Reduction of Power Series in a Polydisc with Respect to a Gröbner Basis

by
Justyna SZPOND
Presented by Józef SICIAK

Summary. We deal with a reduction of power series convergent in a polydisc with respect to a Gröbner basis of a polynomial ideal. The results are applied to proving that a Nash function whose graph is algebraic in a "large enough" polydisc, must be a polynomial. Moreover, we give an effective method for finding this polydisc.

1. Introduction. Let $\Omega \subset \mathbb{C}^{n}$ be a domain and let $x_{0} \in \Omega$. We say that a holomorphic function $f: \Omega \rightarrow \mathbb{C}$ is a Nash function at x_{0} if there exists an open neighborhood $U \subset \Omega$ of x_{0} and a nonzero polynomial $F: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ such that the graph Γ_{f} of f over U is contained in the zero set of F. We call f a Nash function in Ω if it is a Nash function at each $x \in \Omega$. The family of Nash functions in Ω is denoted by $\mathcal{N}(\Omega)$.

A subset X of \mathbb{C}^{n} is said to be algebraic in Ω if $X \cap \Omega=\bar{X} \cap \Omega$ where \bar{X} is the Zariski closure of X.

REmARK 1.1 (see [9, Remark 1.2]). Let $\Omega \subset \mathbb{C}^{n}$ be a domain and let $f: \Omega \rightarrow \mathbb{C}$ be a holomorphic function. Then the following statements are equivalent:
(i) $f \in \mathcal{N}(\Omega)$,
(ii) there exists an irreducible polynomial $F: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$, unique up to a multiplicative scalar, such that $F(x, f(x))=0$ for $x \in \Omega$.

Theorem 1.2 (see [9, Theorem 1.3]). Every entire Nash function is a polynomial.

The proof in [9] is elementary. Theorem 1.2 can also be deduced from Serre's graph theorem ([8]). An elementary proof of the affine version of

2000 Mathematics Subject Classification: 13P10, 32C07.
Key words and phrases: Gröbner bases, polynomial ideals, power series, Nash function.

Serre's graph theorem, based on the theory of Gröbner bases, can be found in [1, Theorem 4.2].

The main result of this paper is Theorem 3.4 which gives a reduction of convergent (in a "large enough" polydisc) power series with respect to a Gröbner basis of a given polynomial ideal.

The results obtained are applied to prove Theorem 4.5 which states that if f is a Nash function in Ω and the graph Γ_{f} of f is algebraic in a "large enough" polydisc contained in $\Omega \times \mathbb{C}$ then f is a polynomial. Moreover, the theory of Gröbner bases may be used to find the "large" polydisc.
2. Notation and basic facts. Let \mathbb{K} be the field of complex (\mathbb{C}) or real (\mathbb{R}) numbers. We denote by \mathbb{N} the set of nonnegative integers and by \mathbb{R}_{+} the set of positive real numbers. For convenience of the readers we recall some facts; we follow the notation of [1]. The basic algebraic structures involved in this paper are the polynomial ring $\mathcal{R}=\mathbb{K}[X]=\mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$, the ring $\mathbb{K}[[X]]=\mathbb{K}\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ of formal power series and the rings
$E_{r}:=\{f \in \mathbb{K}[[X]]: f$ is absolutely convergent at the point $r\}$
corresponding to $r=\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{R}_{+}^{n}$. Note that if $f \in E_{r}$ then f is absolutely uniformly convergent in the closure of the polydisc

$$
P_{r}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{K}^{n}:\left|x_{1}\right|<r_{1}, \ldots,\left|x_{n}\right|<r_{n}\right\} .
$$

Let $X^{\alpha}:=X_{1}^{\alpha_{1}} \cdots X_{n}^{\alpha_{n}}$. For $f=\sum_{\alpha \in \mathbb{N}^{n}} c_{\alpha} X^{\alpha} \in \mathbb{K}[[X]]$ the support of f is defined to be

$$
\operatorname{supp} f=\left\{\alpha: c_{\alpha} \neq 0\right\}
$$

For a set $F \subset \mathbb{K}[[X]]$ we put $\operatorname{supp} F=\bigcup_{f \in F} \operatorname{supp} f$.
Let $f=\sum_{\alpha \in \mathbb{N}^{n}} c_{\alpha} X^{\alpha} \in E_{r}$, where $r=\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{R}_{+}^{n}$. The space E_{r} with the norm

$$
\begin{equation*}
\|f\|_{r}:=\sum_{\alpha \in \mathbb{N}^{n}}\left|c_{\alpha}\right| r^{\alpha} \tag{1}
\end{equation*}
$$

is a Banach space (for details see e.g. [5]). For a given nonempty subset $\mathcal{D} \subseteq \mathbb{N}^{n}$,

$$
E_{r}(\mathcal{D}):=\left\{f \in E_{r}: \operatorname{supp} f \subseteq \mathcal{D}\right\}
$$

is a Banach subspace of E_{r}. The spaces \mathcal{R} and

$$
\mathcal{R}(\mathcal{D}):=\{f \in \mathcal{R}: \operatorname{supp} f \subseteq \mathcal{D}\}
$$

are dense subspaces of E_{r} and $E_{r}(\mathcal{D})$, respectively.
From elementary facts concerning power series we can deduce the following lemma.

LEMMA 2.1. Let $r=\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{R}_{+}^{n}$. If $f_{\alpha} \in E_{r}(\mathcal{D})$ for $\alpha \in \mathbb{N}^{n}$ and

$$
\sum_{\alpha \in \mathbb{N}^{n}}\left\|f_{\alpha}\right\|_{r}<\infty
$$

then the series $\sum_{\alpha \in \mathbb{N}^{n}} f_{\alpha}$ is convergent to an $f \in E_{r}(\mathcal{D})$.
Let \prec be a fixed admissible term ordering in \mathbb{N}^{n} (see [1]). Then, by definition, $X^{\alpha} \prec X^{\beta}$ if $\alpha \prec \beta$. If $f=\sum_{\alpha \in \mathbb{N}^{n}} c_{\alpha} X^{\alpha} \in \mathcal{R}, f \neq 0$, then the exponent, leading coefficient, initial term and tail of f are defined to be

$$
\begin{aligned}
\exp _{\prec} f & :=\max _{\prec}\{\alpha: \alpha \in \operatorname{supp} f\}, \\
\operatorname{lc}_{\prec} f & :=c_{\exp _{\prec} f}, \\
\operatorname{in}_{\prec} f & :=\operatorname{lc}_{\prec} f X^{\exp _{\prec} f}, \\
\operatorname{tail}_{\prec} f & :=f-\operatorname{in}_{\prec} f,
\end{aligned}
$$

respectively.
For $F \subset \mathcal{R}$ we define

$$
\Delta_{F}:=\left\{\begin{array}{ll}
\bigcup_{f \in F}\left(\exp _{\prec} f+\mathbb{N}^{n}\right) & \text { if } F \nsubseteq\{0\}, \\
\emptyset & \text { if } F \subseteq\{0\},
\end{array} \quad \mathcal{D}_{F}:=\mathbb{N}^{n} \backslash \Delta_{F}\right.
$$

Let $I \subset \mathcal{R}$ be a nonzero ideal and let \prec be an admissible term ordering. A finite subset $G \subset I$ is called a Gröbner basis of I with respect to \prec if $\Delta_{G}=\Delta_{I}$.

The reader is expected to be familiar with fundamental facts of the theory of Gröbner bases (for example presented in [3], [4] or [6]).
3. Reduction of holomorphic functions in a polydisc. We start with the following lemma important in what follows.

Lemma 3.1. Let $F \subset \mathcal{R}$ be a finite set and let \prec be an admissible term ordering. Then there exists $r_{0}=\left(r_{01}, \ldots, r_{0 n}\right) \in \mathbb{R}_{+}^{n}$ such that

$$
\begin{equation*}
\left\|\mathrm{in}_{\prec} f\right\|_{r_{0}}>\left\|\operatorname{tail}_{\prec} f\right\|_{r_{0}} \quad \text { for } f \in F . \tag{2}
\end{equation*}
$$

Proof. By Bayer's Lemma ([2], see also [1]) there exists a linear form

$$
L=\sum_{i=1}^{n} \ell_{i} X_{i} \quad \text { with } \ell_{i} \in \mathbb{N}_{+}, i=1, \ldots, n
$$

such that, for any $\alpha, \beta \in \operatorname{supp} F$, if $\alpha \prec \beta$ then $L(\alpha)<L(\beta)$.
Now we define a new admissible term ordering \prec_{L} as follows:

$$
\alpha \prec_{L} \beta \Leftrightarrow(L(\alpha)<L(\beta) \text { or } L(\alpha)=L(\beta) \text { and } \alpha \prec \beta) \text {. }
$$

Observe that the restrictions of the orderings \prec_{L} and \prec to $\operatorname{supp} F$ coincide. Put $\varrho_{t}=\left(t^{\ell_{1}}, \ldots, t^{\ell_{n}}\right), t \in \mathbb{R}$. Since F is finite, there exists $t_{0} \in \mathbb{R}_{+}$such
that

$$
\left\|\operatorname{in}_{\prec_{L}} f\right\|_{\varrho_{t_{0}}}=\left|\mathrm{l}_{\prec_{L}} f\right| t_{0}^{L\left(\exp _{\prec_{L}} f\right)}>\left\|\operatorname{tail}_{\prec_{L}} f\right\|_{\varrho_{t_{0}}} \quad \text { for } f \in F .
$$

Since $\operatorname{in}_{\prec} f=\operatorname{in}_{\prec_{L}} f$ and $\operatorname{tail}_{\prec} f=$ tail $_{\prec_{L}} f$ for any $f \in F$, it follows that $r_{0}:=\varrho_{t_{0}}$ satisfies

$$
\begin{equation*}
\left\|\operatorname{in}_{\prec} f\right\|_{r_{0}}>\left\|\operatorname{tail}_{\prec} f\right\|_{r_{0}} \quad \text { for } f \in F \tag{3}
\end{equation*}
$$

Let \prec be an admissible term ordering. We say that $g \in \mathcal{R}$ reduces to $g^{\prime} \in \mathcal{R}$ modulo $F \subset \mathcal{R}$, written $g \xrightarrow{F} g^{\prime}$, if there exist $f \in F, \gamma \in \mathbb{N}^{n}$, $c_{\gamma} \in \mathbb{K} \backslash\{0\}$ such that

$$
g^{\prime}=g-c_{\gamma} X^{\gamma} f \quad \text { and } \quad \gamma+\exp _{\prec} f \in \operatorname{supp} g \backslash \operatorname{supp} g^{\prime} .
$$

That reduction is called a simple reduction step.
Lemma 3.2. Let $F \subset \mathcal{R}$ be a finite set, \prec an admissible term ordering, and let r_{0} be as in Lemma 3.1. Then there exists $\varepsilon>0$ such that

$$
\begin{equation*}
\left\|g^{\prime}\right\|_{r_{0}}+\varepsilon\left\|c_{\gamma} X^{\gamma}\right\|_{r_{0}} \leq\|g\|_{r_{0}} \tag{4}
\end{equation*}
$$

for any simple reduction step $g \xrightarrow{F} g^{\prime}=g-c_{\gamma} X^{\gamma} f$.
Proof. The proof is similar to the proof of Lemma 3.3 from [1]. Since F is finite, there exists $\varepsilon>0$ such that

$$
\begin{equation*}
\left\|\mathrm{in}_{\prec} f\right\|_{r_{0}} \geq\left\|\operatorname{tail}_{\prec} f\right\|_{r_{0}}+\varepsilon \quad \text { for } f \in F . \tag{5}
\end{equation*}
$$

We set $\alpha:=\gamma+\exp _{\prec} f$. Then g can be decomposed as $g=c_{\alpha} X^{\alpha}+p$ with $\alpha \notin \operatorname{supp} p$ and $c_{\alpha}=c_{\gamma} \mathrm{lc}_{\prec} f$. Consequently,

$$
\begin{aligned}
\|g\|_{r_{0}} & =\|p\|_{r_{0}}+\left\|c_{\alpha} X^{\alpha}\right\|_{r_{0}}=\|p\|_{r_{0}}+\left\|c_{\gamma} X^{\gamma} \mathrm{in}_{\prec} f\right\|_{r_{0}} \\
& =\|p\|_{r_{0}}+\left\|c_{\gamma} X^{\gamma}\right\|_{r_{0}}\left\|\mathrm{in}_{\prec} f\right\|_{r_{0}}
\end{aligned}
$$

By (5) it follows that

$$
\begin{equation*}
\|g\|_{r_{0}} \geq\|p\|_{r_{0}}+\left\|c_{\gamma} X^{\gamma}\right\|_{r_{0}}\left(\left\|\operatorname{tail}_{\prec} f\right\|_{r_{0}}+\varepsilon\right) \tag{6}
\end{equation*}
$$

Applying the triangle inequality to the equation

$$
\begin{aligned}
g^{\prime} & =g-c_{\gamma} X^{\gamma} f=p+c_{\alpha} X^{\alpha}-c_{\gamma} X^{\gamma} \operatorname{in}_{\prec} f-c_{\gamma} X^{\gamma} \operatorname{tail}_{\prec} f \\
& =p-c_{\gamma} X^{\gamma} \operatorname{tail}_{\prec} f
\end{aligned}
$$

and then using (6) yields

$$
\begin{aligned}
\left\|g^{\prime}\right\|_{r_{0}} & \leq\|p\|_{r_{0}}+\left\|c_{\gamma} X^{\gamma} \operatorname{tail}_{\prec} f\right\|_{r_{0}}=\|p\|_{r_{0}}+\left\|c_{\gamma} X^{\gamma}\right\|_{r_{0}} \| \text { tail }_{\prec} f \|_{r_{0}} \\
& \leq\|g\|_{r_{0}}-\varepsilon\left\|c_{\gamma} X^{\gamma}\right\|_{r_{0}}
\end{aligned}
$$

which completes the proof.
Proposition 3.3. Let \prec be an admissible term ordering. Let $G \subset \mathcal{R}$ be a Gröbner basis of an ideal I and let r_{0} be as in Lemma 3.1. Then there
exists $\varepsilon>0$ such that
(i) for any $f \in \mathcal{R}$ there exist polynomials h_{g} corresponding to $g \in G$ and exactly one polynomial $f_{\text {red }} \in \mathcal{R}\left(\mathcal{D}_{I}\right)$ such that

$$
\begin{equation*}
f=\sum_{g \in G} h_{g} g+f_{\mathrm{red}} \tag{7}
\end{equation*}
$$

(ii) the mapping red : $\mathcal{R} \ni f \mapsto f_{\text {red }} \in \mathcal{R}\left(\mathcal{D}_{I}\right)$ is linear,
(iii) $\left\|f_{\text {red }}\right\|_{r_{0}}+\varepsilon \sum_{g \in G}\left\|h_{g}\right\|_{r_{0}} \leq\|f\|_{r_{0}}$ for $f \in \mathcal{R}$,
(iv) $\left\|h_{g}\right\|_{r_{0}} \leq \varepsilon^{-1}\|f\|_{r_{0}}$ for $f \in \mathcal{R}$ and $g \in G$,
(v) $\left\|f_{\text {red }}\right\|_{r_{0}} \leq\|f\|_{r_{0}}$.

Proof. (i) and (ii) follow from the well known Buchberger Algorithm (see e.g. [4, Proposition 1, p. 79]).

To prove (iii) we will use the same method as in the proof of Proposition 3.4(i) in [1]. According to the Buchberger Algorithm, f can be rewritten in the form

$$
f=\sum_{\mu=1}^{m} c_{\mu} X^{\alpha_{\mu}} g_{\mu}+f_{\mathrm{red}}
$$

with $c_{\mu} X^{\alpha_{\mu}}$ which appeared in a simple reduction step of a reduction sequence

$$
f \xrightarrow{G} f-c_{1} X^{\alpha_{1}} g_{1} \xrightarrow{G} f-\sum_{\mu=1}^{2} c_{\mu} X^{\alpha_{\mu}} g_{\mu} \xrightarrow{G} \cdots \xrightarrow{G} f-\sum_{\mu=1}^{m} c_{\mu} X^{\alpha_{\mu}} g_{\mu}=f_{\mathrm{red}} .
$$

Condition (iii) follows by applying Lemma 3.2 to each step of the reduction sequence. Conditions (iv) and (v) are trivial consequences of (iii).

By (v) and since $f_{\text {red }}=0$ if and only if $f \in I$, the division formula (7) gives a representation of \mathcal{R} as a direct sum

$$
\mathcal{R}=I \oplus \mathcal{R}\left(\mathcal{D}_{I}\right)
$$

with a continuous projection "red" of \mathcal{R} onto $\mathcal{R}\left(\mathcal{D}_{I}\right)$.
Theorem 3.4. Let \prec, G, and r_{0} be as in Proposition 3.3. Then
(i) if $f=\sum_{\alpha \in \mathbb{N}^{n}} c_{\alpha} X^{\alpha} \in E_{r_{0}}$ then the series $\sum_{\alpha \in \mathbb{N}^{n}} c_{\alpha} X_{\text {red }}^{\alpha}$ is convergent to an $f_{\text {red }} \in E_{r_{0}}\left(\mathcal{D}_{I}\right)$,
(ii) the extended mapping "red" gives a continuous projection of $E_{r_{0}}$ onto $E_{r_{0}}\left(\mathcal{D}_{I}\right)$,
(iii) $\left\|f_{\text {red }}\right\|_{r_{0}} \leq\|f\|_{r_{0}}$ for $f \in E_{r_{0}}$,
(iv) if $f \in E_{r_{0}}$ then $f_{\text {red }}=0$ if and only if $f \in I E_{r_{0}}$,
(v) $E_{r_{0}}=I E_{r_{0}} \oplus E_{r_{0}}\left(\mathcal{D}_{I}\right)($ direct sum).

Proof. (i) follows from condition (v) of Proposition 3.3 and Lemma 2.1. To prove (ii) and (iii) observe that the mapping

$$
\text { red }: \mathcal{R} \ni f \mapsto f_{\text {red }} \in \mathcal{R}\left(\mathcal{D}_{I}\right)
$$

can be uniquely extended to the Banach space $E_{r_{0}}$ with preservation of the norm, because it is a densely defined bounded linear mapping.

Since I is dense in $I E_{r_{0}}$ and $f_{\text {red }}=0$ for $f \in I$, we have $f_{\text {red }}=0$ for $f \in I E_{r_{0}}$, which completes the proof of condition (iv).

To prove (v) take $f=\sum_{\alpha \in \mathbb{N}^{n}} c_{\alpha} X^{\alpha} \in E_{r_{0}}$. According to Proposition 3.3 we have

$$
X^{\alpha}=\sum_{g \in G} h_{g, \alpha} g+X_{\mathrm{red}}^{\alpha}
$$

such that $f_{\text {red }}=\sum_{\alpha \in \mathbb{N}^{n}} c_{\alpha} X_{\text {red }}^{\alpha}$. Therefore,

$$
f=\sum_{\alpha \in \mathbb{N}^{n}} \sum_{g \in G} c_{\alpha} h_{g, \alpha} g+f_{\mathrm{red}}
$$

Set $h_{g}:=\sum_{\alpha \in \mathbb{N}^{n}} c_{\alpha} h_{g, \alpha}$. From condition (iv) of Proposition 3.3 and Lemma 2.1 it follows immediately that $h_{g} \in E_{r_{0}}$. Since red : $\mathcal{R} \ni f \mapsto f_{\text {red }} \in$ $\mathcal{R}\left(\mathcal{D}_{I}\right)$ is the identity mapping on the dense subspace $\mathcal{R}\left(\mathcal{D}_{I}\right)$ of $E_{r_{0}}\left(\mathcal{D}_{I}\right)$, the extended mapping "red" is the identity mapping on $E_{r_{0}}\left(\mathcal{D}_{I}\right)$, which completes the proof.
4. Applications. Let $I \subset \mathcal{R}$ be a polynomial ideal, \prec be an admissible term ordering, and G be the reduced Gröbner basis of I with respect to \prec.

DEFINITION 4.1. We say that a polydisc $P_{r}, r \in \mathbb{R}_{+}^{n}$, is convenient for reduction with respect to I and \prec if

$$
\left\|\operatorname{in}_{\prec} g\right\|_{r}>\left\|\operatorname{tail}_{\prec} g\right\|_{r} \quad \text { for } g \in G \text {. }
$$

PRoposition 4.2. If P_{r} is a polydisc convenient for reduction with respect to an ideal I and a term ordering \prec, then for any $f \in E_{r}$ there exist a unique $h \in I E_{r}$ and a unique $f_{\mathrm{red}} \in E_{r}\left(\mathcal{D}_{I}\right)$ such that $f=h+f_{\mathrm{red}}$.

Proof. This follows immediately from Lemma 3.1 and Theorem 3.4.
Define
$\mathcal{M}_{I, \prec}:=\left\{r \in \mathbb{R}_{+}^{n}: P_{r}\right.$ is a polydisc convenient for reduction with respect to the ideal I and the term ordering $\prec\}$.

REmARK 4.3. Since the functions

$$
\mathbb{R}_{+}^{n} \ni r \mapsto\left\|\mathrm{in}_{\prec} g\right\|_{r}-\left\|\operatorname{tail}_{\prec} g\right\|_{r} \in \mathbb{R}
$$

for $g \in G$ are continuous, the set $\mathcal{M}_{I, \prec}$ is open.
Let $I \subset \mathbb{K}[X, Y]:=\mathbb{K}\left[X_{1}, \ldots, X_{n}, Y\right]$ be an ideal. Let \prec_{Y} be an elimination ordering for Y, i.e. an admissible term ordering in $\mathbb{N}^{n} \times \mathbb{N}$ such that

$$
\begin{equation*}
X^{\alpha} \prec_{Y} Y^{k} \quad \text { for } \alpha \in \mathbb{N}^{n}, k \in \mathbb{N} \backslash\{0\} . \tag{8}
\end{equation*}
$$

Let G be the reduced Gröbner basis of the ideal I with respect to \prec_{Y}.

Proposition 4.4. If $r=\left(r_{1}, \ldots, r_{n}, r_{n+1}\right) \in \mathcal{M}_{I, \prec_{Y}}$, then

$$
r_{t}=\left(r_{1}, \ldots, r_{n}, t\right) \in \mathcal{M}_{I, \prec_{Y}} \quad \text { for } t>r_{n+1}
$$

Proof. Let $g \in G$ and $t>r_{n+1}$. Since $r \in \mathcal{M}_{I, \prec_{Y}}$, we have

$$
\begin{equation*}
\left\|\operatorname{in}_{\prec_{Y}} g\right\|_{r}>\left\|\operatorname{tail}_{\prec_{Y}} g\right\|_{r} . \tag{9}
\end{equation*}
$$

If tail ${\prec_{Y}} g$ is independent of Y, the right side of (9) is constant and the left side is nondecreasing with respect to r_{n+1}, which completes the proof.

Otherwise, tail $_{\prec_{Y}} g$ depends on Y in a degree k. Then $\mathrm{in}_{\prec_{Y}} g$ also depends on Y. We have the inequality

$$
\begin{equation*}
a r_{n+1}^{k}>\sum_{j=0}^{k} b_{j} r_{n+1}^{j} \tag{10}
\end{equation*}
$$

where $a=a\left(r_{1}, \ldots, r_{n}\right), b=b\left(r_{1}, \ldots, r_{n}\right), a, b_{j} \geq 0$ for $j=1, \ldots, k$. Multiplying (10) by $\left(t / r_{n+1}\right)^{k}$ we obtain

$$
a t^{k}>\sum_{j=0}^{k} b_{j} t^{j}
$$

Thus $r_{t}=\left(r_{1}, \ldots, r_{n}, t\right) \in \mathcal{M}_{I, \prec_{Y}}$.
ThEOREM 4.5. Let $\Omega \subset \mathbb{C}^{n}$ be a domain, $f: \Omega \rightarrow \mathbb{C}$ a Nash function in Ω, and $I \subset \mathbb{C}[X, Y]$ the ideal of the graph of f. Let $P_{r}=P_{r^{\prime}} \times P_{r^{\prime \prime}}$, where $r=\left(r_{1}, \ldots, r_{n+1}\right), r^{\prime}=\left(r_{1}, \ldots, r_{n}\right), r^{\prime \prime}=r_{n+1}$, be a polydisc convenient for reduction with respect to the ideal I and \prec_{Y}, an elimination ordering for Y. If $P_{r^{\prime}} \subset \Omega$ and the graph Γ_{f} of f is algebraic in P_{r} then f is a polynomial.

Proof. Since the Zariski closure of Γ_{f} is an algebraic set of codimension 1, the reduced Gröbner basis G of I with respect to \prec_{Y} consists of only one polynomial g of the form

$$
g(X, Y)=a_{k}(X) Y^{k}+a_{k-1}(X) Y^{k-1}+\cdots+a_{0}(X)
$$

with $k \geq 1$ and $a_{k} \neq 0$, and so $\operatorname{in}_{\prec_{Y}} g=X^{\alpha} Y^{k}$ with an $\alpha \in \mathbb{N}^{n}$. Hence $G \cap \mathbb{C}[X]=\emptyset$ and $f=f_{\text {red }}$. Since $Y-f(X)$ vanishes on Γ_{f} and Γ_{f} is algebraic in $P_{r}, Y-f(X) \in I \mathcal{O}\left(P_{r}\right)$, where $\mathcal{O}\left(P_{r}\right)$ is the ring of holomorphic functions in P_{r} (see e.g. [7, Theorem 4.6]). The set $\mathcal{M}_{I, \prec}$ is open (see Remark 4.3). Thus, we can find $\widetilde{r} \in \mathcal{M}_{I, \prec}$ such that the closure of $P_{\widetilde{r}}$ is contained in P_{r} and for $P_{\widetilde{r}}$ all the assumptions of Theorem 4.5 are satisfied. Since $I \mathcal{O}\left(P_{r}\right) \subset E_{\widetilde{r}}$, we have $Y-f(X) \in I E_{\widetilde{r}}$ and so $0=(Y-f)_{\text {red }}=Y_{\text {red }}-f_{\text {red }}$, where "red" is the reduction in $E_{\overparen{r}}$. On the other hand, $Y_{\text {red }}$ is a polynomial. Hence so is $f=f_{\text {red }}$, which completes the proof.

Example 4.6. Let $f_{k}(X):=1 /(X-k), k \in \mathbb{N}$, and let $I:=\langle(X-k) Y-1\rangle$ be the ideal in $\mathbb{C}[X, Y]$ generated by $(X-k) Y-1$. The set $G=\{(X-k) Y-1\}$
is the reduced Gröbner basis of I with respect to any elimination ordering for Y.

1. If $P_{\left(r_{1}, r_{2}\right)}$ is convenient for reduction then $r_{1}>k$. Indeed, according to Definition 4.1,

$$
r_{1} r_{2}>k r_{2}+1
$$

which implies that $r_{1}>k$.
2. If $r_{1}<k$ then $P_{\left(r_{1}, r_{2}\right)}$ is not convenient for reduction. To see this, fix $0<r_{1}<k$ and consider the Nash function f_{k} in $\Omega=\{x \in \mathbb{C}:|x|<k\}$ given by

$$
f_{k}(X)=-\frac{1}{k} \sum_{j=0}^{\infty}\left(\frac{X}{k}\right)^{j}=\frac{1}{X-k}
$$

The series f_{k} is absolutely convergent at r_{1} and so $f_{k} \in E_{\left(r_{1}, r_{2}\right)}$, because f_{k} is independent of Y. Note that

$$
\mathcal{D}_{I}=\left\{(i, j) \in \mathbb{N}^{2}: i j=0\right\}
$$

and $Y-f_{k} \in I E_{\left(r_{1}, r_{2}\right)}$, by the same argument as in the proof of Theorem 4.5. Then

$$
0 \neq Y-f_{k}(X) \in E_{\left(r_{1}, r_{2}\right)}\left(\mathcal{D}_{I}\right) \cap I E_{\left(r_{1}, r_{2}\right)}
$$

which contradicts condition (iv) of Theorem 3.4.
Acknowledgments. The author wishes to express her thanks to Profesor Tadeusz Winiarski for suggesting the problem and for many stimulating conversations.

References

[1] J. Apel, J. Stückrad, P. Tworzewski and T. Winiarski, Reduction of everywhere convergent power series with respect to Gröbner bases, J. Pure Appl. Algebra 110 (1996), 113-129.
[2] D. Bayer, The division algorithm and the Hilbert Scheme, Ph.D. Thesis, Harvard Univ., 1982.
[3] T. Becker and V. Weispfenning, Gröbner Bases, a Computational Approach to Commutative Algebra, Springer, 1993.
[4] D. Cox, J. Little and D. O'Shea, Ideals, Varietes, and Algorithms, Springer, 1997.
[5] H. Grauert und R. Remmert, Analytische Stellenalgebren, Springer, 1971.
[6] G. M. Greuel and G. Pfister, A Singular Introduction to Commutative Algebra, Springer, 2002.
[7] W. Rudin, A geometric criterion for algebraic varieties, J. Math. Mech. 17 (1968), 671-683.
[8] J.-P. Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier (Grenoble) 6 (1955-1956), 1-42.
[9] P. Tworzewski, Intersections of analytic sets with linear subspaces, Ann. Scuola Norm. Sup. Pisa 17 (1990), 227-271.

Justyna Szpond
Institute of Mathematics
Pedagogical University
Podchorążych 2
30-084 Kraków, Poland
E-mail: obrzud@ap.krakow.pl

