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Summary. We obtain new variants of weighted Gagliardo–Nirenberg interpolation in-
equalities in Orlicz spaces, as a consequence of weighted Hardy-type inequalities. The
weights we consider need not be doubling.

1. Introduction. Gagliardo–Nirenberg interpolation inequalities have
a long history and several mathematicians investigated their numerous vari-
ants. Their rudiments can be found in old papers of Landau (see e.g. [33]),
and today this name is most often associated with the classical variant

(1.1) ‖∇(k)u‖Lq(Ω) ≤ C1‖u‖1−k/mLr(Ω) ‖∇
(m)u‖k/mLp(Ω) + C2‖u‖Lr(Ω),

where Ω ⊆ Rn is a domain with sufficiently smooth boundary, the function
u : Ω → R belongs to an appropriate Sobolev space on Ω, 1

q = (1− k
m)1

r+ k
m

1
p ,

0 < k < m. For Ω = R and p = q = r =∞ this inequality was obtained by
Kolmogorov [27] (with C2 = 0), whereas Gagliardo [12] and Nirenberg [39]
independently proved its extensions to the form (1.1). We refer to the book
[36] for an extensive description of their historical evolution.

Since the Gagliardo–Nirenberg inequalities involve two differential op-
erators: ∇(k)u and ∇(m)u, they are more difficult to analyse than Hardy-
type inequalities, which involve one differential operator only. This is one of
the reasons why many problems concerning the validity of the Gagliardo–
Nirenberg inequalities remain unsolved so far. For example, one asks about
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Orlicz-space generalizations of (1.1), also for Orlicz spaces LM (µ) with a
Radon measure µ, even nondoubling.

Interest in inequalities in the Orlicz-space setting arises from linear and
nonlinear PDEs, and calculus of variations, which in turn come from math-
ematical physics. See e.g. [1, 2, 10, 13, 14, 46], where many motivations for
investigating degenerate PDEs in Orlicz spaces can be found.

The purpose of this paper is to show that certain variants of weighted
modular Hardy inequalities for u ∈ C∞0 (Ω):�

Ω

P (|∇ϕ| |u|) dµ ≤ K1

�

Ω

P (A|∇u|) dµ+K2

�

Ω

M(|u|) dµ,(1.2)

where dµ(x)=e−ϕ(x)dx with ϕ locally Lipschitz, imply variants of Gagliardo–
Nirenberg inequalities for modulars:�

Ω

M(|∇u|) dµ ≤ L
�

Ω

P (|∇(2)u|) dµ+
�

Ω

Q(B|u|) dµ,

and for norms:

(1.3) ‖∇u‖LM (Ω,µ) ≤ L1

√
‖∇(2)u‖LP (Ω,µ)‖u‖LQ(Ω,µ) + L2‖u‖LQ(Ω,µ),

valid with general (u-independent) constants A,K1,K2, L, L1, L2, B. Our ap-
proach requires M to be an N -function satisfying the ∆2-condition. The
functions P and Q are tied with M by a Young-type inequality:

M(u)
u2

vw ≤M(u) + P (v) +Q(w).

For details, see Theorems 3.1, 3.4, and 3.5.
As opposed to previous works of Gutierrez and Wheeden [15], and also

Chua [8, 9], Bang and coauthors (see e.g. [3]), the measure µ considered here
need not be doubling. This allows obtaining inequalities e.g. for measures
with finite mass on unbounded domains, which have been excluded from
investigation so far. In [8, 9, 15], Gagliardo–Nirenberg inequalities were de-
duced from local Poincaré inequalities. In the present article, we work with
global inequalities only, and show how global Hardy-type inequalities result
in Gagliardo–Nireberg inequalities.

Inequality (1.3), obtained here as a consequence of the Hardy inequality,
extends our former results from [24]. In that paper, nondoubling measures
were considered as well, but the conditions on M , P , Q were different. In
particular, the case M = P = Q was not allowed (see Remark 4.4 in [24]).
This is rectified in the present approach.

It is our intention to focus on Hardy-type inequalities (1.2). They imply
a wide range of Gagliardo–Nirenberg inequalities. Since (1.2) is valid for a
vast class of admissible measures, possibly nondoubling, our approach yields
Gagliardo–Nirenberg inequalities which are often new also in the Lp-setting.
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For results concerning Gagliardo–Nirenberg inequalities in Orlicz spaces,
we refer to [3], [20]–[24]. Other results on Gagliardo–Nirenberg inequalites
presented in various contexts can be found e.g. in [6], [31], [35], [44].

2. Preliminaries

Notation. Throughout the paper we assume that Ω ⊂ Rn is an open
domain. By C∞0 (Ω) we denote the smooth functions compactly supported
in Ω, and we use the standard notation Wm,p(Ω) and Wm,p

loc (Ω) for global
and local variants of Sobolev spaces. The lower-case symbol c denotes a
universal constant whose value is irrelevant. For important constants we use
upper-case letters.

Orlicz spaces. Let us recall some basic information about Orlicz spaces,
referring e.g. to [28, 42] for details.

Suppose µ is a positive Radon measure on R+ and letM : [0,∞)→ [0,∞)
be an N -function, i.e. a continuous convex increasing function satisfying
limλ→0M(λ)/λ = limλ→∞ λ/M(λ) = 0. The symbol M∗ denotes the N -
function complementary toM , i.e.M∗(y) = supx>0[xy−M(x)], in particular
we have Young’s inequality: xy ≤M(x) +M∗(y) for x, y ≥ 0.

Given two functions M1 and M2, we write M1 � M2 if there exist two
constants c1, c2 such that c1M2(λ) ≤ M1(λ) ≤ c2M2(λ) for every λ > 0 (or
for every λ in the indicated range).

Let µ be a nonnegative Borel measure on Ω. The weighted Orlicz space
LM (Ω,µ) we deal with is by definition

LM (Ω,µ) =
{
f : Ω → R measurable :

�

Ω

M(|f(x)|/K) dµ(x) ≤ 1 for some K > 0
}
,

equipped with the Luxemburg norm

‖f‖LM (Ω,µ) = inf
{
K > 0 :

�

Ω

M(|f(x)|/K) dµ(x) ≤ 1
}
.

It is a Banach space. For M(λ) = λp, we have LM (Ω,µ) = Lpµ(Ω), the
classical Lp space.

The function M is said to satisfy the ∆2-condition if for some constant
c > 0 and every λ > 0, we haveM(2λ) ≤ cM(λ). In the class of differentiable
convex functions the ∆2-condition is equivalent to

(2.1) λM ′(λ) ≤ DM(λ),

with the constant D independent of λ (see e.g. [28, Theorem 4.1]). One also
considers the condition

(2.2) dM(λ) ≤ λM ′(λ).
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It holds with some d > 1 when the dual function, M∗, satisfies the ∆2-
condition (see e.g. [28, Theorem 4.3] or [23, Proposition 4.1]). The optimal
constants in (2.2) and (2.1) are called the Simonenko lower and upper indices
of M (see e.g. [5], [43]) and will be denoted by dM and DM respectively.

If M is an N -function such that both (2.1) and (2.2) are satisfied, then

(2.3) M(aλ) ≤ max(adM , aDM )M(λ) =: c̄(a)M(λ)

for all λ, a > 0 (see e.g. [25, Lemma 4.1, iii)]).
We will need the property

	
ΩM(f(x)/‖f‖LM (Ω,µ)) dµ(x) ≤ 1. When M

satisfies the ∆2-condition, this becomes an equality.

The assumptions. We will consider the following assumptions:

(M) M : [0,∞)→ [0,∞) is anN -function of class C1((0,∞)), satisfying
the ∆2-condition and such that M ′(λ)/λ is bounded near zero;

(µ) µ(dx) = exp(−ϕ(x))dx is a Radon measure on Ω, where ϕ : Ω → R
belongs to W 1,∞

loc (Ω);
(Y) P and Q are two real nonnegative and nondecreasing measurable

functions on [0,∞) with P (0) = Q(0) = 0, such that for any
u, v, w > 0 the following Young-type inequality holds:

(2.4)
M(u)
u2

vw ≤M(u) + P (v) +Q(w).

The inequality (2.4) is satisfied for example when the following condition
holds (see [21, Cor. 4.9]):

(MF) M is an N -function satisfying the ∆2-condition and such that
M(λ)/λ2 is nondecreasing, P (λ) = M(F (

√
λ)) and Q(λ) =

M(F ∗(
√
λ)), where F is another N -function.

Remark 2.1. (1) The choice of F (λ) = λ2/2 in (MF) gives (Y) with
P = Q = M .

(2) Suppose that M(λ) = λp, p ≥ 2. Choose F (λ) = λs/s with s = 2q/p
to obtain P (λ) = Cλq, Q(λ) = Cλr, where 2/p = 1/q + 1/r (the classical
Gagliardo–Nirenberg triple).

(3) When M(λ) = λp(ln(2 + λ))α, p ≥ 2, α > 0, the choice of F (λ) =
λs(ln(2+λ))µ with s = 2q/p, µ = (β − α)/p results in P (λ) � λq(ln(2+λ))β,
Q(λ) � λr(ln(2 + λ))γ , where the parameters are related through 2/p =
1/q + 1/r, 2α/p = β/q + γ/r (the logarithmic Gagliardo–Nirenberg triple
considered in [20] and [22]).

3. Main results. Our goal now is to show that certain Hardy-type
inequalities imply Gagliardo–Nirenberg ones. Let us start with the following
result.
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Theorem 3.1. Let M,P,Q be three functions on [0,∞) satisfying (M)
and (Y), and let µ be a Radon measure on Ω satisfying (µ). Suppose that
the following Hardy-type inequality holds true:

(H) for any u ∈ C∞0 (Ω),

(3.1)
�

Ω

P (|∇ϕ| |u|) dµ ≤ K
�

Ω

P (A|∇u|) dµ

with positive constants K,A not depending on u.

Then:

(1) there exist constants L,B > 0 such that for any θ > 0 and any
u ∈ C∞0 (Ω),

(3.2)
�

Ω

M(|∇u|) dµ ≤ L
�

Ω

P (θ|∇(2)u|) dµ+
�

Ω

Q

(
B

θ
|u|
)
dµ,

(2) if additionally P and Q are N -functions, then for any u ∈ C∞0 (Ω),

(3.3) ‖∇u‖LM (Ω,µ) ≤ L̃
√
‖∇(2)u‖LP (Ω,µ)‖u‖LQ(Ω,µ),

where L̃ = 2(L+ 2)
√
B, and L and B are as in (3.2).

Remark 3.2. Under the assumptions of Theorem 3.1, if either P or Q
satisfies the ∆2-condition, then

(3.4)
�

Ω

M(|∇u|) dµ ≤ L1

�

Ω

P (|∇(2)u|) dµ+ L2

�

Ω

Q(|u|) dµ,

with L1, L2 independent of u.

Remark 3.3. By a standard regularization argument (see e.g. [34, Sec-
tion 1.1.5]) and Lebesgue’s Dominated Convergence Theorem we deduce that
inequality (3.1) can be applied to any compactly supported u ∈ W 1,∞(Ω)
as well, with the same constant.

Proof of Theorem 3.1. We start with the following inequality (Lemma
3.1 of [24]), valid for any u ∈ C∞0 (Ω):

(3.5) I =
�

Ω

M(|∇u|) dµ

≤ αn
�

Ω∩{∇u6=0}

M(|∇u|)
|∇u|2

|∇(2)u| |u| dµ+
�

Ω∩{∇u6=0}

M(|∇u|)
|∇u|

|∇ϕ| |u| dµ

=: αnI1 + I2,

where αn depends on n only. In [24], the proof is given for Ω = Rn and
ϕ ∈ C1(Rn), but it requires only minor alterations to cover the present case.
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To estimate I1 and I2, we use the assumption (2.4) twice. One has, for
any given ε, θ > 0,

I1 = ε
�

Ω∩{∇u6=0}

(
M(|∇u|)
|∇u|2

)
(θ|∇(2)u|)

(
|u|
θε

)
dµ(3.6)

≤ ε
�

Ω

M(|∇u|) dµ+ ε
�

Ω

P (θ|∇(2)u|) dµ+ ε
�

Ω

Q

(
|u|
θε

)
dµ,

(3.7) I2 = Aε
�

Ω∩{∇u6=0}

(
M(|∇u|)
|∇u|2

)(
|∇ϕ| θ

A
|∇u|

)(
|u|
θε

)
dµ

≤ Aε
�

Ω

M(|∇u|) dµ+Aε
�

Ω

P

(
|∇ϕ| θ

A
|∇u|

)
dµ+Aε

�

Ω

Q

(
|u|
θε

)
dµ.

To estimate the central term on the right hand side of (3.7), we apply (3.1) to
the function (θ/A)f(x) where f(x) = |∇u(x)| (see Remark 3.3). Whenever
∇u 6= 0, one has

∂

∂xi
f(x) =

〈
∇u(x)
|∇u(x)|

,∇ ∂

∂xi
u(x)

〉
,

and so

|∇f(x)|2 =
n∑
i=1

∣∣∣∣〈 ∇u(x)
|∇u(x)|

,
∂

∂xi
(∇u(x))

〉∣∣∣∣2
≤

n∑
i=1

∥∥∥∥ ∂

∂xi
(∇u(x))

∥∥∥∥2

= ‖∇(2)u(x)‖2.

Since P is nondecreasing, from (H) we get
�

Ω

P

(
|∇ϕ| θ

A
|∇u|

)
dµ ≤ K

�

Ω

P (θ|∇(2)u|) dµ.

Using this fact, summing up estimates (3.6) and (3.7) we obtain

I ≤ ε(αn +A)I + ε(αn +KA)
�

Ω

P (θ|∇(2)u|) dµ+ ε(αn +A)
�

Ω

Q

(
|u|
θε

)
dµ.

Choosing ε = 1
2(αn+A) gives, after rearranging,

I ≤ (K + 1)
�

Ω

P (θ|∇(2)u|) dµ+
�

Ω

Q

(
2(αn +A)

θ
|u|
)
dµ.

This proves statement (1).
To prove (2) we take an arbitrary u ∈ C∞0 (Ω) and apply (3.2) to

ũ :=
u

a+ b
, where a := ‖θ∇(2)u‖LP (Ω,µ), b :=

∥∥∥∥Bθ u(x)
∥∥∥∥
LQ(Ω,µ)

.
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We can assume that neither a nor b is zero, because otherwise ∇u(x) = 0
a.e. and (3.3) follows trivially. Inequality (3.2) for ũ reads
�

Ω

M(|∇ũ|) dµ ≤ L
�

Ω

P

(
|θ∇(2)u|
a+ b

)
dµ+

�

Ω

Q

(
|(B/θ)u|
a+ b

)
dµ

≤ L
�

Ω

P

(
|θ∇(2)u|

a

)
dµ+

�

Ω

Q

(
|(B/θ)u|

b

)
dµ

= L
�

Ω

P

(
|θ∇(2)u|

‖θ∇(2)u‖LP (Ω,µ)

)
dµ+

�
Q

(
|(B/θ)u|

‖(B/θ)u‖LQ(Ω,µ)

)
dµ.

≤ L+ 1.

In the last inequality we have used the property
	
Ω R(w/‖w‖LR(Ω,µ)) dµ ≤ 1

of modular functionals. Since for any f ∈ LM (Ω,µ) one has ‖f‖LM (Ω,µ) ≤	
ΩM(|f |) dµ+1 (see (9.4) and (9.20) of [28]), this gives ‖∇ũ‖LM (Ω,µ) ≤ L+2.
Consequently,

‖∇u‖LM (Ω,µ) ≤ (L+2)(a+b) = (L+2)
(
θ‖∇(2)u‖LP (Ω,µ)+

B

θ
‖u(x)‖LQ(Ω,µ)

)
.

Minimizing the right hand side with respect to θ gives the result.

Our next theorem covers the case when the Hardy inequality (H) does
not hold, but it does when an extra term, depending on u, is added to the
right hand side.

Theorem 3.4. Suppose that the assumptions of Theorem 3.1 are satis-
fied, and the following Hardy-type inequality holds true:

(H1) for any u ∈ C∞0 (Ω),

(3.8)
�

Ω

P (|∇ϕ| |u|) dµ ≤ K1

�

Ω

P (A|∇u|) dµ+K2

�

Ω

M(|u|) dµ,

with positive constants K1,K2, A not depending on u.

Then:

(1) there exist constants L,B > 0 such that for any θ ∈ (0, 1] and any
u ∈ C∞0 (Ω),

(3.9)
�

Ω

M(|∇u|) dµ ≤ L
�

Ω

P (θ|∇(2)u|) dµ+
�

Ω

Q

(
B

θ
|u|
)
dµ,

(2) if P and Q are N -functions, then for any u ∈ C∞0 (Ω),

(3.10) ‖∇u‖LM (Ω,µ) ≤ L1

√
‖∇(2)u‖LP (Ω,µ)‖u‖LQ(Ω,µ) + L2‖u‖LQ(Ω,µ),
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where L1 = 2(L + 2)
√
B, L2 = 2(L + 2)B, and L and B are as

in (3.9).

Proof. (1) We start with inequality (3.5) and repeat the arguments in
the proof of Theorem 3.1 up to (3.7). Now, instead of (3.1), we apply (3.8)
to the function f(x) = (θ/A)|∇u(x)| (we use an argument similar to that in
Remark 3.3). Since we have assumed θ ≤ 1, we get

�

Ω

P

(
|∇ϕ| θ

A
|∇u|

)
dµ ≤ K1

�

Ω

P (θ|∇(2)u|) dµ+ K̄2

�

Ω

M(|∇u|) dµ,

where K̄2 = c̄(1/A)K2 with c̄(·) coming from (2.3). This, (3.6) and (3.7) lead
to

I ≤ ε(αn +A+ K̄2A)I + ε(αn +K1A)
�

Ω

P (θ|∇(2)u|) dµ

+ ε(αn +A)
�

Ω

Q

(
|u|
θε

)
dµ.

The choice of ε = (2(αn +A+AK̄2))−1 implies

(3.11) I ≤ L
�

Ω

P (θ|∇(2)u|) dµ+
�

Ω

Q

(
B

θ
|u|
)
dµ,

where L = K1 + 1, B = 2(αn +A+Ac̄(1/A)K2). This proves (1).
(2) To prove the second part we observe that arguments similar to those

in the proof of the second part of Theorem 3.1 lead to the inequality

‖∇u‖LM (Ω,µ) ≤ L̃
(
θ‖∇(2)u‖LP (Ω,µ) +

B

θ
‖u‖LQ(Ω,µ)

)
,

where L̃ = L + 2, L = K1 + 1 is the constant from (3.11), and θ ∈ (0, 1]
is arbitrary. Minimization of the inequality a ≤ L̃(θb + 1

θ c) with respect to
θ ∈ (0, 1] gives the desired result. Indeed, when θ̄ :=

√
c/b ∈ (0, 1), we get

a ≤ 2L̃
√
bc, while in the remaining case c ≥ b we have a ≤ 2L̃c (choose

θ = 1). In either case, the inequality a ≤ 2L̃(
√
bc + c) is satisfied. This

completes the proof of the theorem.

Since condition (Y) is satisfied for P = Q = M (see Remark 2.1), as an
immediate consequence we obtain the following:

Theorem 3.5. Suppose that M is an N -function satisfying condition
(M), and let µ be a Radon measure on [0,∞) satisfying (µ). Moreover,
assume thatM(λ)/λ2 is nondecreasing. If for every u ∈ C∞0 (Ω) the following
Hardy-type inequality holds true:

(3.12)
�

Ω

M(|∇ϕ| |u|) dµ ≤ K1

�

Ω

M(|∇u|) dµ+K2

�

Ω

M(|u|) dµ,

then:
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(1) there exist positive constants C1, C2 such that for any θ ∈ (0, 1]
and any u ∈ C∞0 (Ω),

(3.13)
�

Ω

M(|∇u|) dµ ≤ C1

�

Ω

M(θ|∇(2)u|) dµ+ C2

�

Ω

M(|u|/θ) dµ,

(2) there exist positive constants C̃1, C̃2 such that for any u ∈ C∞0 (Ω),

(3.14) ‖∇u‖LM (Ω,µ) ≤ C̃1

√
‖∇(2)u‖LM (Ω,µ)‖u‖LM (Ω,µ) + C̃2‖u‖LM (Ω,µ).

Remark 3.6 (open question). In Theorem 3.1, the sole purpose of as-
suming M ∈ ∆2 is to derive (3.5). We do not know whether one can extend
(3.2), (3.3) to functions M for which the ∆2-condition is not satisfied. Some
results concerning the Gagliardo–Nirenberg inequalities (3.2), (3.3) do hold
true without imposing the ∆2-condition on M , but for a restricted family of
measures (see e.g. [3], [23]).

4. Discussion and examples. Three theorems from the previous sec-
tion reduce the question about the validity of the Gagliardo–Nirenberg in-
equality for given N -functions and measures to a question about the validity
of Hardy-type inequalities. We will discuss this now.

4.1. The scope of Theorem 3.1

4.1.1. The case Ω = R+, condition (H). A necessary and sufficient
condition for Radon measures µ, ν to obey the inequality

(4.1)
�

R+

∣∣∣ x�
0

f(t) dt
∣∣∣p dν(x) ≤ C

�

R+

|f(x)|p dµ(x)

was given by Muckenhoupt (see [37] or [34, Section 1.3, Theorem 1]):

(4.2) sup
r>0

ν(r,∞)1/p
( r�

0

(
dµ∗

dx

)−1/(p−1)

dx

)(p−1)/p

<∞,

where µ∗ is the absolutely continuous part of µ. Since for u ∈ C∞0 (0,∞) one
has u(x) =

	x
0 u
′(t) dt, it follows that whenever ν, µ obey (4.2), then

(4.3)
�

R+

|u(x)|p dν(x) ≤ C
�

R+

|u′(x)|p dµ(x)

for all u ∈ C∞0 (R+). Observe that in the particular case of the measures
dν(x) = |ϕ′(x)|p · exp(−ϕ(x))dx, dµ(x) = exp(−ϕ(x))dx, inequality (4.3) is
nothing but our condition (H) for P (λ) = λp. In this case, condition (4.2)
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reads

(4.4)

sup
r>0

(∞�
r

|ϕ′(x)|p exp(−ϕ(x))dx
)1/p( r�

0

exp(−ϕ(x))−1/(p−1)dx
)1−1/p

<∞,

and so if (4.4) holds true, then (H) is true for P (λ) = λp, Ω = R+. Therefore
we obtain:

Theorem 4.1. Let p > 1 be given, and let µ(dx) = e−ϕ(x)dx be a Radon
measure on [0,∞) satisfying (µ). Suppose that (4.4) holds true. Next, let M
be an N -function satisfying condition (M), and let Q be another N -function
such that (Y) is satisfied for M, P = P (λ) = λp, and Q. Then for any
u ∈ C∞0 (R+),

(4.5)
�

R+

M(|u′|) dµ ≤ K1

�

R+

|u′′|p dµ+K2

�

R+

Q(|u|) dµ,

and also

(4.6) ‖u′‖2LM (R+,µ) ≤ K‖u
′′‖Lp(R+,µ)‖u‖LQ(R+,µ),

where the constants K1,K2,K do not depend on u.

We illustrate this case with two examples.

Example 4.2 (classical Hardy inequality). Consider the classical Hardy
inequality, which involves power weights [16], [17]:

(4.7)
�

R+

|u(t)|ptα−p dt ≤ C
�

R+

|u′(t)|ptα dt,

where C = (p/|α− p+ 1|)p, α 6= p − 1. In this case we have µ(dt) =
exp(−ϕ(t))dt, where ϕ(t) = −α ln t. In particular ϕ′(t) = −α/t, and (4.7)
reads �

R+

(|ϕ′(t)| |u(t)|)ptα dt ≤
(

p|α|
|α− p+ 1|

)p �

R+

|u′(t)|ptα dt.

Example 4.3 (Hardy inequality and power-exponential weights). We
now consider measures on (0,∞) with power-exponential-type densities:

(4.8) µ(dx) = xαe−x
β
dx = exp(−ϕ(x))dx,

α ≥ 0, β > 0, ϕ(x) = − lnxα + xβ.

This class of measures contains in particular the exponential distribution
(α = 0, β = 1) and the Gaussian distribution (α = 0, β = 2).
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As |ϕ′(x)| � 1/x for x small and |ϕ′(x)| � xβ−1 for x close to ∞, the
Muckenhoupt condition (4.4) for the measure (4.8) is equivalent to

(4.9) sup
r>0

A(r)1/pB(r)1−1/p <∞,

where

B(r) :=
r�

0

ex
β/(p−1)

xα/(p−1)
dx,

A(r) :=
( 1�

r

x−p+αe−x
β
dx
)
χ{r<1} +

(∞�
r

x(β−1)p+αe−x
β
dx
)
χ{r≥1}.

We observe that A(r) is finite for all choices of α ≥ 0, β > 0, whereas B(r)
is finite if and only if α < p − 1. Both functions A,B are locally bounded
and continuous near 0 and ∞. Moreover, for r close to 0, we have

A(r)1/pB(r)1−1/p � (r−1+α/p+1/p + C) · (r−α/p+1−1/p) < const.

Therefore (4.9) holds true if and only if lim supr→∞A(r)B(r)p−1 <∞.
By a direct application of the de l’Hospital rule we see that for a ∈ R

and b > 0,

lim
r→∞

	∞
r xae−x

b
dx

ra+1−be−rb
= lim

r→∞

rae−r
b

brae−rb − (a+ 1− b)ra−be−rb
=

1
b
,

and for a < 1 and C > 0,

lim
r→∞

	r
0
eCx

b

xa dx

eCrbr−(a+b−1)
= lim

r→∞

eCr
b

ra

[
bCeCr

b

ra
− (a+ b− 1)eCr

b

ra+b

]−1

=
1
bC

.

Therefore, for r large, we have

A(r) � r(β−1)(p−1)+αe−r
β

and B(r) � r−α/(p−1)−(β−1)er
β/(p−1),

and so A(r)B(r)p−1 � const for large r. Consequently, (4.9) is satisfied
whenever 0 ≤ α < p− 1 and β > 0.

We end up with the following theorem.

Theorem 4.4. Let p > 1 and let µ(dx) = xαe−x
β
dx, where α 6= p − 1,

β = 0, or 0 ≤ α < p− 1, β > 0. Suppose that M is an N -function satisfying
condition (M), and Q is another N -function such that

M(t)
t2

rs ≤M(t) + crp +Q(s) for all t, r, s > 0.

Then inequalities (4.5) and (4.6) hold for any u ∈ C∞0 (R+), with constants
K1,K2,K independent of u.

Remark 4.5. As to the validity of Orlicz-space counterparts of (4.1),
which would yield (H), we refer to the papers of Bloom–Kerman [4], Lai [32],
Heinig–Maligranda [19], Heinig–Lai [18], their references and also to the
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authors’ paper [25, Section 3.3], where another type of sufficient condition
for (H) to hold on R+ is given.

4.1.2. Multidimensional Hardy inequalities

(A) Inequalities on bounded domains. Multidimensional Hardy inequali-
ties of the form

(4.10)
�

Ω

(
1

δ(x)
|u(x)|

)q
δ(x)a dx ≤ C

�

Ω

|∇u(x)|qδ(x)a dx, u ∈ C1
0 (Ω),

where Ω ⊆ Rn is a bounded domain with sufficiently regular boundary,
a < q − 1, 1 < q < ∞, δ(x) = dist(x, ∂Ω), were first obtained by Nečas
[38] (for bounded domains with Lipschitz boundary) and extended further
by Kufner [29, Theorem 8.4] and Wannebo [47] to Hölder domains.

As a direct consequence of Theorem 3.1, we obtain Gagliardo–Nirenberg-
type inequalities for Lp-spaces weighted by the distance from the boundary,
which can be stated as follows.

Theorem 4.6. Suppose that Ω is a bounded Lipschitz domain and q > 1,
a > q − 1. Then:

(i) if p ≥ 2, r > 1, 2/p = 1/q + 1/r, then for every u ∈ C∞0 (Ω),( �

Ω

|∇u(x)|pδ(x)a dx
)2/p

≤ c
( �

Ω

|∇(2)u(x)|qδ(x)a dx
)1/q

·
( �

Ω

|u(x)|rδ(x)a dx
)1/r

,

with a constant c > 0 independent of u,
(ii) if M and Q are N -functions such that

M(u)
u2

vw ≤M(u) + cvq +Q(w)

and M satisfies condition (M), then for every u ∈ C∞0 (Ω),
�

Ω

M(|∇u(x)|)δ(x)a dx

≤ c
( �

Ω

|∇(2)u(x)|qδ(x)a dx+
�

Ω

Q(|u(x)|)δ(x)a dx
)
,

and
‖∇u‖2LM (Ω,µ) ≤ c‖∇

(2)u‖Lq(Ω,µ)‖u‖LQ(Ω,µ),

with constants independent of u.

Proof. (i) Obviously,M(λ) = λp satisfies condition (M), and P (λ) = λq,
Q(λ) = λr satisfy (Y) due to Remark 2.1. Moreover, the measure µ(dx) =
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exp(−ϕ(x))dx, where ϕ(x) = −a ln δ(x), satisfies (µ). It is not hard to
verify that |∇ϕ(x)| � 1/δ(x) (note that |∇δ| � const). This together with
(4.10) implies (H). Now it suffices to apply Theorem 3.1. Part (ii) is proven
similarly.

Remark 4.7. Note that δ(x)a is an Aq-weight when −1 < a < q − 1
(see e.g. [45] for the definition of Ap-weights introduced by Muckenhoupt).
Gagliardo–Nirenberg inequalities with Ap-weights for homogeneous spaces
were earlier obtained in [9], [23] by different methods. Those results also
covered the case 1 < p < 2.

Remark 4.8. Counterparts of inequality (4.10) in Orlicz norms were
obtained by Cianchi in [11].

(B) Inequalities on Rn. The Hardy inequality on Rn with power weights
(see e.g. [7], [34], [30, p. 70], and their references)∥∥|x|α−1|u|

∥∥
Lq
≤ C

∥∥|x|α|∇u|∥∥
Lq
,

where u ∈ C∞0 (Rn), 1/q + (α− 1)/n > 0, q > 1, gives rise to Gagliardo–
Nirenberg inequalities on Rn with power weights |x|α and N -functions M,P
= P (λ) = λq, Q, satisfying (Y). The result, obtained directly from Theorem
3.1, reads as follows.

Theorem 4.9. Suppose that 1/q + (α− 1)/n > 0, q > 1. Then:

(i) if p ≥ 2, r > 1, 2/p = 1/q + 1/r, then for every u ∈ C∞0 (Ω),( �

Ω

|∇u(x)|p|x|α dx
)2/p

≤ c
( �

Ω

|∇(2)u(x)|q|x|α dx
)1/q

·
( �

Ω

|u(x)|r|x|α dx
)1/r

,

with a constant c > 0 independent of u,
(ii) if M and Q are N -functions such that

M(u)
u2

vw ≤M(u) + cvq +Q(w),

and M satisfies condition (M), then for every u ∈ C∞0 (Ω),( �

Ω

M(|∇u(x)|)|x|α dx
)
≤ c
( �

Ω

|∇(2)u(x)|q|x|α dx+
�

Ω

Q(|u(x)|)|x|α dx
)

and
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‖∇u‖2LM (Ω,µ) ≤ c‖∇
(2)u‖Lq(Ω,µ)‖u‖LQ(Ω,µ),

with constants independent of u.

4.2. The scope of Theorem 3.4. We now discuss the validity of The-
orem 3.4. To shorten the discussion, we only focus on condition (H1) in its
assumptions. While the Hardy inequality (H) has been thoroughly investi-
gated, condition (H1) has not attracted much attention so far.

Inequalities on bounded domains

(A) Result by Oinarov. Condition (H1) and its special variant (3.12)
have drawn less attention than the ‘classical’ Hardy inequality (H). Oinarov
[40] considered the inequalities

(4.11)
( b�
a

|ωu|q dr
)1/q

≤ C
( b�
a

|ρu′|p dr +
b�

a

|vu|p dr
)1/p

for general weights ω, v, ρ and derived necessary and sufficient conditions
for (4.11) to hold for all u ∈ C∞0 (a, b). Our condition (3.12) with µ(dx) =
e−ϕ(x)dx is exactly (4.11), under the choice of ω(r) = ϕ′(r)e−ϕ(r)/p, v(r) =
ρ(r) = e−ϕ(r)/p, p = q.

(B) Result by Cianchi. The Orlicz-norms counterpart of (H1),

(4.12)
∥∥∥∥ u

d1+α

∥∥∥∥
LB(G)

≤ C
(∥∥∥∥ udα

∥∥∥∥
LA(G)

+
∥∥∥∥∇udα

∥∥∥∥
LA(G)

)
,

has been established by Cianchi [11]. Here G ⊂ Rn is a sufficiently regular
domain, A and B are N -functions related by a certain domination condi-
tion (in particular A = B is possible), d(x) = dist(x, ∂G), and the mea-
sure considered is the Lebesgue measure. In our work, we need modular
versions of (4.12); in general they do not come as its direct consequence.
Note that in the case of homogeneous N -functions, (4.12) is an extension
of (4.10).

(C) Our approach. Inequalities on intervals. In the forthcoming paper
[26], the authors work out conditions concerning M,ϕ which ensure the va-
lidity of (3.12) on intervals (a, b) ⊂ R, including the cases a = −∞ and
b = ∞. See also the paper [41] devoted solely to the Hardy and Gagliardo–
Nirenberg inequalities for the Gaussian measure on Rn.
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