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Redution of Power Series in a Polydiswith Respet to a Gröbner BasisbyJustyna SZPONDPresented by Józef SICIAK
Summary. We deal with a redution of power series onvergent in a polydis with respetto a Gröbner basis of a polynomial ideal. The results are applied to proving that a Nashfuntion whose graph is algebrai in a �large enough� polydis, must be a polynomial.Moreover, we give an e�etive method for �nding this polydis.1. Introdution. Let Ω ⊂ Cn be a domain and let x0 ∈ Ω. We say thata holomorphi funtion f : Ω → C is a Nash funtion at x0 if there exists anopen neighborhood U ⊂ Ω of x0 and a nonzero polynomial F : Cn+1 → Csuh that the graph Γf of f over U is ontained in the zero set of F . We all
f a Nash funtion in Ω if it is a Nash funtion at eah x ∈ Ω. The family ofNash funtions in Ω is denoted by N (Ω).A subset X of Cn is said to be algebrai in Ω if X ∩ Ω = X ∩ Ω where
X is the Zariski losure of X.Remark 1.1 (see [9, Remark 1.2℄). Let Ω ⊂ Cn be a domain and let
f : Ω → C be a holomorphi funtion. Then the following statements areequivalent:(i) f ∈ N (Ω),(ii) there exists an irreduible polynomial F : Cn+1 → C, unique up to amultipliative salar, suh that F (x, f(x)) = 0 for x ∈ Ω.Theorem 1.2 (see [9, Theorem 1.3℄). Every entire Nash funtion is apolynomial.The proof in [9℄ is elementary. Theorem 1.2 an also be dedued fromSerre's graph theorem ([8℄). An elementary proof of the a�ne version of2000 Mathematis Subjet Classi�ation: 13P10, 32C07.Key words and phrases: Gröbner bases, polynomial ideals, power series, Nash funtion.[137℄
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Serre's graph theorem, based on the theory of Gröbner bases, an be foundin [1, Theorem 4.2℄.The main result of this paper is Theorem 3.4 whih gives a redutionof onvergent (in a �large enough� polydis) power series with respet to aGröbner basis of a given polynomial ideal.The results obtained are applied to prove Theorem 4.5 whih states thatif f is a Nash funtion in Ω and the graph Γf of f is algebrai in a �largeenough� polydis ontained in Ω × C then f is a polynomial. Moreover, thetheory of Gröbner bases may be used to �nd the �large� polydis.2. Notation and basi fats. Let K be the �eld of omplex (C) orreal (R) numbers. We denote by N the set of nonnegative integers and by R+the set of positive real numbers. For onveniene of the readers we reall somefats; we follow the notation of [1℄. The basi algebrai strutures involvedin this paper are the polynomial ring R = K[X] = K[X1, . . . , Xn], the ring
K[[X]] = K[[X1, . . . , Xn]] of formal power series and the rings

Er := {f ∈ K[[X]] : f is absolutely onvergent at the point r}orresponding to r = (r1, . . . , rn) ∈ Rn
+. Note that if f ∈ Er then f isabsolutely uniformly onvergent in the losure of the polydis

Pr := {(x1, . . . , xn) ∈ Kn : |x1| < r1, . . . , |xn| < rn}.Let Xα := Xα1

1 · · ·Xαn
n . For f =

∑
α∈Nn cαXα ∈ K[[X]] the support of fis de�ned to be

supp f = {α : cα 6= 0}.For a set F ⊂ K[[X]] we put suppF =
⋃

f∈F supp f .Let f =
∑

α∈Nn cαXα ∈ Er, where r = (r1, . . . , rn) ∈ Rn
+. The spae Erwith the norm(1) ‖f‖r :=

∑

α∈Nn

|cα|r
α

is a Banah spae (for details see e.g. [5℄). For a given nonempty subset
D ⊆ Nn,

Er(D) := {f ∈ Er : supp f ⊆ D}is a Banah subspae of Er. The spaes R and
R(D) := {f ∈ R : supp f ⊆ D}are dense subspaes of Er and Er(D), respetively.From elementary fats onerning power series we an dedue the follow-ing lemma.
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Lemma 2.1. Let r = (r1, . . . , rn) ∈ Rn

+. If fα ∈ Er(D) for α ∈ Nn and
∑

α∈Nn

‖fα‖r < ∞,then the series ∑
α∈Nn fα is onvergent to an f ∈ Er(D).Let ≺ be a �xed admissible term ordering in Nn (see [1℄). Then, byde�nition, Xα ≺ Xβ if α ≺ β. If f =

∑
α∈Nn cαXα ∈ R, f 6= 0, then theexponent, leading oe�ient, initial term and tail of f are de�ned to be

exp
≺

f := max
≺

{α : α ∈ supp f},

lc≺ f := cexp≺ f ,

in≺ f := lc≺ fXexp
≺

f ,

tail≺ f := f − in≺ f,respetively.For F ⊂ R we de�ne
∆F :=

{ ⋃
f∈F (exp

≺
f + Nn) if F * {0},

∅ if F ⊆ {0}, DF := Nn \ ∆F .Let I ⊂ R be a nonzero ideal and let ≺ be an admissible term ordering.A �nite subset G ⊂ I is alled a Gröbner basis of I with respet to ≺ if
∆G = ∆I .The reader is expeted to be familiar with fundamental fats of the theoryof Gröbner bases (for example presented in [3℄, [4℄ or [6℄).

3. Redution of holomorphi funtions in a polydis. We startwith the following lemma important in what follows.Lemma 3.1. Let F ⊂ R be a �nite set and let ≺ be an admissible termordering. Then there exists r0 = (r01, . . . , r0n) ∈ Rn
+ suh that(2) ‖in≺ f‖r0

> ‖tail≺ f‖r0
for f ∈ F.Proof. By Bayer's Lemma ([2℄, see also [1℄) there exists a linear form

L =
n∑

i=1

ℓiXi with ℓi ∈ N+, i = 1, . . . , n,suh that, for any α, β ∈ suppF , if α ≺ β then L(α) < L(β).Now we de�ne a new admissible term ordering ≺L as follows:
α ≺L β ⇔ (L(α) < L(β) or L(α) = L(β) and α ≺ β).Observe that the restritions of the orderings ≺L and ≺ to suppF oinide.Put ̺t = (tℓ1, . . . , tℓn), t ∈ R. Sine F is �nite, there exists t0 ∈ R+ suh
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that

‖in≺L
f‖̺t0

= |lc≺L
f |t

L(exp
≺L

f)

0 > ‖tail≺L
f‖̺t0

for f ∈ F.Sine in≺ f = in≺L
f and tail≺ f = tail≺L

f for any f ∈ F , it follows that
r0 := ̺t0 satis�es(3) ‖in≺ f‖r0

> ‖tail≺ f‖r0
for f ∈ F.Let ≺ be an admissible term ordering. We say that g ∈ R redues to

g′ ∈ R modulo F ⊂ R, written g
F
→ g′, if there exist f ∈ F , γ ∈ Nn,

cγ ∈ K \ {0} suh that
g′ = g − cγXγf and γ + exp

≺
f ∈ supp g \ supp g′.That redution is alled a simple redution step.Lemma 3.2. Let F ⊂ R be a �nite set , ≺ an admissible term ordering ,and let r0 be as in Lemma 3.1. Then there exists ε > 0 suh that(4) ‖g′‖r0

+ ε‖cγXγ‖r0
≤ ‖g‖r0for any simple redution step g

F
→ g′ = g − cγXγf .Proof. The proof is similar to the proof of Lemma 3.3 from [1℄. Sine Fis �nite, there exists ε > 0 suh that(5) ‖in≺ f‖r0

≥ ‖tail≺ f‖r0
+ ε for f ∈ F .We set α := γ + exp

≺
f . Then g an be deomposed as g = cαXα + p with

α /∈ supp p and cα = cγ lc≺ f . Consequently,
‖g‖r0

= ‖p‖r0
+ ‖cαXα‖r0

= ‖p‖r0
+ ‖cγXγ in≺ f‖r0

= ‖p‖r0
+ ‖cγXγ‖r0

‖in≺ f‖r0
.By (5) it follows that(6) ‖g‖r0

≥ ‖p‖r0
+ ‖cγXγ‖r0

(‖tail≺ f‖r0
+ ε).Applying the triangle inequality to the equation

g′ = g − cγXγf = p + cαXα − cγXγ in≺ f − cγXγ tail≺ f

= p − cγXγ tail≺ fand then using (6) yields
‖g′‖r0

≤ ‖p‖r0
+ ‖cγXγ tail≺ f‖r0

= ‖p‖r0
+ ‖cγXγ‖r0

‖tail≺ f‖r0

≤ ‖g‖r0
− ε‖cγXγ‖r0

,whih ompletes the proof.Proposition 3.3. Let ≺ be an admissible term ordering. Let G ⊂ Rbe a Gröbner basis of an ideal I and let r0 be as in Lemma 3.1. Then there
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exists ε > 0 suh that(i) for any f ∈ R there exist polynomials hg orresponding to g ∈ G andexatly one polynomial fred ∈ R(DI) suh that(7) f =

∑

g∈G

hgg + fred,(ii) the mapping red : R ∋ f 7→ fred ∈ R(DI) is linear ,(iii) ‖fred‖r0
+ ε

∑
g∈G ‖hg‖r0

≤ ‖f‖r0
for f ∈ R,(iv) ‖hg‖r0

≤ ε−1‖f‖r0
for f ∈ R and g ∈ G,(v) ‖fred‖r0

≤ ‖f‖r0
.Proof. (i) and (ii) follow from the well known Buhberger Algorithm (seee.g. [4, Proposition 1, p. 79℄).To prove (iii) we will use the same method as in the proof of Proposi-tion 3.4(i) in [1℄. Aording to the Buhberger Algorithm, f an be rewrittenin the form

f =
m∑

µ=1

cµXαµgµ + fredwith cµXαµ whih appeared in a simple redution step of a redution se-quene
f

G
→ f − c1X

α1g1
G
→ f −

2∑

µ=1

cµXαµgµ
G
→ · · ·

G
→ f −

m∑

µ=1

cµXαµgµ = fred.Condition (iii) follows by applying Lemma 3.2 to eah step of the redutionsequene. Conditions (iv) and (v) are trivial onsequenes of (iii).By (v) and sine fred = 0 if and only if f ∈ I, the division formula (7)gives a representation of R as a diret sum
R = I ⊕R(DI)with a ontinuous projetion �red� of R onto R(DI).Theorem 3.4. Let ≺, G, and r0 be as in Proposition 3.3. Then(i) if f =

∑
α∈Nn cαXα ∈ Er0

then the series ∑
α∈Nn cαXα

red is onver-gent to an fred ∈ Er0
(DI),(ii) the extended mapping �red� gives a ontinuous projetion of Er0

onto
Er0

(DI),(iii) ‖fred‖r0
≤ ‖f‖r0

for f ∈ Er0
,(iv) if f ∈ Er0

then fred = 0 if and only if f ∈ IEr0
,(v) Er0

= IEr0
⊕ Er0

(DI) (diret sum).Proof. (i) follows from ondition (v) of Proposition 3.3 and Lemma 2.1.To prove (ii) and (iii) observe that the mapping
red : R ∋ f 7→ fred ∈ R(DI)
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an be uniquely extended to the Banah spae Er0

with preservation of thenorm, beause it is a densely de�ned bounded linear mapping.Sine I is dense in IEr0
and fred = 0 for f ∈ I, we have fred = 0 for

f ∈ IEr0
, whih ompletes the proof of ondition (iv).To prove (v) take f =

∑
α∈Nn cαXα ∈ Er0

. Aording to Proposition 3.3we have
Xα =

∑

g∈G

hg,αg + Xα
redsuh that fred =

∑
α∈Nn cαXα

red. Therefore,
f =

∑

α∈Nn

∑

g∈G

cαhg,αg + fred.Set hg :=
∑

α∈Nn cαhg,α. From ondition (iv) of Proposition 3.3 and Lem-ma 2.1 it follows immediately that hg ∈ Er0
. Sine red : R ∋ f 7→ fred ∈

R(DI) is the identity mapping on the dense subspae R(DI) of Er0
(DI), theextended mapping �red� is the identity mapping on Er0

(DI), whih ompletesthe proof.
4. Appliations. Let I ⊂ R be a polynomial ideal, ≺ be an admissibleterm ordering, and G be the redued Gröbner basis of I with respet to ≺.Definition 4.1. We say that a polydis Pr, r ∈ Rn

+, is onvenient forredution with respet to I and ≺ if
‖in≺ g‖r > ‖tail≺ g‖r for g ∈ G.Proposition 4.2. If Pr is a polydis onvenient for redution with re-spet to an ideal I and a term ordering ≺, then for any f ∈ Er there exista unique h ∈ IEr and a unique fred ∈ Er(DI) suh that f = h + fred.Proof. This follows immediately from Lemma 3.1 and Theorem 3.4.De�ne

MI,≺ := {r ∈ Rn
+ : Pr is a polydis onvenient for redution withrespet to the ideal I and the term ordering ≺}.Remark 4.3. Sine the funtions
Rn

+ ∋ r 7→ ‖in≺ g‖r − ‖tail≺ g‖r ∈ R,for g ∈ G are ontinuous, the set MI,≺ is open.Let I ⊂ K[X, Y ] := K[X1, . . . , Xn, Y ] be an ideal. Let ≺Y be an elimi-nation ordering for Y , i.e. an admissible term ordering in Nn × N suh that(8) Xα ≺Y Y k for α ∈ Nn, k ∈ N \ {0}.Let G be the redued Gröbner basis of the ideal I with respet to ≺Y .
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Proposition 4.4. If r = (r1, . . . , rn, rn+1) ∈ MI,≺Y

, then
rt = (r1, . . . , rn, t) ∈ MI,≺Y

for t > rn+1.Proof. Let g ∈ G and t > rn+1. Sine r ∈ MI,≺Y
, we have(9) ‖in≺Y

g‖r > ‖tail≺Y
g‖r.If tail≺Y

g is independent of Y , the right side of (9) is onstant and the leftside is nondereasing with respet to rn+1, whih ompletes the proof.Otherwise, tail≺Y
g depends on Y in a degree k. Then in≺Y

g also dependson Y . We have the inequality(10) ark
n+1 >

k∑

j=0

bjr
j
n+1,where a = a(r1, . . . , rn), b = b(r1, . . . , rn), a, bj ≥ 0 for j = 1, . . . , k. Multi-plying (10) by (t/rn+1)

k we obtain
atk >

k∑

j=0

bjt
j .

Thus rt = (r1, . . . , rn, t) ∈ MI,≺Y
.Theorem 4.5. Let Ω ⊂ Cn be a domain, f : Ω → C a Nash funtionin Ω, and I ⊂ C[X, Y ] the ideal of the graph of f . Let Pr = Pr′ ×Pr′′ , where

r = (r1, . . . , rn+1), r′ = (r1, . . . , rn), r′′ = rn+1, be a polydis onvenient forredution with respet to the ideal I and ≺Y , an elimination ordering for Y .If Pr′ ⊂ Ω and the graph Γf of f is algebrai in Pr then f is a polynomial.Proof. Sine the Zariski losure of Γf is an algebrai set of odimension 1,the redued Gröbner basis G of I with respet to ≺Y onsists of only onepolynomial g of the form
g(X, Y ) = ak(X)Y k + ak−1(X)Y k−1 + · · · + a0(X),with k ≥ 1 and ak 6= 0, and so in≺Y

g = XαY k with an α ∈ Nn. Hene
G∩C[X] = ∅ and f = fred. Sine Y −f(X) vanishes on Γf and Γf is algebraiin Pr, Y −f(X) ∈ IO(Pr), where O(Pr) is the ring of holomorphi funtionsin Pr (see e.g. [7, Theorem 4.6℄). The set MI,≺ is open (see Remark 4.3).Thus, we an �nd r̃ ∈ MI,≺ suh that the losure of Pr̃ is ontained in Pr andfor Pr̃ all the assumptions of Theorem 4.5 are satis�ed. Sine IO(Pr) ⊂ Er̃,we have Y − f(X) ∈ IEr̃ and so 0 = (Y − f)red = Yred − fred, where �red�is the redution in Er̃. On the other hand, Yred is a polynomial. Hene so is
f = fred, whih ompletes the proof.Example 4.6. Let fk(X) := 1/(X−k), k ∈N, and let I := 〈(X−k)Y −1〉be the ideal in C[X, Y ] generated by (X−k)Y −1. The set G = {(X−k)Y −1}
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is the redued Gröbner basis of I with respet to any elimination orderingfor Y .1. If P(r1,r2) is onvenient for redution then r1 > k. Indeed, aordingto De�nition 4.1,

r1r2 > kr2 + 1,whih implies that r1 > k.2. If r1 < k then P(r1,r2) is not onvenient for redution. To see this, �x
0 < r1 < k and onsider the Nash funtion fk in Ω = {x ∈ C : |x| < k}given by

fk(X) = −
1

k

∞∑

j=0

(
X

k

)j

=
1

X − k
.

The series fk is absolutely onvergent at r1 and so fk ∈ E(r1,r2), beause fkis independent of Y . Note that
DI = {(i, j) ∈ N2 : ij = 0},and Y −fk ∈ IE(r1,r2), by the same argument as in the proof of Theorem 4.5.Then

0 6= Y − fk(X) ∈ E(r1,r2)(DI) ∩ IE(r1,r2),whih ontradits ondition (iv) of Theorem 3.4.Aknowledgments. The author wishes to express her thanks to Profe-sor Tadeusz Winiarski for suggesting the problem and for many stimulatingonversations.
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