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Throughout this paper, by a graph we mean a onneted ompat one-dimensional polyhedron, and a tree is a graph whih ontains no loops. Wealso assume that any graph G is endowed with a metri d; we de�ne B(x; ε),

x ∈ G, ε > 0, to be the set of points of G whose distane from x is lessthan ε. B(G) and E(G) denote the sets of branh points and of endpointsof G, respetively. A map f is a ontinuous funtion from a spae X to itself;
f0 is the identity map, and for every n ≥ 0, fn+1 = fn ◦ f . We denoteby Fix(f) and Per(f) the sets of �xed points and of periodi points of f ,respetively. For a subset K of X, IntK and Cl K denote the interior andlosure of K in X.2. Preliminaries. An onto map f : X → X is alled (topologially)transitive if any of the following equivalent onditions holds.(1) There exists a point with dense orbit.(2) Whenever U , V are non-empty open sets, there exists an n ≥ 1 suhthat f−n(U) ∩ V 6= ∅.(3) The only losed invariant set K with IntK 6= ∅ is K = X.Remark. We note that, in the ase of a graph map f : G → G, f istransitive if and only if for every pair of non-empty open sets U and V in G,there exists a k ≥ 1 suh that U ∩ Int fk(V ) 6= ∅.We �rst reall some basi, but important results for transitive graphmaps.Theorem 2.1 ([4℄). Let f : G → G be a transitive graph map withoutperiodi points. Then G is the irle and f is onjugate to an irrationalrotation.Theorem 2.2 ([4℄). Let f : G → G be a transitive graph map withperiodi points. Then the set of periodi points of f is dense in G.In the study of transitive maps, the sublass of those maps having alliterates transitive plays a signi�ant role. A map f is totally transitive if fnis transitive for all n ≥ 1 (see [1℄); note that a transitive map is not alwaystotally transitive.The following splitting theorem is quite useful, sine it allows us to reduethe study of transitive graph maps to that of totally transitive graph maps.Theorem 2.3 ([1℄, [2℄, [5℄). Let f : G → G be a transitive graph map.Then exatly one of the following two statements holds:(1) f is totally transitive.(2) There exist a k > 1 and non-degenerate onneted subgraphs G0, . . .

. . . , Gk−1 of G suh that(a) G =
⋃k−1

i=0 Gi,
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(b) Gi ∩ Gj = E(Gi) ∩ E(Gj) for i 6= j,() f(Gi) = Gi+1 (mod k) for i = 0, . . . , k − 1,(d) fk|Gi

is totally transitive for i = 0, . . . , k − 1.3. Strong transitivity. A map f : X → X is alled strongly transi-tive if for every non-empty open set J of X, there exists an n suh that⋃n
k=0 fk(J) = X.We �rst reall a useful proposition whih shows a bakward struture ofa strongly transitive map for eah point; we omit the straightforward proof.Proposition 3.1. The following onditions are equivalent for a map

f : X → X:(1) For eah x ∈ X, Cl
⋃

∞

n=0 f−n(x) = X.(2) For every non-empty open subset U of X, ⋃
∞

n=0 fn(U) = X.Furthermore, if f is open, then (1) and (2) are equivalent to(3) If E ⊂ X is a losed set with f−1(E) ⊆ E, then E = ∅ or X.The examples below larify the di�erene between transitivity and strongtransitivity.Example 1. There exists a transitive map of the interval whih is notstrongly transitive. This example appears in [3, Example 3℄ to illustrateanother property. For ompleteness, we give a onstrution of the map here.Let {pn | n ∈ Z} be a two-sided sequene of real numbers in [0, 1] suhthat
· · · < p−2 < p−1 < p0 < p1 < p2 < · · · ,and pn → 1 and p−n → 0 as n → ∞. For n ∈ Z put In = [pn, pn+1]. De�nethe map fn : In → In−1 ∪ In ∪ In+1 by

fn(pn) = pn, fn(pn+1) = pn+1,

fn

(
2pn + pn+1

3

)
= pn+2, fn

(
pn + 2pn+1

3

)
= pn−1,and fn is linear on the intervals omplementary to these points. Then f :

[0, 1] → [0, 1] is given by f(0) = 0, f(1) = 1, and f(x) = fn(x) if x ∈ In(see Figure 2 in [3℄). This map is not strongly transitive, beause f−1(0) = 0(reall Proposition 3.1).By Example 1 taken mod 1, we also haveExample 2. There exists a transitive map of the irle whih is notstrongly transitive.Let Bn be the bouquet with n petals generated by n opies of the unitirle, where n ≥ 1. Using Example 1 taken mod 1 and a rotation amongpetals with respet to the origin, we an easily have an example on Bn.
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Example 3. There exists a transitive map of Bn whih is not stronglytransitive.Example 4. Sine the map f in Example 1 is atually totally transitiveas stated in [3, Example 3℄, we have a totally transitive interval map whihis not strongly transitive. On the other hand, the interval map g below isstrongly transitive, but not totally transitive:

g(x) =






2x + 1/2 (0 ≤ x ≤ 1/4),
−2x + 3/2 (1/4 ≤ x ≤ 3/4),
2x − 3/2 (3/4 ≤ x ≤ 1).(We note that if I1 = [0, 1/2] and I2 = [1/2, 1], then g(I1) = I2, g(I2) = I1and g2|Ij

: Ij → Ij is strongly transitive for j = 1, 2.)4. Main results. Here is our main result.Theorem 4.1. Let f : G → G be a graph map with # Fix(fk) < ∞ foreah k ≥ 1. If f is transitive, then it is strongly transitive.A map f on a graph G is pieewise monotone if there is a �nite set Ain G suh that f is monotone on eah omponent of G r A. We note thatthe kth iterate of a pieewise monotone transitive graph map has at most�nitely many �xed points for eah k ≥ 1.Corollary 4.2. Let f : G → G be a pieewise monotone graph map. If
f is transitive, then it is strongly transitive.Remark. The interval ase of the orollary above was proved by Coven�Mulvey [6℄.Example 5. Let f : [0, 1] → [0, 1] be the map whose graph appearsbelow. Then f is transitive and the set of �xed points of fk is �nite for eah
k ≥ 1. Therefore f is strongly transitive, in fat, for eah non-degeneratesubinterval J of [0, 1], there exists an n suh that fn(J) = [0, 1].
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Proof of Theorem 4.1. If Per(f) = ∅, then by Theorem 2.1, f is onjugateto an irrational rotation over the irle. Hene f is open and ⋃

∞

n=0 fn(U) = Gfor any non-empty open subset U of G. It follows from ompatness of Gthat f is strongly transitive.We now assume that Per(f) 6= ∅; then Cl Per(f) = G by Theorem 2.2.In view of Theorem 2.3, we begin by showing that f is strongly transitivewhen it is totally transitive.Let J be a onneted subset of G with IntG J 6= ∅. We have to see that
{fn(J) : n ≥ 0} ontains a �nite subovering of G.If G =

⋃
∞

n=0 IntG fn(J), then by ompatness of G, we have
G = Int fn1(J) ∪ · · · ∪ Int fnm(J) = fn1(J) ∪ · · · ∪ fnm(J)for some n1, . . . , nm ∈ N ∪ {0}: thus the onlusion holds in this ase.We next assume that

G 6=
∞⋃

n=0

IntG fn(J).Putting S =Gr
⋃

∞

n=0 IntG fn(J), we now show that GrS =
⋃

∞

n=0 IntG fn(J)is onneted and the set S is �nite. Take a periodi point z ∈ IntJ ofperiod p (Theorem 2.2). Then ⋃
∞

l=0 Int fpl(J) is onneted, beause IntJ ∩
Int fpl(J) 6= ∅ for every l ≥ 1. (If z ∈ Int fpl(J), then this is trivial; if
z 6∈ Int fpl(J), then z ∈ Bd fpl(J) = Bd Int fpl(J), thus the intersetion isnon-empty.) We now �nd that

∞⋃

l=0

Int fpl(J) ⊆
∞⋃

n=0

Int fn(J) = G r S ⊆ G = Cl
∞⋃

l=0

Int fpl(J).Here, the last equality follows from transitivity of fp (by total transitivityof f) and the Remark following the de�nition of transitivity in Setion 2.Therefore, G r S is onneted. Sine S ontains no non-degenerate intervalsby transitivity of f , it must be �nite.Our task is now to show that(1) for every x ∈ S, there exist an open neighborhood Kx of x in G and
nx ∈ N ∪ {0} suh that x ∈ Kx ⊆ f0(J) ∪ · · · ∪ fnx(J).Let x ∈ S. When there is an l ≥ 1 suh that f−l(x) ∩ S = ∅, then bylosedness of f l, we have an open neighborhood K of x in G suh that

f−l(x) ⊆ f−l(K) ⊆ f−l(Cl K) ⊆ G r S.By ompatness there exists an mx ≥ 0 satisfying
f−l(Cl K) ⊆ f0(J) ∪ · · · ∪ fmx(J),hene,

x ∈ K ⊆ Cl K ⊆ f l+0(J) ∪ · · · ∪ f l+mx(J).
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Next, we assume that f−l(x) ∩ S 6= ∅ for every l ≥ 1; this is the hardestase. Sine #S < ∞ we an take a natural number k suh that fk(x) = x.We hoose a small tree neighborhood T of x in G suh that(2) T ∩ (B(G) ∪ S) = {x},and represent T by ars [x, xi] with endpoints x and xi, i = 1, . . . , p, as

T = [x, x1] ∪ · · · ∪ [x, xp],where [x, xi]∩ [x, xj] = {x} for i 6= j. Further, we may assume by ontinuityof f that for i ∈ {1, . . . , p},(3) fki(T ) is a tree and fki(T ) ∩ (B(G) ∪ S) = {x}.We put
P =

{
i ∈ {1, . . . , p}

∣∣∣∣
there exist j 6= i, ni ∈ N ∪ {0} and εi > 0suh that ([x, xi] ∪ [x, xj]) ∩ B(x; εi) ⊆ fni(J)

}
.

We shall show that for i ∈ {1, . . . , p} r P ,(4)i there exist a non-negative integer ni and an εi > 0 for whih
[x, xi] ∩ B(x; εi) ⊆ fni(J).Let i ∈ {1, . . . , p}rP . We �rst prove (4)i under the ondition that thereis a δ > 0 suh that(5)i fk([x, xj]) ∩ (x, xi] ∩ B(x; δ) = ∅ for any j 6= i.As # Fix(fk) < ∞, there is a small tree neighborhood U of x in T ∩

B(x; δ) ⊆ G suh that(6) U ∩ Fix(fk) = {x} and fk(U) ⊆ T.Then for eah z ∈ (U r {x}) ∩ [x, xi], we have(7) fk(z) ∈ G r (x, z].
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Indeed, suppose, on the ontrary, that there exists a z0 ∈ (U r {x})∩ [x, xi]suh that fk(z0) ∈ (x, z0]. We will show that fk([x, z0]) ⊆ [x, z0], whihontradits the transitivity of fk. Indeed, if not, there exists a y ∈ (x, z0) with
fk(y) 6∈ [x, z0]. Then by the inlusion in (6), we have either fk(y) ∈ (z0, xi]or fk(y) ∈ (x, xj ] for some j 6= i. However, neither an our by the followingreasoning. If fk(y) ∈ (z0, xi], then there exists a y′ ∈ (y, z0) ⊆ U suh that
fk(y′) = y′, ontrary to the �rst statement of (6). If fk(y) ∈ (x, xj ] for some
j 6= i, then there exists a y0 ∈ (y, z0) suh that for any ε > 0 there existsa δε > 0 satisfying ([x, xi] ∪ [x, xj ]) ∩ B(x; δε) ⊆ fk([x, xi] ∩ B(y0; ε)) and
fk(y0) = x. Take an n0 and an ε > 0 suh that [x, xi] ∩ B(y0; ε) ⊆ fn0(J)(note y0 6∈ S). Then ([x, xi]∪ [x, xj ])∩B(x; δε) ⊆ fk+n0(J). This ontraditsthe assumption that i 6∈ P .Moreover, for eah z ∈ (U r {x}) ∩ [x, xi] we have(8) (x, z] ∩ fk(G r U) 6= ∅.Indeed, suppose not; that is, assume that there exists a z0 ∈ (U r {x}) ∩
[x, xi] suh that (x, z0] ∩ fk(G r U) = ∅. Then we have the onlusion
f−k((x, z0]) ⊆ (x, z0], ontraditing the transitivity of fk; indeed, if thereis a z1 ∈ f−k((x, z0]) r (x, z0], then fk(z1) ∈ (x, z0] ⊆ U ⊆ T ∩ B(x; δ). Thisimplies z1 ∈ U r{x}. Then if z1 ∈ [x, xi], we have fk(z1) ∈ Gr(x, z1] ⊆ Gr

(x, z0] by (7); if z1 ∈ [x, xj ] for some j 6= i, we have fk(z1) 6∈ (x, xi]∩B(x; δ)by (5)i. In any ase, it is a ontradition.By (8), we an hoose yn, y ∈ G r U , n ∈ N, suh that(i) limn→∞ yn = y,(ii) #{fk(yn) | n ∈ N} = ∞,(iii) limn→∞ fk(yn) = fk(y) = x on [x, xi].If y 6∈ S, then there exist numbers n and m0 suh that ym, y ∈ fn(J) forany m ≥ m0. Thus, we have an εi > 0 suh that [x, xi]∩B(x; εi) ⊆ fk(fn(J)).If y ∈ S, then it follows from fk(x) = x, fk(y) = x and y 6= x thatthere is an l ≥ 1 suh that f−l(y) ∩ S = ∅. From the same argument as inthe proof above, y has an open neighborhood whih is overed by �nitelymany fm(J)'s, so there exist numbers n and n1 < n2 < · · · suh that ynj
, y ∈

fn(J). Thus, we again have an εi > 0 suh that [x, xi]∩B(x; εi) ⊆ fk(fn(J)).We must next examine the statement (4)i in the ase when (5)i is notsatis�ed; that is, for eah δ > 0, there exists a j 6= i suh that
fk([x, xj]) ∩ (x, xi] ∩ B(x; δ) 6= ∅.Then we note by the �rst assumption in (3) that there exists an i1 6= i suhthat(9) [x, xi] ∩ B(x; δi1) ⊆ fk([x, xi1])for some δi1 > 0.
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Whenever [x, xi]∩B(x; δi1) ⊆ fk((x, xi1 ]), there is a y ∈ (x, xi1] suh that(i) fk(y) = x,(ii) for eah γ > 0, there exists an η(γ) > 0 suh that [x, xi]∩B(x; η(γ))

⊆ fk([x, xi1] ∩ B(y; γ)).Sine y ∈ GrS by (2), there is an n suh that y ∈ Int fn(J). Thus, we have a
γ > 0 suh that B(y; γ) ⊆ fn(J). Therefore [x, xi]∩B(x; η(γ)) ⊆ fk(fn(J)).Next, if [x, xi] ∩ B(x; δi1) 6⊆ fk((x, xi1 ]), then x 6∈ fk((x, xi1]) by (9).Thus, we have a γi1 > 0 suh that

fk([x, xi1] ∩ B(x; γi1)) ⊆ [x, xi].We note by transitivity of fk that for any (γi1 ≥) η > 0, there exists a
ξi1(η) > 0 suh that(10)i1i [x, xi] ∩ B(x; ξi1(η)) ⊆ fk([x, xi1] ∩ B(x; η)).If i1 ∈ P , then there exist an ni1 ∈ N ∪ {0} and an εi1 > 0 suh that
[x, xi1 ] ∩ B(x; εi1) ⊆ fni1 (J). Thus, we have

[x, xi] ∩ B(x; ξ(η)) ⊆ fk([x, xi1 ] ∩ B(x; η)) ⊆ fk(fni1 (J)),where η = min{εi1 , γi1}.If i1 6∈ P , then we begin proving (4)i1 by the same proess as above. Notethat by (10)i1i statement (4)i1 implies (4)i.With this strategy, it will again remain to prove our statement in thefollowing ase:
• there exist an i2 6= i1 and a δi2 > 0 suh that [x, xi1 ] ∩ B(x; δi2) ⊆

fk([x, xi2 ]),
• [x, xi1] ∩ B(x; δi2) 6⊆ fk((x, xi2]),
• there exists a γi2 > 0 suh that fk([x, xi2 ] ∩ B(x; γi2)) ⊆ [x, xi1 ],
• for any (γi2 ≥) η > 0, there exists a ξi2(η) > 0 suh that

(10)i2
i1

[x, xi1 ] ∩ B(x; ξi2(η)) ⊆ fk([x, xi2 ] ∩ B(x; η)),

• i2 6∈ P .We note again by (10)i2
i1
that (4)i2 ⇒ (4)i1 . Continuing this proess, as

#{1, . . . , p}rP < ∞, we must �nally examine our statement in the followingyli ase:
• there exist pairwise distint i0 (≡ i), i1, . . . , ir−1 ∈ {1, . . . , p} r Pand positive numbers δi0 , . . . , δir−1 suh that [x, xij ] ∩ B(x; δij+1) ⊆

fk([x, xij+1 ]) (mod r),
• [x, xij ] ∩ B(x; δij+1) 6⊆ fk((x, xij+1]) (mod r),
• there exist positive numbers γi0 , . . . , γir−1 suh that fk([x, xij+1] ∩

B(x; γij+1)) ⊆ [x, xij ] (mod r),
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• for any η > 0, there exist positive numbers ξi0(η), . . . , ξir−1(η) suhthat

(10)
ij+1

ij
[x, xij ] ∩ B(x; ξij+1(η)) ⊆ fk([x, xij+1] ∩ B(x; η)),

• (4)i0 ⇒ (4)ir−1 ⇒ · · · ⇒ (4)i1 ⇒ (4)i0 .Then we have a positive number γ suh that for any j ∈ {0, . . . , r − 1},
fkr([x, xij ] ∩ B(x, γ)) ⊆ [x, xij ].Therefore we are able to �nish our proof by showing (4)i0 under the ondi-tion: there is a δ > 0 suh that

fkr([x, xj]) ∩ (x, xi0] ∩ B(x; δ) = ∅ for any j 6= i0,and this follows from the same argument as in the proof of (4)i under (5)i.This ompletes the proof of (4)i for i ∈ {1, . . . , p} r P and the proof ofstatement (1).Sine G r
⋃

x∈S Kx is ompat, there exist n1, . . . , nm ∈ N ∪ {0} suhthat G r
⋃

x∈S Kx ⊆ fn1(J) ∪ · · · ∪ fnm(J). Thus we have
G = (f0(J) ∪ · · · ∪ fnS (J)) ∪ (fn1(J) ∪ · · · ∪ fnm(J)),where nS = max{nx | x ∈ S}. Therefore f is strongly transitive.We must next show this theorem in the ase when f is not totally tran-sitive. This follows easily from the �rst ase and the splitting theorem 2.3,and the proof of Theorem 4.1 is �nally �nished.Proposition 4.3. Let f : T → T be a totally transitive tree map. Then fis strongly transitive if and only if for every non-degenerate onneted subset

J of T , there exists an M suh that fm(J) = T for any m ≥ M .Proof. The su�ieny is lear. We show the neessity. Assume that f isstrongly transitive. Let J be a non-degenerate onneted set of T . We denotethe set of all end points of T by E(T ) = {e1, . . . , ek}. By Proposition 3.1, foreah i = 1, . . . , k, there exist an ni and a zi ∈ T rE(T ) suh that fni(zi) = ei.Let K be the smallest subtree of T ontaining {z1, . . . , zk}. Sine f is totallytransitive, it follows from [9, Lemma 6℄ that there exists an N suh that
K ⊆ fn(J) for any n ≥ N . Then we have fn+n0(J) = T for any n ≥ N ,where n0 = max{n1, . . . , nk}, sine for any n ≥ N and i ∈ {1, . . . , k},

ei = fni(zi) ∈ fni(K) ⊆ fni(fn+(n0−ni)(J)) = fn+n0(J).The following generalizes the result for interval maps of Coven�Mulvey[6℄ to one for tree maps.Theorem 4.4. Let f : T → T be an onto tree map. Let v(T ) be the max-imum order of any branh point in T and Nv(T ) the least ommon multipleof {2, . . . , v(T )}. Then the following are equivalent :
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(1) f is transitive and has a point of period whih is prime to 2, . . . , v(T ).(2) fNv(T ) is transitive.(3) f is totally transitive.(4) f is topologially mixing.Furthermore, if # Fix(fk) is �nite for eah k ≥ 1, then the above are equiv-alent to(5) for every non-degenerate onneted subset J of T , there exists an Msuh that fm(J) = T for any m ≥ M .Proof. The equivalenes (1)⇔(2)⇔(3)⇔(4) are well known [8, Theorem4.1℄, [1℄. The impliation (3)⇒(5) if # Fix(fk) is �nite for eah k ≥ 1 followsfrom Theorem 4.1 and Proposition 4.3. The onverse impliation (5)⇒(3) istrivial.5. Remarks. (I) It is useful to investigate the relation between the dy-namis of a graph map and the dynamis of the indued self-homeomorphismof the inverse limit spae [2℄, [3℄.Let f : X → X be an onto map. Assoiated with f is the inverse limitspae (X, f) = {(x0, x1, . . . ) | xi ∈ X, and f(xi+1) = xi}, and the induedhomeomorphism f̂ : (X, f) → (X, f) (alled the shift homeomorphism),given by f̂((x0, x1, . . . )) = (f(x0), x0, x1, . . . ).Proposition 5.1. Let f : X → X be an onto map of a metrizableompat spae X. If the shift homeomorphism f̂ : (X, f) → (X, f) is stronglytransitive, then f is strongly transitive.Proof. Note that π0 ◦ f̂ = f ◦π0, where π0 : (X, f) → X is the projetionto the �rst oordinate spae. Let U be an open subset of X. Sine f̂ isstrongly transitive, there exists an n ∈ N suh that

(X, f) =
n⋃

k=0

f̂k(π−1
0 (U)) =

n⋃

k=0

π−1
0 fk(U) = π−1

0

( n⋃

k=0

fk(U)
)
.Therefore we have ⋃n

k=0 fk(U) = X.Unfortunately, the shift homeomorphism of a strongly transitive graphmap is not always strongly transitive. In fat, we have the following.Proposition 5.2. Let G be a non-degenerate graph and f : G → G bean onto map. Then the shift homeomorphism f̂ : (G, f) → (G, f) is stronglytransitive if and only if G is the irle and f is onjugate to an irrationalrotation.Proof. The su�ieny is lear. We show the neessity. Assume that f̂ isstrongly transitive. We note that f is (strongly) transitive. By Theorem 2.1,
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it su�es to prove that f has no periodi points. Suppose, on the on-trary, that Per(f) 6= ∅. Let x ∈ Per(f) have period n. Then the point
x = (fn−1(x), . . . , f(x), x, fn−1(x), . . . , f(x), x, . . . ) of (G, f) is periodi un-der f̂ . Sine strong transitivity of f̂ implies its minimality, this ontraditsthe fat that #(G, f) = ∞.(II) We note that statement (2) in Proposition 3.1, whih was introduedby Parry [7℄, implies strong transitivity for tree maps.Proposition 5.3. Let f : T → T be an onto tree map. Then f is stronglytransitive if and only if ⋃

∞

n=0 fn(U) = T for every non-empty open subset Uof T .Proof. The neessity is trivial. We show the su�ieny. Suppose thatthe ondition is satis�ed. Let U be any non-empty open onneted setin T . Take a �xed point x0 ∈ T of f . Then, by the assumed ondition,
x0 ∈ fn0(U) for some n0. For the endpoints E(T ) = {e1, . . . , ek} of thetree T , it follows from our ondition and Proposition 3.1 that for eah
i ∈ {1, . . . , k}, Cl

⋃
∞

n=0 f−n(ei) = T and Int f−n(ei) = ∅. Thus, for eah
i ∈ {1, . . . , k}, there exists an ni ≥ n0 suh that f−ni(ei)∩U 6= ∅. Therefore,
T =

⋃k
i=1[ei, x0] =

⋃k
i=1 fni(U), where [ei, x0] denotes the smallest ar withendpoints ei and x0 in T .However, this is not always true for a general graph map.Example 6. Let f : [0, 1] → [0, 1] be the map whose graph appearsbelow. Using it, we de�ne the irle map g : S1 → S1 by g(e2πiθ) = e2πif(θ),where 0 ≤ θ ≤ 1. Then g is transitive and satis�es statement (2) in Propo-sition 3.1, but is not strongly transitive. (Note that if J is a non-degenerateonneted set in S1 not ontaining the point (1, 0), then for any n, there isno 0 < ε < 1 suh that {e2πiθ | 1 − ε < θ < 1} ⊆ gn(J).)
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