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Summary. Let 0 < 8 < a <1 and let p € (0,1). We consider the functional equation
_ . (z=B _ Jr z(a=-B)+B(1-0q)
@(w)—pw(l_ﬁ) +(1 p)so(mm{a, o= )

and its solutions in two classes of functions, namely

T ={p:R — R | ¢ is increasing, ¢|(—c,0 = 0, ¢|[1,00) = 1},

C={¢:R — R | @ is continuous, ©|(_c,0) = 0, ¥|[1,00) = 1}.
We prove that the above equation has at most one solution in C and that for some pa-
rameters «, 3 and p such a solution exists, and for some it does not. We also determine

all solutions of the equation in Z and we show the exact connection between solutions in
both classes.

1. Introduction. In [4] M. Corsolini considered solutions : [0,1] —
[0, 1] of the functional equation

I )
plfs(@)] +4q if fu(z) € [1,00),

with given numbers «, 3,p,q € (0,1) such that p + ¢ = 1 and functions

fs:[0,1] — [0,1], f: [0,1] — [0, max{1, Ba~'}] defined by

0 if x € [0, 3]
fs(x)= z—0
1-p
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= if = € [0, 4],
(6%

Fo@) =9 a(a =) + 81— )
a(l -3
For more details see [3] where the connection of this problem with a problem
from game theory can be found. In a private correspondence M. Corsolini
asked about the existence of monotonic solutions # of (1) such that (0) =0
and ¥(1) = 1.
The following result gives a positive answer to this question in the case
where o < 3 (see [10] and [11]).

if x € (8,1].

THEOREM A. If a < 3, then equation (1) has exactly one bounded solu-
tion 1: [0,1] — R such that ¢¥(0) = 0 and (1) = 1. Moreover:

(i) v is continuous and increasing.
(ii) If « = 3, then v is strictly increasing and either absolutely contin-
uous or singular.
(iii) If « < [ then there exists a family J of disjoint open subintervals
of (0,1) such that v is constant on each of them and [0,1]\J J is
of Lebesgue measure zero.

In this paper we are interested in the case where 3 < a.
Assume § < « and define functions fi, fo: R — R by
x

x — @
ho=y=g =d MO=\sa-proa-a)
a(l—p)
It is obvious that f; and fo are continuous, strictly increasing,
(2) fi(z) <z < fa(z) <1 for every z € (0,1)
and
(3) fi(x) <0 for every z € (—o0, ]

Now, the question of M. Corsolini can be restated as the question of
existence of an increasing solution ¢: R — R of the equation

(E) p(x) = pplfi(x)] + qplfa(2)]
such that
(4) Pl =0 and ¢[00y = 1.

We first observe that the answer to the question of M. Corsolini is pos-
itive. More precisely, the function x; ) is a solution of equation (E) sat-
isfying condition (4). (Here and throughout, x; denotes the characteristic
function, defined on the real line, of the set I.)



Solutions of a Functional Equation 391

Since we have the existence of a solution of (E) satisfying (4) we can ask
about its uniqueness. The next observation suggests that equation (E) may
have a lot of solutions ¢: R — R satisfying (4).

REMARK 1. If ¢: R — Ris a solution of equation (E) satisfying condition
(4), then for every A € R the function ¢: R — R defined by

Ap(x) if x € (—o0,1),
o(x) = .
1 if x € [1,00),
is a solution of (E) satisfying (;5“,00’0] =0 and ¢’[1,oo) = 1.

2. An example. To show that equation (E) may have many solutions
¢: R — R satisfying (4) and, moreover, that the case § < « is different from
that studied in [10] and [11] we consider the following situation.

ExaMPLE. Fix 0 < f < o < 1 and let ~ be the equivalence relation
on R defined by

v~y o \/ \ (@ =g10-0gn(y)).
neN gl7""gn€{f17f27f1_1’f2_1}

Equivalence relations of this type appear in a natural manner (see e.g. [2] or
[7]). Let [x] denote the equivalence class of x and let M denote a complete
set of representatives of all equivalence classes of the relation ~.

Fix a function A\: M — R and define ¢: R — R by

0 if x € (—00,0],
o) =< My)z ifzelyn(0,1)and y € M,
1 if z € [1,00).

Simple calculations show that

() ¢(z) = (1 — )l f1(2)] + ag[fa(2)]
for every x € R. In particular, for every A € [0, 1] the function ¢: R — R
defined by
0 ifxze(—o0,0],
o(x) =< Az ifx € (0,1),
1 ifzrell, o),
is an increasing solution of (5) satisfying (4).
In what follows we are interested in solutions ¢ of (E) in the following
two classes of functions:
I ={p: R — R is increasing, ¢|(_o,0) = 0, ¥lj1,00) = 1},
C={p: R — R | is continuous, ¢|(_s0 = 0, ¥|[1,00) = 1}
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3. The uniqueness of solutions of (E) in the class C. On account
of the Example we see that equation (E) may have a lot of solutions in the
class Z. The first of our results shows that in C the situation is different.

THEOREM 1. Equation (E) has at most one solution in the class C.

Proof. Let ¢1, @2 € C be solutions of (E) and put ¢ = @1 — ¢3. Then ¢
is a continuous solution of (E) vanishing on (—o0,0] U [1,00). Put

M = sup{lé(a)] : @ € R}
and suppose, contrary to our claim, that M > 0. Let
zo = inf{x € (0,1) : |¢p(z)] = M} € (0,1).
By (2), fi(xo) < 2. Then |¢[f1(x0)]| < M, whence
M = |¢(z0)| < plo[fi(zo)ll + qlo[fo(zo)l] < pM +qM = M,

a contradiction. m

4. Some properties of solutions of (E) in the classes 7 and C.
To get information about the existence of a solution of (E) in the class C we
need some properties of solutions of (E) in Z and C.

LEMMA 1. If ¢ € T is a solution of (E), then ¢ is continuous at every
point x # 1.
Proof. The function ¢g: R — R given by
po(z) = lim o(y) — lim o(2)
y—x z—T

is a nonnegative solution of (E) such that
n—1
(6) ngo(xj) <1 whenever 0<zg<- -+ <xp_1<1,
5=0
and ¢o(z) = 0 if and only if ¢ is continuous at z. It is enough to show that
o vanishes on [0, 1).
Since ¢0(0) = gpo(0), we have ¢o(0) = 0. Suppose
L :=sup{go(x) : z € (0,1)} >0,
fix a positive integer n > 1/L 4 ¢/p and an xo € (0, 1) such that
wo(zo) > (1 —¢")L.
Then
(1 =¢")L < po(z0) = ppolf1(x0)] + gpolfa(z0)] < pL + gpolfa(xo)],
whence
po(x1) > (1—¢" L,
where x1 := fa(x0). By (2), z1 € (20,1). By induction we obtain
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wo(zj) > (1 —¢" )L, where z;= fg(.f()) for j=0,1,...,n—1,

and (zg,x1,...,2,—1) is a strictly increasing sequence of numbers from (0, 1).
Consequently,

n—1 n—1 q

ZOSOO(%‘) > L(n - Zoqn_]) > L(” - ﬂ) > 1,

j= j=

which contradicts (6). m

From now on let (¢, : n € N) denote a sequence of functions from R to
R defined as follows:
(1) 01(@) = X000 (@) and  pni1(2) = penlfi(2)] + gpnlfa(z)]
for any n € Nand z € R.

By induction we get the following observation.

LEMMA 2. The sequence (¢n : n € N) defined by (7) is a decreasing
sequence of functions from L, and its limit &,

(8) O(z) = lim ¢,(z) for every x € R,
is a solution of (E) and belongs to .

Proof. Since

p2(z) = pe1f1(2)] + g1 [f2(2)] = PX(8,00) (%) + @X(0,00) (%) < p1()
for every = € R, the obvious induction shows that (¢, : n € N) decreases.

The rest is evident. =

THEOREM 2. Equation (E) has a solution in the class C if and only if
the function @ defined by (8) and (7) is continuous.

Proof. If @ is continuous, then, by Lemma 2, it is a solution of (E) in the
class C. Assume now that ¢ € C is a solution of (E). Let M = sup{¢(z) :
x € R}. Obviously, M € [1,00). Moreover, there exists a y € [0, 1] such that
M = (y). By Remark 1, the function ¥: R — R given by

(©) (z) = {M‘ldj(x) if v € (—00,1),

1 if x € [1,00),
is a solution of (E). Since ¥ < 1, an obvious induction shows that ¥ < ¢,
for every n € N. Consequently, ¥ < @. In particular,

M=19Y(y)= lim ¢(x) =M lim ¥(z) <M lim &(x).
oYy~ Ty~

T—Y~
From this and Lemma 2 we see that

1< lim @(z) < lim &(z) < P(1) =1,

T—Y~ r—1-

which together with Lemma 1 gives @ € C.
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LEMMA 3. If @ is continuous, then it maps (0, 1) into itself.

Proof. Suppose that there exists an # < 1 such that ¢(x) = 1. Then
from Lemma 2 we deduce that there exists a y € (0,1) such that ¢(z) < 1
for every z < y and ®(z) = 1 for every x > y. This together with (2) gives

1=9o(y) =p2[fi(y)] + ¢ fa(y)] <p+a=1,
a contradiction.
Now suppose that there exists an z > 0 such that @(x) = 0. Then from

Lemma 2 we deduce that there exists a y € (0,1) such that &(z) = 0 for
every x <y and ®(x) > 0 for every x > y. This together with (2) gives

0 =(y) = p2[f1(y)] + q@[f2(y)] = ¢®@[f2(y)] > 0O,

a contradiction. =

LEMMA 4. If ¢ € T is a solution of equation (E) which is constant on
an interval I C R, then ¢ is also constant on the intervals f1(I) and fa(I).

Proof. Fix x1,x2 € I such that x1 < x9. Then
pelfi(z1)] + gelfa(z1)] = @(z1) = p(22) = polfi(z2)] + ap[f2(22)]

and since all the functions occurring above are increasing we have

elfi(z1)] = ¢lfi(z2)] and  p[fa(z1)] = plfa(22)].

This proves the assertion. =

THEOREM 3. If @ is continuous, then it is strictly increasing on the
interval [0, 1] and it is either absolutely continuous or singular.

Proof. Suppose that @ is not strictly increasing on [0, 1] and let [a,b] C
[0, 1] be an interval of maximal length on which @ is constant. It follows from
Lemma 3 that [a,b] C (0,1). Using Lemma 4 we see that ¢ is constant on
the intervals [f1(a), f1(b)] and [f2(a), f2(b)]. Since fi(b) — fi(a) > b —a, it
follows that [f1(a), f1(b)] N (0,1) = 0, which together with (2) and (3) gives
b < (. Hence fa(b) — fa(a) > b — a and thus [fa(a), f2(b)] N (0,1) = O; this
contradicts the fact that f([0,1]) C [0, 1].

Now we show that the unique solution of (E) in the class C is either
absolutely continuous or singular. Let ¢ € C be the unique solution of (E).
By the Canonical Lebesgue Decomposition Theorem (see, e.g., [9, Theorem
7.4.9]) there exist exactly one absolutely continuous (and increasing) function
©a: [0,1] — R and exactly one singular (continuous and increasing) function

¢s: [0,1] — R such that ,(0) = 0 and

P(x) = @a() + @s()
for every x € [0,1].



Solutions of a Functional Equation 395

Assume that ¢, does not vanish. We shall show that ¢ is absolutely
continuous. Let ¢ = 1/p,(1) and define ¢,: R — R and ¢5: R — R by

0 if z <0, 0 if x <0,
Pa(®) = cpa(z) fa€(0,1],  ¢s(x) =4 cps(x) ifz€l0,1],
1 if x> 1, cps(l) if x> 1.

Observe that the functions ¢, and ¢ so defined are continuous, increasing,
@ = ¢a + ¢s
and
¢a(z) + ¢s(x) = c@(x) = c[pP[f1(2)] + ¢P[fo(z)]
= p¢alf1(2)] + q@a[f2(@)] + pos[f1(2)] + ads[f2(z)]

for every x € R. Since ¢, o fi and ¢, o fo are absolutely continuous, and
¢so f1 and ¢s o fo are singular, the uniqueness of the decomposition implies
that there exists a real constant d such that

¢a($) = pd)a[fl (:L‘)] + nga[fQ(x)] +d
for every x € R. Thus
1= ¢a(1) - p¢a[f1(1)] + Q¢a[f2(1)] +d=1+d,
so d = 0, and hence ¢, € C. By Theorem 1 we get ¢, = ®. u

5. The existence of solutions of (E) in the class C. We begin with
the case where g > a.

LEMMA 5. Assume that ¢ > o. Then
&(x) >x  for every x € [0,1].

Proof. 1t is enough to prove (by induction) that ¢, (z) > x for all n € N
and x € [0,1]. =

THEOREM 4. If ¢ > «, then equation (E) has exactly one solution in
the class C. Moreover, this solution is strictly increasing on [0, 1] and either
absolutely continuous or singular.

Proof. By Lemmas 2, 1 and 5, and by Theorem 2, we get the existence.
The uniqueness follows from Theorem 1. The remaining assertion is a con-
sequence of Theorem 3. u

THEOREM 5. Assume that

(10) q<a-—pp.

Then equation (E) has no solution in the class C.
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Proof. Assumption (10) is equivalent to the inequality
1-p
1-— <1.
p(1 =) +qa—— 5=
Suppose that, contrary to our claim, ¢ € C is a solution of (E). Then by
Lemma 3 we have

e(x)dx >0

@
O e
R

and

¢ (zla=8)+B(1-a)
*qM )

1

e(y)dy <\ o(y) dy.
0

N
]
—

|
=

_|._
Q
Q

|
| I—
O ey =

a contradiction. m

6. Solutions of (E) in the class Z. We begin with a general result
connecting the existence of a solution of (E) in the class C with the set of all
solutions of (E) in the class 7.

THEOREM 6. (i) Equation (E) has a solution in the class C if and only
if (E) has a solution 1 € T such that 1 # X[1 o). Moreover:

(ii) If ¢ € C is a solution of (E), then ¢ € T is a solution of (E) if and
only if there exists a A € [0,1] such that

_ [ Ae(x) ifxe(—oo,1),
(1) V@) = {1 if z € [1,00).
(iil) If v € I, ¥ # Xu,x), 8 a solution of (E), then there ezists a
v € [1,00) such that the function ¢: R — R given by
_ () ifxze(—oo, 1),
(12) Plo) = { 1 if 2 € [1,00),

is a solution of (E) in the class C.
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Proof. 1If ¢ € C is a solution of (E), then by Remark 1, so is ¢ defined
by (11). Since A € [0, 1], by Theorem 3 we get ¢ € 7.

Assume now that 1 € Z is a solution of (E). From Lemma 1 we see that
1) is continuous at every point x # 1.

If lim,,_,;~ ¥(z) = 0, then ¥ = x|; o). Hence (11) holds with A = 0.

If lim, ;- ¢(x) € (0,1], then the function ¢: R — R defined by (12)
with
_ 1

hmzﬂl— 1)[)(1‘)
is a solution of (E) (cf. Remark 1) continuous at 1 and ¢ € Z. This, together
with Lemma 1, shows that o € C. u

7y

From Theorems 4, 5 and 7 we get the following two corollaries.

COROLLARY 1. Assume that ¢ > o and let ¢ € C be the unique solution
of (E). Then every solution 1p € I of (E) is of the form (11) with some
A€ 0,1].

COROLLARY 2. If (10) holds, then x|1 o) is the only solution of (E) in
the class T.

7. Consequences of a theorem of K. Baron. We first observe that
equation (E) can be rewritten in the form

(13) o) = | plr(z,w) dP(),
N

where 2 = {1,2} and P is a probability measure on 2 given by P({1}) = p,
P({2}) = ¢ and 7(-,w) = f, for w € {1,2}. Now we can to try use known
results on equation (13) in a much more general setting to get information
on solutions of (E) in the class Z (or equivalently, by Theorem 6, in the
class C). To the best of our knowledge the following theorem of K. Baron [1]
is the most general result applicable to equation (E).

THEOREM B (K. Baron). Assume that (£2,.A, P) is a probability space
and that 7: R x £2 — R is a function such that for every w € {2 the function
T(-,w) is strictly increasing and transforms R onto R, and for every x € R
the function 7(z,-) is a random variable. Let L: {2 — (0,00) be a random
variable such that

(14) |7(z,w) — T(y,w)| > L(w)|x —y| forall z,y e R, weE 2

and
(15) 0< S log L(w) dP(w) < oo.
0]
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If there exists an o € R such that

|7 (20, w) — 0|

(16) S log ()

{weN:|7(zo,w)—z0o|>L(w)}

dP(w) < oo,

then equation (13) has exactly one solution in the class of probability distri-
bution functions.

We wish to apply Theorem B to equation (E). Observe that since both
f1 and fo map R onto R, it follows that the main assumptions on 7 hold. It
is evident that condition (16) holds with any zy € R. Moreover, elementary
calculations shows that (14) holds with L given by

1 oa— 0
L)=——, L[@2)=-2""_
W=1—p ®=5a-p
and this function L is the best possible. Consequently, condition (15) now
reads
1 a—p
17 0 < plog + qglog ——
" IEE AR T
or equivalently
g
— - <
I—a-pve ="

Let us mention here that condition (15) has been used in some papers on
functional equations (see e.g. [5] or [8]) and on iterated function systems (see
e.g. [6] and the references therein).

As an immediate consequence of Theorem B and Theorem 6 we get the
following result.

THEOREM 7. Assume (17). Then:
(i) Equation (E) has no solution in the class C.
(ii) The function x[1 ) is the unique solution of (E) in the class T.

We know that in some cases condition (17) is stronger than condition
(10); e.g. in the case where p = ¢ = 1/2 condition (17) can be written as 1+
aff < 2a, whereas condition (10) takes the form 1+ 3 < 2. Unfortunately,
we do not know if such a connection is valid for all parameters p, a and 3
such that max{3, ¢} < a.

We end this paper by asking when equation (E) has a solution in the
class C if ¢ < o and neither (17) nor (10) holds.
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