}=M$ and consequently $M \in \mathcal{F}_{\mathcal{W}}$.
(b) $F_{M}^{c} \in \mathcal{H}$. This means that $W_{F_{M}^{c}}=\left\{n \in \omega: F_{M}^{c} \in \mathcal{G}_{n}\right\}=M^{c} \in \mathcal{F}_{\mathcal{W}}$.

Thus, $\mathcal{F}_{\mathcal{W}}$ is an ultrafilter of ω as required. Then $T\left(\mathcal{F}_{\mathcal{W}}\right)=\mathcal{H}_{\mathcal{F}_{\mathcal{W}}}=\mathcal{H}$. (Let $H \in \mathcal{H}$; then $W_{H}=\left\{n \in \omega: H \in \mathcal{G}_{n}\right\} \in \mathcal{F}_{\mathcal{W}}$. For every $n \in W_{H}$, $H \cap A_{n} \in \mathcal{F}_{n}$, therefore $H=\bigcup\left\{H \cap A_{n}: n \in W_{H}\right\} \in \mathcal{W}_{\mathcal{F}_{\mathcal{W}}} \subseteq \mathcal{H}_{\mathcal{F}_{\mathcal{W}}}$. Hence $\mathcal{H} \subseteq \mathcal{H}_{\mathcal{F}_{\mathcal{W}}}$ and, since \mathcal{H} is an ultrafilter, it follows that $\mathcal{H}=\mathcal{H}_{\mathcal{F}_{\mathcal{W}}}$.) So, T is onto \bar{G} and T is a homeomorphism, finishing the proof of the theorem.

REMARK 9. Analogously we can prove a generalization of Theorem 8, obtained by replacing ω by any infinite set X and replacing a countable partition by a partition indexed by any set I, changing only "In particular, $|S(\omega)|=|\bar{G}|$ " in (iv) to "In particular, $|S(I)| \leq|S(X)|$ ".

The statement "every infinite closed subset of $S(\omega)$ includes a topological copy of $S(\omega)$ " is of course a well-known ZFC result (see [2, Theorem 3.6.14]). However, we show next that by Theorem 8 the above statement is a theorem of a strictly weaker axiomatic system than $\mathbf{Z F C}$, namely $\mathbf{Z F}+\mathbf{D C}$. In addition, although the statement "every infinite closed subset of $S(\omega)$ includes a topological copy of $S(\omega)$ " implies, in ZFC, the statement " $S(\omega) \backslash \omega$ includes a topological copy of $S(\omega)$ ", this implication ceases to be valid in ZF set theory.

Theorem 10.

(i) DC implies "every infinite closed subset of $S(\omega)$ includes a topological copy of $S(\omega)$ ".
(ii) DC and " $S(\omega)$ is compact and Loeb" together imply "every infinite closed subset of $S(\omega)$ has size $\left|2^{\mathbb{R}}\right| "$, hence $S(\omega)$ has no countably infinite closed subspaces.
(iii) $\operatorname{BPI}(\omega)$ implies " $S(\omega) \backslash \omega$ includes a topological copy of $S(\omega)$ ", which in turn implies UF (ω). Hence, "every infinite closed subset of $S(\omega)$ includes a topological copy of $S(\omega)$ " does not imply " $S(\omega) \backslash \omega$ includes a topological copy of $S(\omega)$ " in ZF.
(iv) CAC implies "for every infinite set X, and every relatively discrete subspace $G=\left\{\mathcal{G}_{n}: n \in \omega\right\}$ of $S(X), S(\omega)$ is homeomorphic to \bar{G} ". In particular, CAC restricted to countable families of non-empty sets of reals implies "for every countably infinite relatively discrete subset G of $S(\omega), \bar{G}$ is homeomorphic to $S(\omega)$ ".

Proof. (i) First we show that DC implies that every infinite closed subset of $S(\omega)$ includes a countably infinite relatively discrete subset. Fix an infinite closed subset F of $S(\omega)$. If F has no accumulation points, then the conclusion follows immediately from the fact that DC implies that every infinite set has a countably infinite subset. So assume that F has an accumulation point, say x_{F}. We shall construct a set $A=\left\{a_{n}: n \in \mathbb{N}\right\} \subseteq F$ and a set $\left\{V_{n}: n \in \mathbb{N}\right\}$ of open sets such that $a_{i} \in V_{i}$ and $V_{i} \cap V_{j}=\emptyset$ for $i \neq j$.

We commence by defining

$$
\begin{aligned}
& W=\left\{\left(V_{1}, \ldots, V_{n}\right) \in \mathcal{B}^{n}: n \in \mathbb{N}, V_{i} \cap F \neq \emptyset, V_{i} \cap V_{j}=\emptyset \text { for } i \neq j\right. \\
&\text { and } \left.x_{F} \notin \bigcup\left\{V_{i}: i=1, \ldots, n\right\}\right\},
\end{aligned}
$$

where \mathcal{B} is the clopen base $\{[U]: U \subseteq \omega\}$ of $S(\omega)$. Since $|\mathcal{B}|=|\mathbb{R}|=\left|\mathbb{R}^{\omega}\right|$, it follows that $|W|=|\mathbb{R}|$. For all $x, y \in W$, we define a binary relation R on W by stating $x R y$ if and only if $x \subseteq y$. We assert that $\operatorname{Dom}(R)=W$. Indeed, let $\left(V_{1}, \ldots, V_{n}\right) \in W$ for some $n \in \mathbb{N}$. Since $x_{F} \notin \bigcup\left\{V_{i}: i=1, \ldots, n\right\}$ and $\bigcup\left\{V_{i}: i=1, \ldots, n\right\}$ is closed, there exists $V \in \mathcal{B}$ such that $x_{F} \in V$ and $V \cap \bigcup\left\{V_{i}: i=1, \ldots, n\right\}=\emptyset$. Since x_{F} is an accumulation point of F, let $y \in(V \cap F) \backslash\left\{x_{F}\right\}$. Then there exist disjoint basic neighborhoods U_{1} and U_{2} of x_{F} and y, respectively, such that both U_{1} and U_{2} are contained in V. Put $V_{n+1}=U_{2}$. Then $\left(V_{1}, \ldots, V_{n}, V_{n+1}\right) \in W$ and $\left(V_{1}, \ldots, V_{n}\right) R\left(V_{1}, \ldots, V_{n}, V_{n+1}\right)$, so $\operatorname{Dom}(R)=W$ as asserted.

By DC, there exists a sequence $\left(V_{n}\right)_{n \in \mathbb{N}}$ of basic open sets such that $V_{n} \cap F \neq \emptyset, V_{n} \cap V_{m}=\emptyset$ for $n \neq m$ (and $x_{F} \notin \bigcup\left\{V_{n}: n \in \mathbb{N}\right\}$). Since for every $n \in \mathbb{N}, V_{n} \cap F$ is a non-empty (closed) subset of $S(\omega)$, we may let, by DC, $a_{n} \in V_{n} \cap F, n \in \mathbb{N}$. Put $A=\left\{a_{n}: n \in \mathbb{N}\right\}$. Then A is a countably infinite relatively discrete subset of $S(\omega)$.

Now we prove the original assertion. Let F be an infinite closed subset of $S(\omega)$ and let I_{F} be the set of all isolated points of F. It follows from the first part of the proof that I_{F} is infinite (otherwise, $H=F \backslash I_{F}$ is an infinite, dense-in-itself, hence closed, subset of F, hence of $S(\omega)$; thus, H contains a countably infinite relatively discrete subset, a contradiction). By DC, I_{F} has a countably infinite subset, say $G=\left\{\mathcal{G}_{n}: n \in \omega\right\}$. By DC again, pick, for every $n \in \omega, G_{n} \in \mathcal{G}_{n}$ such that $\left[G_{n}\right] \cap G=\left\{\mathcal{G}_{n}\right\}$. Clearly, for all $n \in \omega$ and $m \in n, G_{m} \notin \mathcal{G}_{n}$ and consequently $G_{m}^{c} \in \mathcal{G}_{n}$. Thus, for all $n \in \omega, G_{n} \backslash \bigcup\left\{G_{m}^{c}: m \in n\right\}=G_{n} \cap \bigcap\left\{G_{m}^{c}: m \in n\right\} \in \mathcal{G}_{n}$. Hence, we may assume that $\left\{G_{n}: n \in \omega\right\}$ is a family of pairwise disjoint subsets of ω. Let $\mathcal{A}=\left\{A_{n}: n \in \omega\right\}$ be a partition of ω such that $G_{n} \subseteq A_{n}$ for all $n \in \omega$. (Hence, $A_{n} \in \mathcal{G}_{n}$ for all $n \in \omega$.) Clearly, for every $n \in \omega$, $\mathcal{F}_{n}=\left\{U \cap A_{n}: U \in \mathcal{G}_{n}\right\}$ is an ultrafilter of A_{n}, and \mathcal{G}_{n} is the unique ultrafilter of ω generated by \mathcal{F}_{n}. By Theorem 8, $S(\omega)$ is homeomorphic to $\bar{G} \subseteq F$, finishing the proof of (i).
(ii) This follows from part (i) and from Theorem 6 (iii).
(iii) Let $\mathcal{A}=\left\{A_{n}: n \in \omega\right\}$ be a partition of ω into infinite sets. For each $n \in \omega$, let \mathcal{H}_{n} be the filterbase of ω consisting of all subsets of A_{n} which are cofinite in A_{n}. $\operatorname{By} \operatorname{BPI}(\omega)$ let, for each $n \in \omega, \mathcal{G}_{n} \in S(\omega)$ be such that $\mathcal{H}_{n} \subset \mathcal{G}_{n}$ (see Lemma 4 (i)). Clearly, $G=\left\{\mathcal{G}_{n}: n \in \omega\right\}$ is a countably infinite relatively discrete subset of $S(\omega)$. Furthermore, $G \subset S(\omega) \backslash \omega$ and $\bar{G} \subset \overline{S(\omega) \backslash \omega}=S(\omega) \backslash \omega($ as $S(\omega) \backslash \omega$ is closed in $S(\omega))$. Letting, for each
$n \in \omega, \mathcal{F}_{n}=\left\{U \cap A_{n}: U \in \mathcal{G}_{n}\right\}$, an application of Theorem 8 at this point shows that $S(\omega)$ is homeomorphic to $\bar{G} \subset S(\omega) \backslash \omega$.

That " $S(\omega) \backslash \omega$ includes a topological copy of $S(\omega)$ " implies $\mathbf{U F}(\omega)$ is straightforward.

The last assertion of (iii) follows from the fact that DC, hence by (i) "every infinite closed subset of $S(\omega)$ includes a topological copy of $S(\omega)$ ", holds in Feferman's forcing model $\mathcal{M} 2$ in [4, whereas UF (ω) fails in that model (see [4).
(iv) By CAC let, for every $n \in \omega, G_{n} \subseteq X$ be such that $\left[G_{n}\right] \cap G=\left\{\mathcal{G}_{n}\right\}$. Without loss of generality assume that the G_{n} 's are pairwise disjoint (see the proof of part (i)) and that $Y=X \backslash \bigcup\left\{G_{n}: n \in \omega\right\}$ is infinte. By CAC, Y has a countably infinite subset, hence Y has a partition $\left\{U_{n}: n \in \omega\right\}$. For each $n \in \omega$, let $A_{n}=G_{n} \cup U_{n}$. Then $\left\{A_{n}: n \in \omega\right\}$ is a partition of X and letting, for each $n \in \omega, \mathcal{F}_{n}$ be as in the proof of (iii), we may conclude by Remark 9 that $S(\omega)$ is homeomorphic to $\bar{G}^{S(X)}$, finishing the proof of (iv) and of the theorem.

Corollary 11.
(i) DC and " $S(\mathbb{R})$ is compact and Loeb" together imply "every infinite closed subset of $S(\mathbb{R})$ has size $\left|2^{\mathcal{P}(\mathbb{R})}\right|$ ", hence $S(\mathbb{R})$ has no countably infinite closed subspaces.
(ii) In ZFC, $\mathbf{2}^{\mathcal{P}(X)}$ does not embed as a subspace of $S(X)$, where $X=$ ω, \mathbb{R}.
Proof. (ii) We argue only for $X=\omega$ and assume toward a contradiction that $h: \mathbf{2}^{\mathcal{P}(\omega)} \rightarrow S(\omega)$ is an embedding. Let $G=\left\{\chi_{\{n\}}: n \in \omega\right\} \subseteq 2^{\mathcal{P}(\omega)}$. Clearly, G is a relatively discrete subset of $\mathbf{2}^{\mathcal{P}(\omega)}, \bar{G}=G \cup\{\mathbf{0}\}$ in $\mathbf{2}^{\mathcal{P}(\omega)}$, where $\mathbf{0}=\chi_{\emptyset}$, and every neighborhood of $\mathbf{0}$ includes all but finitely many members of G. Thus, \bar{G} is a compact subset of $2^{\mathcal{P}(\omega)}$ and consequently we may identify \bar{G} with a countable closed subset of $S(\omega)$ homeomorphic to the one-point compactification of ω with the discrete topology. This contradicts the conclusion of part (ii) of Theorem 10 and completes the proof.
4. Further results. In this section we generalize Theorem 3 by replacing ω with $\mathcal{P}(\omega)$. We observe, as expected, that all statements concerning $\operatorname{BPI}(\omega)$ given in Theorem 3 generalize without any difficulty. In particular, we note that Theorem 13 below is an analogue of Theorem 6 in [6].

Theorem 12.
(i) " $2^{\mathbb{R}}$ is a Loeb space" iff "every product of finite subspaces of \mathbb{R} is Loeb".
(ii) " $\mathbf{2}^{\mathbb{R}}$ is a Loeb space" implies that $[\mathcal{P}(\mathbb{R})]^{<\omega} \backslash\{\emptyset\}$ has a choice function
(see also [8]). Hence, it implies that $\left|[\mathcal{P}(\mathbb{R})]^{<\omega}\right|=|\mathcal{P}(\mathbb{R})|$ and a wellordering on each $A \in[\mathcal{P}(\mathbb{R})]^{<\omega} \backslash\{\emptyset\}$ can be defined.

Proof. (i) We only prove (\rightarrow) as the reverse implication is obvious. Fix a family $\left(X_{i}\right)_{i \in I}$ of finite subsets of \mathbb{R}. Since $\mid\left[\left.\mathbb{R}\right|^{<\omega}|=|\mathbb{R}|\right.$ and $| \mathbb{R} \times \mathbb{R}|=|\mathbb{R}|$, we may assume that the sets X_{i} are pairwise disjoint. Thus, $\mathbf{X}=\prod_{i \in I} \mathbf{X}_{i}$ embeds as a closed subspace in $2 \cup\left\{X_{i}: i \in I\right\}$ (see [8]) and the latter space can be viewed as a closed subspace of $\mathbf{2}^{\mathbb{R}}$. Hence, by our assumption, \mathbf{X} is Loeb.
(ii) Since $|\mathcal{P}(\mathbb{R})|=\left|2^{\mathbb{R}}\right|$, we may view each finite subset of $\mathcal{P}(\mathbb{R})$ as a finite subset of $2^{\mathbb{R}}$. Furthermore, since $2^{\mathbb{R}}$ is a T_{2} space, every finite subset of $2^{\mathbb{R}}$ is a closed set. Therefore, by our assumption, the family $[\mathcal{P}(\mathbb{R})]^{<\omega} \backslash\{\emptyset\}$ has a choice function. By the fact that for every $n \in \mathbb{N},\left|\mathcal{P}(\mathbb{R})^{n}\right|=\left|\left(2^{\mathbb{R}}\right)^{n}\right|=$ $\left|2^{\mathbb{R} \times n}\right|=|\mathcal{P}(\mathbb{R})|$ and our assumption we can define for every $A \in[\mathcal{P}(\mathbb{R})]^{<\omega}$ an enumeration $\left\{a_{j}^{A}: j \leq|A|\right\}$ of A. We have on the one hand $\left|\mathcal{P}(\mathbb{R})^{\omega}\right|=$ $\left|\left(2^{\mathbb{R}}\right)^{\omega}\right|=\left|2^{\mathbb{R} \times \omega}\right|=|\mathcal{P}(\mathbb{R})|$ and for every $n \in \mathbb{N},\left|\mathcal{P}(\mathbb{R})^{n}\right|=|\mathcal{P}(\mathbb{R})|$, and on the other hand, by our assumption, $\left|[\mathcal{P}(\mathbb{R})]^{n}\right| \leq\left|\mathcal{P}(\mathbb{R})^{n}\right|$ via the map $F_{n}(A)(j)=a_{j}^{A}, j \leq n$. Hence, $|\mathcal{P}(\mathbb{R})| \leq\left|[\mathcal{P}(\mathbb{R})]^{<\omega}\right|=\|\left\{\{\mathcal{P}(\mathbb{R})]^{n}: n \in \mathbb{N}\right\} \mid$ $\leq\left|\bigcup\left\{\mathcal{P}(\mathbb{R})^{n}: n \in \mathbb{N}\right\}\right| \leq\left|\mathcal{P}(\mathbb{R})^{\omega}\right| \leq|\mathcal{P}(\mathbb{R})|$.

Theorem 13. The following statements are pairwise equivalent:
(i) In a Boolean algebra \mathcal{B} of size $\leq\left|2^{\mathbb{R}}\right|$ every filter can be extended to an ultrafilter.
(ii) $\operatorname{BPI}(\mathbb{R})$.
(iii) $S(\mathbb{R})$ is compact.
(iv) $\mathbf{2}^{\mathcal{P}(\mathbb{R})}$ is compact.
(v) For every compact T_{2} space \mathbf{X} having a dense subset of size $\leq|\mathbb{R}|$, the product $\mathbf{X}^{\mathcal{P}(\mathbb{R})}$ is compact.
(vi) Every product of non-empty finite discrete subsets of $\mathcal{P}(\mathbb{R})$ is compact.
Proof. (i) \rightarrow (ii). This is clear.
(ii) \leftrightarrow (iii). Follow the well-known proof that BPI is equivalent to "for every set X, the Stone space $S(X)$ of the powerset algebra $\mathcal{P}(X)$ is compact".
(iii) \rightarrow (iv). This follows at once from Theorem 6 (i).
(iv) $\rightarrow(\mathrm{v})$. Fix a compact T_{2} space \mathbf{X} having a dense subset D of size $\leq|\mathbb{R}|$. By [2, Theorem 2.3.15], $\mathbf{X}^{\mathcal{P}(\mathbb{R})}$ has a dense subset of size $|\mathbb{R}|$. Since our assumption implies $\operatorname{BPI}(\mathbb{R})$ (by Theorem $7(\mathrm{i}), S(\mathbb{R})$ is compact, and it is easy to see that the latter is true iff $\operatorname{BPI}(\mathbb{R})$ is true), we may follow the proof of $($ ii $) \rightarrow$ (iii) of Theorem 6 in [6] in order to verify that $\mathbf{X}^{\mathcal{P}(\mathbb{R})}$ is compact.
$(\mathrm{v}) \rightarrow(\mathrm{vi})$. First notice that our assumption clearly implies that $\mathbf{2}^{\mathcal{P}(\mathbb{R})}$ is compact. Fix a family $\mathcal{A}=\left\{A_{i}: i \in I\right\}$ of non-empty finite subsets of $\mathbf{2}^{\mathbb{R}}$. By Lemma 4 and Theorem 12, it follows that $|I| \leq|\mathcal{P}(\mathbb{R})|$. As we observed
in the proof of the first assertion of (ii) of Lemma 4, $\mathbf{2}^{\mathbb{R}}$ is homeomorphic to a closed subset of $\mathbf{2}^{\mathcal{P}(\mathbb{R})}$. It follows that, for every $i \in I$, we may view A_{i} as a finite subset of the compact T_{2} space $\mathbf{2}^{\mathcal{P}(\mathbb{R})}$. Hence, A_{i} is a (discrete) closed subspace of $2^{\mathcal{P}(\mathbb{R})}$. Thus, $\prod_{i \in I} A_{i}$ is a closed subspace of $\left(\mathbf{2}^{\mathcal{P}(\mathbb{R})}\right)^{\mathcal{P}(\mathbb{R})}$. Since $\left(\mathbf{2}^{\mathcal{P}(\mathbb{R})}\right)^{\mathcal{P}(\mathbb{R})} \simeq \mathbf{2}^{\mathcal{P}(\mathbb{R}) \times \mathcal{P}(\mathbb{R})} \simeq \mathbf{2}^{\mathcal{P}(\mathbb{R})}$ (indeed, notice that $|\mathcal{P}(\mathbb{R}) \times \mathcal{P}(\mathbb{R})|=$ $|\mathcal{P}(\mathbb{R})|$ and use [9, Proposition 3]), it follows that $\left(\mathbf{2}^{\mathcal{P}(\mathbb{R})}\right)^{\mathcal{P}(\mathbb{R})}$ is compact, hence $\prod_{i \in I} A_{i}$ is compact as required.
(vi) \rightarrow (i). Our assumption implies that $\mathbf{2}^{\mathcal{P}(\mathbb{R})}$ is compact. In order to verify that (i) holds, mimic the proofs of $(\mathrm{vi}) \rightarrow(\mathrm{vii}) \rightarrow(\mathrm{i})$ of Theorem 6 in [6] with $\mathcal{P}(\mathbb{R})$ in place of \mathbb{R}.

Corollary 14.

(i) For $X=\omega, \mathbb{R}$, " $S(X)$ is compact and Loeb" iff " $\mathbf{2}^{\mathcal{P}(X)}$ is compact and Loeb".
(ii) $\operatorname{BPI}(\mathbb{R})$ implies " $\mathbf{2}^{\mathbb{R}}$ is compact" and " $\mathbf{2}^{\mathbb{R}}$ is Loeb". In particular, un$\operatorname{der} \operatorname{BPI}(\mathbb{R})$, " $\mathbf{2}^{\mathbb{R}}$ is compact" iff " $\mathbf{2}^{\mathbb{R}}$ is Loeb", and " $S(\omega)$ is compact" iff " $S(\omega)$ is Loeb".
(iii) " $\mathbf{2}^{\mathbb{R}}$ is compact and Loeb" iff "for every separable compact T_{2} space \mathbf{X}, the product $\mathbf{X}^{\mathbb{R}}$ is compact and Loeb".
(iv) $\operatorname{BPI}(\mathbb{R})$ implies " $S(\mathbb{R})$ has a relatively discrete subset of size $|\mathcal{P}(\mathbb{R})|$ ".

Proof. (i) follows easily from Theorems $\sqrt[6]{6}(\mathrm{i}), 7(\mathrm{i})$ and the fact that $\mathbf{B P I}(X)$ iff $S(X)$ is compact.
(ii) follows from Lemma 4 and Theorem 13 (iii) (\leftarrow) is obvious.
$($ iii $)(\rightarrow)$ Fix a separable compact T_{2} space \mathbf{X}. By [2, Theorem 2.3.15], $\mathbf{X}^{\mathbb{R}}$ is separable. By our assumption and Theorem 3, $\mathbf{X}^{\mathbb{R}}$ is compact. Let $\operatorname{RO}\left(\mathbf{X}^{\mathbb{R}}\right)$ be the family of all regular open sets of $\mathbf{X}^{\mathbb{R}}$ and let G be a countable dense subset of $\mathbf{X}^{\mathbb{R}}$. Since for any $O, Q \in \operatorname{RO}\left(\mathbf{X}^{\mathbb{R}}\right), O \neq Q$ implies $O \cap G \neq$ $Q \cap G$, it follows that $\left|\operatorname{RO}\left(\mathbf{X}^{\mathbb{R}}\right)\right| \leq|\mathbb{R}|$ and consequently $\mathbf{X}^{\mathbb{R}}$ has a base \mathcal{B} of size $\leq|\mathbb{R}|$. It follows, by the embedding lemma, that $\mathbf{X}^{\mathbb{R}}$ embeds in the product $[0,1]^{\mathbb{R}}$ as a closed subspace. Since " $[\mathbf{0}, \mathbf{1}]^{\mathbb{R}}$ is Loeb" iff " $2^{\mathbb{R}}$ is Loeb" (see [7]), it follows by our assumption that " $\mathbf{X}^{\mathbb{R}}$ is Loeb" as required.
(iv) Fix an independent family $\mathcal{A}=\left\{A_{i}: i \in \mathcal{P}(\mathbb{R})\right\}$ in \mathbb{R} as in the proof of Theorem 6(i). For every $i \in \mathcal{P}(\mathbb{R})$ let $\mathcal{W}_{i}=\left\{A_{i}\right\} \cup\left\{\left(A_{j}\right)^{c}: j \in\right.$ $\mathcal{P}(\mathbb{R}) \backslash\{i\}\}$ and $K_{i}=\left\{\mathcal{F} \in S(\mathbb{R}): \mathcal{W}_{i} \subset \mathcal{F}\right\}$. Clearly, K_{i} is a non-empty closed subset of the compact space $S(\mathbb{R})$. By Theorem $13(\mathrm{v})$, the product $S(\mathbb{R})^{\mathcal{P}(\mathbb{R})}$ is compact, hence $\bigcap\left\{\pi_{i}^{-1}\left(K_{i}\right): i \in \mathcal{P}(\mathbb{R})\right\} \neq \emptyset$. Fixing f in the latter intersection, we easily conclude that $F=\{f(i): i \in \mathcal{P}(\mathbb{R})\}$ is a relatively discrete subset of $S(\mathbb{R})$.

Acknowledgments. We are grateful to the anonymous referee for several suggestions which greatly improved the exposition of our paper.

References

[1] M. R. Burke, Liftings for noncomplete probability spaces, in: Papers on General Topology and Applications (Madison, WI, 1991), Ann. New York Acad. Sci. 704, New York Acad. Sci., New York, 1993, 34-37.
[2] R. Engelking, General Topology, PWN-Polish Sci. Publ., Warszawa, 1977.
[3] J. Fossy and M. Morillon, The Baire category property and some notions of compactness, J. London Math. Soc. 57 (1998), 1-19.
[4] P. Howard and J. E. Rubin, Consequences of the Axiom of Choice, Math. Surveys Monogr. 59, Amer. Math. Soc., Providence, RI, 1998 (http://consequences.emich.edu /conseq.htm).
[5] K. Keremedis, The compactness of $2^{\mathbb{R}}$ and the axiom of choice, Math. Logic Quart. 46 (2000), 569-571.
[6] -, Tychonoff products of two-element sets and some weakenings of the Boolean prime ideal theorem, Bull. Polish Acad. Sci. Math. 53 (2005), 349-359.
[7] -, The Boolean prime ideal theorem and products of cofinite topologies, submitted.
[8] -, Compact and Loeb Hausdorff spaces in ZF and the axiom of choice for families of finite sets, submitted.
[9] K. Keremedis, E. Felouzis and E. Tachtsis, On the compactness and countable compactness of $2^{\mathbb{R}}$ in $Z F$, Bull. Polish Acad. Sci. Math. 55 (2007), 293-302.
[10] P. A. Loeb, A new proof of the Tychonoff theorem, Amer. Math. Monthly 72 (1965), 711-717.
[11] J. Novák, On the Cartesian product of two compact spaces, Fund. Math. 40 (1953), 106-112.
[12] E. Tachtsis, On the set-theoretic strength of countable compactness of the Tychonoff product $2^{\mathbb{R}}$, Bull. Polish Acad. Sci. Math. 58 (2010), 91-107.

Horst Herrlich
Feldhäuser Str. 69
28865 Lilienthal, Germany
E-mail: horst.herrlich@t-online.de
Eleftherios Tachtsis
Department of Statistics
and Actuarial-Financial Mathematics
University of the Aegean
Karlovassi, Samos 83200, Greece
E-mail: ltah@aegean.gr

Kyriakos Keremedis Department of Mathematics

University of the Aegean Karlovassi, Samos 83200, Greece E-mail: kker@aegean.gr

