COMPUTATIONAL ALGEBRA

Reduction of Power Series in a Polydisc with Respect to a Gröbner Basis

by

Justyna SZPOND

Presented by Józef SICIAK

Summary. We deal with a reduction of power series convergent in a polydisc with respect to a Gröbner basis of a polynomial ideal. The results are applied to proving that a Nash function whose graph is algebraic in a "large enough" polydisc, must be a polynomial. Moreover, we give an effective method for finding this polydisc.

1. Introduction. Let $\Omega \subset \mathbb{C}^n$ be a domain and let $x_0 \in \Omega$. We say that a holomorphic function $f : \Omega \to \mathbb{C}$ is a Nash function at x_0 if there exists an open neighborhood $U \subset \Omega$ of x_0 and a nonzero polynomial $F : \mathbb{C}^{n+1} \to \mathbb{C}$ such that the graph Γ_f of f over U is contained in the zero set of F. We call f a Nash function in Ω if it is a Nash function at each $x \in \Omega$. The family of Nash functions in Ω is denoted by $\mathcal{N}(\Omega)$.

A subset X of \mathbb{C}^n is said to be *algebraic* in Ω if $X \cap \Omega = \overline{X} \cap \Omega$ where \overline{X} is the Zariski closure of X.

REMARK 1.1 (see [9, Remark 1.2]). Let $\Omega \subset \mathbb{C}^n$ be a domain and let $f : \Omega \to \mathbb{C}$ be a holomorphic function. Then the following statements are equivalent:

(i) $f \in \mathcal{N}(\Omega)$,

(ii) there exists an irreducible polynomial $F : \mathbb{C}^{n+1} \to \mathbb{C}$, unique up to a multiplicative scalar, such that F(x, f(x)) = 0 for $x \in \Omega$.

THEOREM 1.2 (see [9, Theorem 1.3]). Every entire Nash function is a polynomial.

The proof in [9] is elementary. Theorem 1.2 can also be deduced from Serre's graph theorem ([8]). An elementary proof of the affine version of

²⁰⁰⁰ Mathematics Subject Classification: 13P10, 32C07.

Key words and phrases: Gröbner bases, polynomial ideals, power series, Nash function.

Serre's graph theorem, based on the theory of Gröbner bases, can be found in [1, Theorem 4.2].

The main result of this paper is Theorem 3.4 which gives a reduction of convergent (in a "large enough" polydisc) power series with respect to a Gröbner basis of a given polynomial ideal.

The results obtained are applied to prove Theorem 4.5 which states that if f is a Nash function in Ω and the graph Γ_f of f is algebraic in a "large enough" polydisc contained in $\Omega \times \mathbb{C}$ then f is a polynomial. Moreover, the theory of Gröbner bases may be used to find the "large" polydisc.

2. Notation and basic facts. Let \mathbb{K} be the field of complex (\mathbb{C}) or real (\mathbb{R}) numbers. We denote by \mathbb{N} the set of nonnegative integers and by \mathbb{R}_+ the set of positive real numbers. For convenience of the readers we recall some facts; we follow the notation of [1]. The basic algebraic structures involved in this paper are the polynomial ring $\mathcal{R} = \mathbb{K}[X] = \mathbb{K}[X_1, \ldots, X_n]$, the ring $\mathbb{K}[[X]] = \mathbb{K}[[X_1, \ldots, X_n]]$ of formal power series and the rings

 $E_r := \{ f \in \mathbb{K}[[X]] : f \text{ is absolutely convergent at the point } r \}$

corresponding to $r = (r_1, \ldots, r_n) \in \mathbb{R}^n_+$. Note that if $f \in E_r$ then f is absolutely uniformly convergent in the closure of the polydisc

$$P_r := \{ (x_1, \dots, x_n) \in \mathbb{K}^n : |x_1| < r_1, \dots, |x_n| < r_n \}.$$

Let $X^{\alpha} := X_1^{\alpha_1} \cdots X_n^{\alpha_n}$. For $f = \sum_{\alpha \in \mathbb{N}^n} c_{\alpha} X^{\alpha} \in \mathbb{K}[[X]]$ the support of f is defined to be

$$\operatorname{supp} f = \{ \alpha : c_{\alpha} \neq 0 \}.$$

For a set $F \subset \mathbb{K}[[X]]$ we put $\operatorname{supp} F = \bigcup_{f \in F} \operatorname{supp} f$.

Let $f = \sum_{\alpha \in \mathbb{N}^n} c_{\alpha} X^{\alpha} \in E_r$, where $r = (r_1, \ldots, r_n) \in \mathbb{R}^n_+$. The space E_r with the norm

(1)
$$||f||_r := \sum_{\alpha \in \mathbb{N}^n} |c_\alpha| r^\alpha$$

is a Banach space (for details see e.g. [5]). For a given nonempty subset $\mathcal{D} \subseteq \mathbb{N}^n$,

 $E_r(\mathcal{D}) := \{ f \in E_r : \operatorname{supp} f \subseteq \mathcal{D} \}$

is a Banach subspace of E_r . The spaces \mathcal{R} and

$$\mathcal{R}(\mathcal{D}) := \{ f \in \mathcal{R} : \operatorname{supp} f \subseteq \mathcal{D} \}$$

are dense subspaces of E_r and $E_r(\mathcal{D})$, respectively.

From elementary facts concerning power series we can deduce the following lemma. LEMMA 2.1. Let $r = (r_1, \ldots, r_n) \in \mathbb{R}^n_+$. If $f_\alpha \in E_r(\mathcal{D})$ for $\alpha \in \mathbb{N}^n$ and $\sum_{\alpha \in \mathbb{N}^n} \|f_\alpha\|_r < \infty,$

then the series $\sum_{\alpha \in \mathbb{N}^n} f_{\alpha}$ is convergent to an $f \in E_r(\mathcal{D})$.

Let \prec be a fixed admissible term ordering in \mathbb{N}^n (see [1]). Then, by definition, $X^{\alpha} \prec X^{\beta}$ if $\alpha \prec \beta$. If $f = \sum_{\alpha \in \mathbb{N}^n} c_{\alpha} X^{\alpha} \in \mathcal{R}, f \neq 0$, then the *exponent, leading coefficient, initial term* and *tail* of f are defined to be

$$\begin{split} \exp_{\prec} f &:= \max_{\prec} \{ \alpha : \alpha \in \operatorname{supp} f \}, \\ \operatorname{lc}_{\prec} f &:= c_{\exp_{\prec} f}, \\ \operatorname{in}_{\prec} f &:= \operatorname{lc}_{\prec} f X^{\exp_{\prec} f}, \\ \operatorname{tail}_{\prec} f &:= f - \operatorname{in}_{\prec} f, \end{split}$$

respectively.

For $F \subset \mathcal{R}$ we define

$$\Delta_F := \begin{cases} \bigcup_{f \in F} (\exp_{\prec} f + \mathbb{N}^n) & \text{if } F \nsubseteq \{0\}, \\ \emptyset & \text{if } F \subseteq \{0\}, \end{cases} \quad \mathcal{D}_F := \mathbb{N}^n \setminus \Delta_F.$$

Let $I \subset \mathcal{R}$ be a nonzero ideal and let \prec be an admissible term ordering. A finite subset $G \subset I$ is called a *Gröbner basis of I with respect to* \prec if $\Delta_G = \Delta_I$.

The reader is expected to be familiar with fundamental facts of the theory of Gröbner bases (for example presented in [3], [4] or [6]).

3. Reduction of holomorphic functions in a polydisc. We start with the following lemma important in what follows.

LEMMA 3.1. Let $F \subset \mathcal{R}$ be a finite set and let \prec be an admissible term ordering. Then there exists $r_0 = (r_{01}, \ldots, r_{0n}) \in \mathbb{R}^n_+$ such that

(2)
$$\|\operatorname{in}_{\prec} f\|_{r_0} > \|\operatorname{tail}_{\prec} f\|_{r_0} \quad \text{for } f \in F$$

Proof. By Bayer's Lemma ([2], see also [1]) there exists a linear form

$$L = \sum_{i=1}^{n} \ell_i X_i \quad \text{with } \ell_i \in \mathbb{N}_+, \ i = 1, \dots, n,$$

such that, for any $\alpha, \beta \in \operatorname{supp} F$, if $\alpha \prec \beta$ then $L(\alpha) < L(\beta)$.

Now we define a new admissible term ordering \prec_L as follows:

$$\alpha \prec_L \beta \Leftrightarrow (L(\alpha) < L(\beta) \text{ or } L(\alpha) = L(\beta) \text{ and } \alpha \prec \beta).$$

Observe that the restrictions of the orderings \prec_L and \prec to supp F coincide. Put $\rho_t = (t^{\ell_1}, \ldots, t^{\ell_n}), t \in \mathbb{R}$. Since F is finite, there exists $t_0 \in \mathbb{R}_+$ such that

$$\|\operatorname{in}_{\prec_L} f\|_{\varrho_{t_0}} = \|\operatorname{lc}_{\prec_L} f| t_0^{L(\exp_{\prec_L} f)} > \|\operatorname{tail}_{\prec_L} f\|_{\varrho_{t_0}} \quad \text{for } f \in F.$$

Since $\operatorname{in}_{\prec} f = \operatorname{in}_{\prec_L} f$ and $\operatorname{tail}_{\prec} f = \operatorname{tail}_{\prec_L} f$ for any $f \in F$, it follows that $r_0 := \varrho_{t_0}$ satisfies

(3)
$$\|\operatorname{in}_{\prec} f\|_{r_0} > \|\operatorname{tail}_{\prec} f\|_{r_0} \quad \text{for } f \in F. \bullet$$

Let \prec be an admissible term ordering. We say that $g \in \mathcal{R}$ reduces to $g' \in \mathcal{R}$ modulo $F \subset \mathcal{R}$, written $g \xrightarrow{F} g'$, if there exist $f \in F, \gamma \in \mathbb{N}^n$, $c_{\gamma} \in \mathbb{K} \setminus \{0\}$ such that

$$g' = g - c_{\gamma} X^{\gamma} f$$
 and $\gamma + \exp_{\prec} f \in \operatorname{supp} g \setminus \operatorname{supp} g'$.

That reduction is called a *simple reduction step*.

LEMMA 3.2. Let $F \subset \mathcal{R}$ be a finite set, \prec an admissible term ordering, and let r_0 be as in Lemma 3.1. Then there exists $\varepsilon > 0$ such that

(4)
$$||g'||_{r_0} + \varepsilon ||c_\gamma X^\gamma||_{r_0} \le ||g||_{r_0}$$

for any simple reduction step $g \xrightarrow{F} g' = g - c_{\gamma} X^{\gamma} f$.

Proof. The proof is similar to the proof of Lemma 3.3 from [1]. Since F is finite, there exists $\varepsilon > 0$ such that

(5)
$$\|\operatorname{in}_{\prec} f\|_{r_0} \ge \|\operatorname{tail}_{\prec} f\|_{r_0} + \varepsilon \quad \text{for } f \in F.$$

We set $\alpha := \gamma + \exp_{\prec} f$. Then g can be decomposed as $g = c_{\alpha} X^{\alpha} + p$ with $\alpha \notin \operatorname{supp} p$ and $c_{\alpha} = c_{\gamma} \operatorname{lc}_{\prec} f$. Consequently,

$$||g||_{r_0} = ||p||_{r_0} + ||c_{\alpha}X^{\alpha}||_{r_0} = ||p||_{r_0} + ||c_{\gamma}X^{\gamma} \operatorname{in}_{\prec} f||_{r_0}$$

= $||p||_{r_0} + ||c_{\gamma}X^{\gamma}||_{r_0} ||\operatorname{in}_{\prec} f||_{r_0}.$

By (5) it follows that

(6)
$$||g||_{r_0} \ge ||p||_{r_0} + ||c_{\gamma}X^{\gamma}||_{r_0}(||\operatorname{tail}_{\prec} f||_{r_0} + \varepsilon)$$

Applying the triangle inequality to the equation

$$g' = g - c_{\gamma} X^{\gamma} f = p + c_{\alpha} X^{\alpha} - c_{\gamma} X^{\gamma} \operatorname{in}_{\prec} f - c_{\gamma} X^{\gamma} \operatorname{tail}_{\prec} f$$
$$= p - c_{\gamma} X^{\gamma} \operatorname{tail}_{\prec} f$$

and then using (6) yields

$$\begin{aligned} \|g'\|_{r_0} &\leq \|p\|_{r_0} + \|c_{\gamma}X^{\gamma}\operatorname{tail}_{\prec} f\|_{r_0} = \|p\|_{r_0} + \|c_{\gamma}X^{\gamma}\|_{r_0}\|\operatorname{tail}_{\prec} f\|_{r_0} \\ &\leq \|g\|_{r_0} - \varepsilon \|c_{\gamma}X^{\gamma}\|_{r_0}, \end{aligned}$$

which completes the proof.

PROPOSITION 3.3. Let \prec be an admissible term ordering. Let $G \subset \mathcal{R}$ be a Gröbner basis of an ideal I and let r_0 be as in Lemma 3.1. Then there

exists $\varepsilon > 0$ such that

(i) for any $f \in \mathcal{R}$ there exist polynomials h_g corresponding to $g \in G$ and exactly one polynomial $f_{red} \in \mathcal{R}(\mathcal{D}_I)$ such that

(7)
$$f = \sum_{g \in G} h_g g + f_{\text{red}},$$

- (ii) the mapping red : $\mathcal{R} \ni f \mapsto f_{red} \in \mathcal{R}(\mathcal{D}_I)$ is linear,
- (iii) $||f_{\text{red}}||_{r_0} + \varepsilon \sum_{g \in G} ||h_g||_{r_0} \le ||f||_{r_0} \text{ for } f \in \mathcal{R},$
- (iv) $||h_g||_{r_0} \leq \varepsilon^{-1} ||f||_{r_0}$ for $f \in \mathcal{R}$ and $g \in G$,

(v)
$$||f_{\text{red}}||_{r_0} \le ||f||_{r_0}$$
.

Proof. (i) and (ii) follow from the well known Buchberger Algorithm (see e.g. [4, Proposition 1, p. 79]).

To prove (iii) we will use the same method as in the proof of Proposition 3.4(i) in [1]. According to the Buchberger Algorithm, f can be rewritten in the form

$$f = \sum_{\mu=1}^{m} c_{\mu} X^{\alpha_{\mu}} g_{\mu} + f_{\text{red}}$$

with $c_{\mu}X^{\alpha_{\mu}}$ which appeared in a simple reduction step of a reduction sequence

$$f \stackrel{G}{\to} f - c_1 X^{\alpha_1} g_1 \stackrel{G}{\to} f - \sum_{\mu=1}^2 c_\mu X^{\alpha_\mu} g_\mu \stackrel{G}{\to} \cdots \stackrel{G}{\to} f - \sum_{\mu=1}^m c_\mu X^{\alpha_\mu} g_\mu = f_{\text{red}}.$$

Condition (iii) follows by applying Lemma 3.2 to each step of the reduction sequence. Conditions (iv) and (v) are trivial consequences of (iii).

By (v) and since $f_{\text{red}} = 0$ if and only if $f \in I$, the division formula (7) gives a representation of \mathcal{R} as a direct sum

$$\mathcal{R} = I \oplus \mathcal{R}(\mathcal{D}_I)$$

with a continuous projection "red" of \mathcal{R} onto $\mathcal{R}(\mathcal{D}_I)$.

THEOREM 3.4. Let \prec , G, and r_0 be as in Proposition 3.3. Then

- (i) if $f = \sum_{\alpha \in \mathbb{N}^n} c_{\alpha} X^{\alpha} \in E_{r_0}$ then the series $\sum_{\alpha \in \mathbb{N}^n} c_{\alpha} X^{\alpha}_{red}$ is convergent to an $f_{red} \in E_{r_0}(\mathcal{D}_I)$,
- (ii) the extended mapping "red" gives a continuous projection of E_{r0} onto E_{r0}(D_I),
- (iii) $||f_{\text{red}}||_{r_0} \le ||f||_{r_0}$ for $f \in E_{r_0}$,
- (iv) if $f \in E_{r_0}$ then $f_{red} = 0$ if and only if $f \in IE_{r_0}$,
- (v) $E_{r_0} = IE_{r_0} \oplus E_{r_0}(\mathcal{D}_I)$ (direct sum).

Proof. (i) follows from condition (v) of Proposition 3.3 and Lemma 2.1. To prove (ii) and (iii) observe that the mapping

$$\operatorname{red} : \mathcal{R} \ni f \mapsto f_{\operatorname{red}} \in \mathcal{R}(\mathcal{D}_I)$$

can be uniquely extended to the Banach space E_{r_0} with preservation of the norm, because it is a densely defined bounded linear mapping.

Since I is dense in IE_{r_0} and $f_{red} = 0$ for $f \in I$, we have $f_{red} = 0$ for $f \in IE_{r_0}$, which completes the proof of condition (iv).

To prove (v) take $f = \sum_{\alpha \in \mathbb{N}^n} c_{\alpha} X^{\alpha} \in E_{r_0}$. According to Proposition 3.3 we have

$$X^{\alpha} = \sum_{g \in G} h_{g,\alpha}g + X^{\alpha}_{\text{red}}$$

such that $f_{\text{red}} = \sum_{\alpha \in \mathbb{N}^n} c_{\alpha} X_{\text{red}}^{\alpha}$. Therefore,

$$f = \sum_{\alpha \in \mathbb{N}^n} \sum_{g \in G} c_\alpha h_{g,\alpha} g + f_{\text{red}}.$$

Set $h_g := \sum_{\alpha \in \mathbb{N}^n} c_\alpha h_{g,\alpha}$. From condition (iv) of Proposition 3.3 and Lemma 2.1 it follows immediately that $h_g \in E_{r_0}$. Since red $: \mathcal{R} \ni f \mapsto f_{red} \in \mathcal{R}(\mathcal{D}_I)$ is the identity mapping on the dense subspace $\mathcal{R}(\mathcal{D}_I)$ of $E_{r_0}(\mathcal{D}_I)$, the extended mapping "red" is the identity mapping on $E_{r_0}(\mathcal{D}_I)$, which completes the proof. \blacksquare

4. Applications. Let $I \subset \mathcal{R}$ be a polynomial ideal, \prec be an admissible term ordering, and G be the reduced Gröbner basis of I with respect to \prec .

DEFINITION 4.1. We say that a polydisc P_r , $r \in \mathbb{R}^n_+$, is convenient for reduction with respect to I and \prec if

$$\|\operatorname{in}_{\prec} g\|_r > \|\operatorname{tail}_{\prec} g\|_r \quad \text{for } g \in G.$$

PROPOSITION 4.2. If P_r is a polydisc convenient for reduction with respect to an ideal I and a term ordering \prec , then for any $f \in E_r$ there exist a unique $h \in IE_r$ and a unique $f_{red} \in E_r(\mathcal{D}_I)$ such that $f = h + f_{red}$.

Proof. This follows immediately from Lemma 3.1 and Theorem 3.4. \blacksquare Define

 $\mathcal{M}_{I,\prec} := \{ r \in \mathbb{R}^n_+ : P_r \text{ is a polydisc convenient for reduction with} \\ \text{respect to the ideal } I \text{ and the term ordering } \prec \}.$

REMARK 4.3. Since the functions

 $\mathbb{R}^n_+ \ni r \mapsto \|\operatorname{in}_{\prec} g\|_r - \|\operatorname{tail}_{\prec} g\|_r \in \mathbb{R},$

for $g \in G$ are continuous, the set $\mathcal{M}_{I,\prec}$ is open.

Let $I \subset \mathbb{K}[X,Y] := \mathbb{K}[X_1,\ldots,X_n,Y]$ be an ideal. Let \prec_Y be an *elimination ordering* for Y, i.e. an admissible term ordering in $\mathbb{N}^n \times \mathbb{N}$ such that (8) $X^{\alpha} \prec_Y Y^k$ for $\alpha \in \mathbb{N}^n, k \in \mathbb{N} \setminus \{0\}$.

Let G be the reduced Gröbner basis of the ideal I with respect to \prec_Y .

PROPOSITION 4.4. If $r = (r_1, \ldots, r_n, r_{n+1}) \in \mathcal{M}_{I, \prec_Y}$, then

$$r_t = (r_1, \ldots, r_n, t) \in \mathcal{M}_{I, \prec_Y} \quad \text{for } t > r_{n+1}.$$

Proof. Let $g \in G$ and $t > r_{n+1}$. Since $r \in \mathcal{M}_{I, \prec_Y}$, we have

(9)
$$\|\operatorname{in}_{\prec_Y} g\|_r > \|\operatorname{tail}_{\prec_Y} g\|_r.$$

If $\operatorname{tail}_{\prec_Y} g$ is independent of Y, the right side of (9) is constant and the left side is nondecreasing with respect to r_{n+1} , which completes the proof.

Otherwise, $\operatorname{tail}_{\prec_Y} g$ depends on Y in a degree k. Then $\operatorname{in}_{\prec_Y} g$ also depends on Y. We have the inequality

(10)
$$ar_{n+1}^k > \sum_{j=0}^k b_j r_{n+1}^j,$$

where $a = a(r_1, \ldots, r_n)$, $b = b(r_1, \ldots, r_n)$, $a, b_j \ge 0$ for $j = 1, \ldots, k$. Multiplying (10) by $(t/r_{n+1})^k$ we obtain

$$at^k > \sum_{j=0}^k b_j t^j.$$

Thus $r_t = (r_1, \ldots, r_n, t) \in \mathcal{M}_{I, \prec_Y}$.

THEOREM 4.5. Let $\Omega \subset \mathbb{C}^n$ be a domain, $f : \Omega \to \mathbb{C}$ a Nash function in Ω , and $I \subset \mathbb{C}[X, Y]$ the ideal of the graph of f. Let $P_r = P_{r'} \times P_{r''}$, where $r = (r_1, \ldots, r_{n+1}), r' = (r_1, \ldots, r_n), r'' = r_{n+1}$, be a polydisc convenient for reduction with respect to the ideal I and \prec_Y , an elimination ordering for Y. If $P_{r'} \subset \Omega$ and the graph Γ_f of f is algebraic in P_r then f is a polynomial.

Proof. Since the Zariski closure of Γ_f is an algebraic set of codimension 1, the reduced Gröbner basis G of I with respect to \prec_Y consists of only one polynomial g of the form

$$g(X,Y) = a_k(X)Y^k + a_{k-1}(X)Y^{k-1} + \dots + a_0(X),$$

with $k \geq 1$ and $a_k \neq 0$, and so $\operatorname{in}_{\prec_Y} g = X^{\alpha}Y^k$ with an $\alpha \in \mathbb{N}^n$. Hence $G \cap \mathbb{C}[X] = \emptyset$ and $f = f_{\operatorname{red}}$. Since Y - f(X) vanishes on Γ_f and Γ_f is algebraic in P_r , $Y - f(X) \in I\mathcal{O}(P_r)$, where $\mathcal{O}(P_r)$ is the ring of holomorphic functions in P_r (see e.g. [7, Theorem 4.6]). The set $\mathcal{M}_{I,\prec}$ is open (see Remark 4.3). Thus, we can find $\tilde{r} \in \mathcal{M}_{I,\prec}$ such that the closure of $P_{\tilde{r}}$ is contained in P_r and for $P_{\tilde{r}}$ all the assumptions of Theorem 4.5 are satisfied. Since $I\mathcal{O}(P_r) \subset E_{\tilde{r}}$, we have $Y - f(X) \in IE_{\tilde{r}}$ and so $0 = (Y - f)_{\operatorname{red}} = Y_{\operatorname{red}} - f_{\operatorname{red}}$, where "red" is the reduction in $E_{\tilde{r}}$. On the other hand, Y_{red} is a polynomial. Hence so is $f = f_{\operatorname{red}}$, which completes the proof.

EXAMPLE 4.6. Let $f_k(X) := 1/(X-k), k \in \mathbb{N}$, and let $I := \langle (X-k)Y-1 \rangle$ be the ideal in $\mathbb{C}[X, Y]$ generated by (X-k)Y-1. The set $G = \{(X-k)Y-1\}$ is the reduced Gröbner basis of I with respect to any elimination ordering for Y.

1. If $P_{(r_1,r_2)}$ is convenient for reduction then $r_1 > k$. Indeed, according to Definition 4.1,

$$r_1r_2 > kr_2 + 1$$
,

which implies that $r_1 > k$.

2. If $r_1 < k$ then $P_{(r_1,r_2)}$ is not convenient for reduction. To see this, fix $0 < r_1 < k$ and consider the Nash function f_k in $\Omega = \{x \in \mathbb{C} : |x| < k\}$ given by

$$f_k(X) = -\frac{1}{k} \sum_{j=0}^{\infty} \left(\frac{X}{k}\right)^j = \frac{1}{X-k}.$$

The series f_k is absolutely convergent at r_1 and so $f_k \in E_{(r_1,r_2)}$, because f_k is independent of Y. Note that

$$\mathcal{D}_I = \{(i,j) \in \mathbb{N}^2 : ij = 0\}$$

and $Y - f_k \in IE_{(r_1, r_2)}$, by the same argument as in the proof of Theorem 4.5. Then

$$0 \neq Y - f_k(X) \in E_{(r_1, r_2)}(\mathcal{D}_I) \cap IE_{(r_1, r_2)},$$

which contradicts condition (iv) of Theorem 3.4.

Acknowledgments. The author wishes to express her thanks to Profesor Tadeusz Winiarski for suggesting the problem and for many stimulating conversations.

References

- J. Apel, J. Stückrad, P. Tworzewski and T. Winiarski, Reduction of everywhere convergent power series with respect to Gröbner bases, J. Pure Appl. Algebra 110 (1996), 113-129.
- [2] D. Bayer, The division algorithm and the Hilbert Scheme, Ph.D. Thesis, Harvard Univ., 1982.
- T. Becker and V. Weispfenning, Gröbner Bases, a Computational Approach to Commutative Algebra, Springer, 1993.
- [4] D. Cox, J. Little and D. O'Shea, Ideals, Varietes, and Algorithms, Springer, 1997.
- [5] H. Grauert und R. Remmert, Analytische Stellenalgebren, Springer, 1971.
- [6] G. M. Greuel and G. Pfister, A Singular Introduction to Commutative Algebra, Springer, 2002.
- W. Rudin, A geometric criterion for algebraic varieties, J. Math. Mech. 17 (1968), 671-683.
- [8] J.-P. Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier (Grenoble) 6 (1955-1956), 1-42.

 P. Tworzewski, Intersections of analytic sets with linear subspaces, Ann. Scuola Norm. Sup. Pisa 17 (1990), 227–271.

Justyna Szpond Institute of Mathematics Pedagogical University Podchorążych 2 30-084 Kraków, Poland E-mail: obrzud@ap.krakow.pl

Received March 7, 2005

(7464)