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Summary. We study retracts of coset spaces. We prove that in certain spaces the set of
points that are contained in a component of dimension less than or equal to n, is a closed
set. Using our techniques we are able to provide new examples of homogeneous spaces
that are not coset spaces. We provide an example of a compact homogeneous space which
is not a coset space. We further provide an example of a compact metrizable space which
is a retract of a homogeneous compact space, but which is not a retract of a homogeneous
metrizable compact space.

1. Introduction. If G is a topological group acting transitively on a
space Z, then for every z € Z we let 7, : G — Z be defined by v,(g) =
gz. A space Z is called a coset space provided that there is a topological
group G with closed subgroup H such that Z and G/H = {gH : g € G} are
homeomorphic. It is easy to show that Z is a coset space if and only if there
is a topological group G acting transitively on Z such that for some z € Z
(equivalently: for all z € Z) the function v, : G — Z is open.

In the present paper we are primarily interested in retracts of coset
spaces. In [9] van Mill proved that coset spaces satisfy a certain “strong”
homogeneity condition. Below we show that a weaker form of this property
is preserved under taking retractions and therefore it is valid for retracts of
coset spaces. We will use this property to prove some results for retracts of
coset spaces, which leads to interesting examples. One of our main results
is that if a o-compact space is a retract of a coset space, then the set of all
points that are contained in a component of dimension less than or equal to
n is a closed set.

It is well known that coset spaces are homogeneous. Conversely, Un-
gar [11] proved that if Z is homogeneous, separable, metrizable and locally
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compact then Z is a coset space. This is a consequence of the Effros theorem
on transitive actions of Polish groups on Polish spaces (Effros [3]; see also
van Mill [10]). In [6] Ford gave an example of a homogeneous space which is
not a coset space. Ford’s example is neither metrizable nor locally compact.
In [9] van Mill gave an example of a metrizable homogeneous space that is
not a coset space. Of course, this example cannot be locally compact, it is
however o-compact. We will improve Ford’s example in the other direction:
we give an example of a compact homogeneous space which is not (a retract
of) a coset space.

We further present an example of a compact metrizable space which is
a retract of a homogeneous compact space, but which is not a retract of a
homogeneous metrizable compact space. In fact we show that this example
is not a retract of a coset space and thus by Ungar’s results in [11], it follows
that it is not a retract of a homogeneous metrizable compact space.

Results on retracts of compact homogeneous spaces were obtained earlier
by Motorov (cf. Arkhangel’skit [1]). He was able to show that certain spaces
are not a retract of a compact and homogeneous space. For example, the
well-known sin 1/z-curve in the plane is such an example. Using our results
we are able to show that the sin 1/z-curve is not a retract of a coset space.

Uspenskii has shown in [12] that for every space X there is a space W
such that X x W ~ W and W is homogeneous. So if W is Uspenskii’s
space associated with the sin 1/z-curve, then W is yet another example of a
homogeneous space which is not a coset space.

2. A weak form of Ungar’s theorem. We assume that all spaces are
Tikhonov. Let U be a cover of the space Z. If A C Z and f: A — Z then we
say that f is limited by U provided that for every z € A there is an element
U € U containing both z and f(z). The following theorem can be found in
van Mill |9, Theorem 2.1]. For completeness, we include the proof.

THEOREM 2.1. Let Z be a coset space. Then for every open coverU of Z
and every compact K C Z there is an open cover V of Z with the following
property: for all V €V and x,y € V there is a homeomorphism h : Z — Z
such that h(z) =y and h1K is limited by U.

Proof. Let G be a topological group acting transitively on Z such that
for every z € Z the function v, : G — Z is open. For z € K let V, be an
open neighbourhood of e in G such that v,[V?] is contained in an element
of U. There is a finite F' C K such that

K C Vil
z€F
Let V =(,cp Vz, and let W be a symmetric open neighbourhood of e in G

such that W2 C V. Put V = {7.[W]: z € Z}. Then V is an open cover of Z,
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and we claim that it is as desired. To see this pick arbitrary z,p,q € Z such
that p,q € v,[W]. There are h,g € W such that hz = p and gz = ¢q. Then
¢ =gh~! € W2 and &p = q. So it suffices to prove that if « € W2 and y € K
are arbitrary then there exists U € U containing both y and ay. Pick z € F
such that y € v,[V.] C 7.[V2]. Then there is an element f € V, such that
fz = y. Since ay = (af)z € 7.[V?] and 7.[V?] is contained in an element
of U, this completes the proof. m

As a corollary we prove the following result for retracts of coset spaces.
We use this corollary to prove some of the main results in this paper.

COROLLARY 2.2. Let X be a retract of a coset space. Let K C X be
compact and suppose that U is an open cover of X. Then there is an open
cover V of X with the following property: for all V €V and x,y € V there
is a continuous function f : X — X such that f(x) =y and f]K is limited
by U.

Proof. Let r : Z — X be a retraction where Z is a coset space. We apply
Theorem 2.1 to the cover {r~1[U] : U € U} and the compact set K C Z. We
find a cover W of Z with the given properties. Welet V = {WNX : W € W}.
Clearly, V is an open cover of X. If x,y € V for some V € V, then z,y € W
for some W € W, so there is a homeomorphism h : Z — Z such that
h(z) =y and h|K is limited by {r~1[U] : U € U}. If we define f : X — X
by f(z) = r(h(z)) for z € X, then it is clear that f(z) = y and it is easily
verified that f[K is limited by /. =

For compact metric spaces we may restate the previous result as follows.

COROLLARY 2.3. Let (X, p) be a compact metric space and suppose that
X is a retract of a coset space. Then for every € > 0 there is a § > 0 such
that whenever o(x,y) < § there is a continuous map f : X — X such that
f(x) =y and f moves no point of X more than e.

Proof. Apply Corollary 2.2 to the cover U consisting of all €/2-balls in
X to obtain an open cover V of X. The number § is any Lebesgue number

for V. m

This last result is a weak form of a theorem due to Ungar [11], which
states that in a compact and homogeneous metric space X, for every € > 0
there is some ¢ > 0 such that whenever o(z,y) < ¢ there is a homeomorphism
h of X such that h(x) =y and h moves no point of X more than e.

3. Applications. Whenever X is a topological space, and R is a par-
tition of X, then by X/R we denote the quotient space associated to R,
and m : X — X/R is the corresponding quotient map. Whenever z € X,
by R, we denote the unique element of R that contains x. Note that R, =



172 J. van Mill and G. J. Ridderbos

7 1[n(z)]. We say that the partition R is an invariant partition if the fol-
lowing holds: for every continuous function f : X — X and for all R, Q € R,
if f[R]NQ # 0 then f[R] C Q. Examples of invariant partitions are C and
P where C is the family of all components in X, and P is the family of all
path-components in X. We will always use C and P for these families. In
particular we use C, (P,) for the (path)-component containing x.

In this section we will prove results that are valid for invariant partitions
in retracts of coset spaces.

THEOREM 3.1. Suppose X is a retract of a coset space and R is an
invariant partition of X. Then 7 : X — X/R is an open map.

Proof. Let U C X be open. We will show that 7 ![[U]] is open. Assume
to the contrary that this set is not open. Then there is an 2 € 7~ ![x[U]]
such that V ¢ 7~ ![x[U]] for every neighbourhood V of z. Define A = X \
7~ x[U]]. By assumption we have x € A.

Since 7(z) € w[U] we have U N Ry # 0. So we may choose y € U N R,.
Let K be the compact set {y}. Let U = {U, W} where W = X \ {y}.

It follows from Corollary 2.2 that we may find a continuous function
f + X — X with the property that f(z) € A and {f(y),y} C U. Let
f(z) = a. By invariance of R it follows that f(y) € R,. However, since
a € A we have a ¢ 7~ 1[r[U]] and therefore R, N7~ ![x[U]] = (). In particular
it follows that R, N U = (). But we have just shown that f(y) € R, N U,
which is a contradiction. m

It is a well-known fact of dimension theory that every finite collection of
closed subsets of a normal space admits an open swelling (see for example
Engelking [4, Theorem 3.1.1]). The following lemma is a corollary to this
result; we give a sketch of the simple proof.

LEMMA 3.2. Let F be a finite collection of closed subsets of a normal
space X . Then there is an open cover ¥V of X such that for oll F,G € F
and U,V €V the following holds:

(%) IfFFNG=0, FNU#0 and GNV # 0 then UNV = .

Proof. Let U = {Up : F € F} be an open swelling of the family F. For
our purposes it suffices to know that whenever F,G € F are disjoint then
so are Up and Ug. For every z € |JF we set W, = ({Up : z € F € F}
and Gy = |{F € F : x ¢ F}. One easily verifies that the cover V given by
{We\ Gy :x e JFHU{X \JF} satisfies (*). =

THEOREM 3.3. Suppose X is a retract of a coset space and R is an
mwvariant partition of X. Suppose further that all elements of R are o-
compact. Let n < w and consider the set A consisting of all points a in X
such that dim R, < n. Then A is a closed subset of X.
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Proof. Assume that p € A. We will show that p € A. Since R, is o-
compact it is Lindelof and therefore R, is normal. It follows from the count-
able closed sum theorem (cf. [4, Theorem 3.1.8]) that it suffices to show that
any compact subset K of R, satisfies dim K < n.

Fix a compact set K in I?,. We will prove that every family of n+1 pairs
of disjoint closed subsets of K is inessential. So let {(A4;,B;): 1 <i<n+1}
be such a family. Let F be the family consisting of all compact sets A; and B;
for 1 <14 < n+1. The collection F is a family of closed subsets of the normal
space $X, so we may apply the previous lemma to obtain an open cover V of
BX with property (). Restricting the cover V to X, we obtain an open cover
U of X with property (). In particular it follows that whenever A; NU # ()
and B; NV # () for some U,V € U then U NV = (). By Corollary 2.2 and
the fact that p € A, there is a continuous map f of X which maps p onto
a for some a € A and f[K is limited by . By invariance of R, we have
f1R,) C Ro.

By compactness, the collection I" = {(f[A:], f[Bi]) : 1 < i < n+ 1}
is a family of n + 1 pairs of closed subsets of R,. We will show that it is
also a collection of pairs of disjoint subsets of R,. So let f(z) € f[A;] and
f(w) € f[B;], where z € A; and w € B;. Then there are U,V € U such
that {z, f(2)} C U and {w, f(w)} C V. By (x) it follows that U NV = () so
f(z) # f(w). It follows that f[A;] N f[B;] = 0.

Since I' is a family of n 4 1 pairs of disjoint closed subsets of R, and
a € A, it follows that it is an inessential family in R,. By continuity of f,
we conclude that the original family {(4;, B;) : 1 <i < mn+ 1} is inessential
in K. Thus we have shown that dim K < n. This completes the proof. m

For applications of the previous theorem, we note that every component
of a given space is closed. It follows that if X is o-compact, then every
element of C is o-compact as well.

We will use the following theorem to show that the sin1/z-curve is not
a retract of a coset space.

THEOREM 3.4. Suppose X is a retract of a coset space and R is an
invariant partition of X. Let R,Q € R be such that RN Q # 0. Then
RCQ.

Proof. Let R,Q € R with RNQ # 0. Fix z € R and let U be an arbitrary
neighbourhood of z in X. Apply Corollary 2.2 to the compact set K = {z}
and the cover Y = {U, W} of X where W = X \ {2}, to obtain a cover V
with the stated properties. Pick y € RN Q. Since V covers X there is a set
V €V withy € V. Since y € R, we have RNV # (), so let x € RNV. By
the properties of V we may find a continuous function f : X — X such that
f(z) = y and {z, f(2)} C U. By invariance of R it follows that f[R] C @
and therefore it follows that f(z) € Q. We have shown that f(z) € UNQ.
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Since U was an arbitrary neighbourhood of z, we have shown that z € Q.
Since z was arbitrary we have shown that R C Q. =

COROLLARY 3.5. Suppose X is a retract of a coset space and R is an
invariant partition of X. Let R, QQ € R. The following are equivalent:

(1) RNQ£0,

(2) QR0

(3) R=Q.

Proof. 1t suffices to show the equivalence of (1) and (3). It is clear that
(3)=(1), so assume (1), i.e. RN Q # ). By the previous theorem it follows
that R C @ and thus R C Q. In particular Q N R # () and again it follows
that Q CR. Thus R=Q. =

For compact metric spaces (X, ) we can also prove the following re-
sult; details of the proof will appear elsewhere. For compact metric spaces,
Theorem 3.3 follows from this result when R = C.

THEOREM 3.6. Suppose (X, 0) is a compact metric space which is a re-
tract of a coset space. Let A C X be a subset of X with p € A. Then there
is a sequence (Cy)n of components of elements of A such that C) is hom-
eomorphic to the inverse limit of some inverse sequence {Cp,hl' }m<n<oo-
Furthermore, there is a homeomorphism z : C, — Cs such that for every
x € Cp we have

r= lim z(x),.
n—oo

4. Examples of homogeneous spaces that are not coset spaces.
Using the techniques developed in the previous section, we now provide ex-
amples. Our first example improves Ford’s example [6] considerably as it is
an example of a compact homogeneous space which is not a retract of a coset
space. Secondly, we present an example of a compact metrizable space which
is not a retract of a homogeneous metrizable compact space, but which is a
retract of a homogeneous compact space. Our strategy is to show that the
space we construct is not a retract of a coset space, and consequently by the
results of Ungar [11] it follows that the space is not a retract of a homoge-
neous metrizable compact space. Finally, we show that the sin1/x-curve is
not a retract of a coset space.

EXAMPLE 4.1. Our example is an adaptation of an example by J. van
Mill [8] (see also Hart and Ridderbos [7] for an alternative description). We
use the method of resolutions (see Fedorchuk [5] and Watson [13] for details).
The underlying set of the space X is given by C x S'. Here C = 2 is the
usual Cantor set and S' the circle in the plane. We topologize X as follows.
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Whenever s € 2<%, so s is a finite sequence of zeros and ones, we put
[s] ={z e C:sCua}.

The family {[s] : s € 2<“} is the canonical base for the topology on C. Given
xz € Cand n € w we put Uy, = [z[n], the nth basic neighbourhood of z, and
Czn = Uz \ Uznt1. Note that Cy , is of the form Uy 11 for some suitably
chosen y € C.

It is well known that S' has a point d with a dense positive semi-orbit
under some homeomorphism 7 of S!, i.e. the set {n*(d) : n € w} is dense
is St. We define d,, = n™(d) for n € w. For every 2 € C we define the
resolution maps f, : C\ {z} — St by fu(y) =d, iff y € Cy .

Now we define basic open sets of X = C x S! as follows. Whenever z € C,
U, is a neighbourhood of z in C and W C S! is open, we define

U @ W = ({z} x W)U J{{z'} xS 12’ e U, 0 £, W]}

Topologized in this way, X is the resolution of the Cantor set into circles by
the maps f;. The space X is compact and Hausdorff (see for example [13]).
Carefully following the argument of van Mill (cf. [8] and [7]) one can show
that X is homogeneous. Unlike the space constructed in [8], it is homoge-
neous even in ZFC. Homogeneity follows from the inequality w < p which
is valid in ZFC. In [8] the inequality w; < p is needed to prove homogene-
ity, since the weight of the uncountable torus is w;. We have replaced the
uncountable torus with the circle and the weight of this space is w.

We will show that the projection 7 : X — X/C is not an open mapping,.
The components of X are precisely the sets {x} x S!, thus we may identify
X/C with the set C. Consider a basic open set of the form U, ® W in X.
Then

U @ W] = {z}u{a' € C:a' € U, N £ W]}

Then 71 [7[U, ® W]] is the set
({z} x SHu| '} xSt 12/ e Uy 0 1 W]

Whenever W is not dense in S!, this set is not open in the resolution topology.
This follows from the observation that if V N W = @) and V is open in S!,
then U, ® V is an open neighbourhood of some point of {z} x S!, but

UsNfVIZ U fH W)

Since 7 : X — X/C is not an open mapping but C is an invariant partition
of X, it follows from Theorem 3.1 that X is not a retract of a coset space. =

We now present an application of Theorem 3.3. We construct a space Y
which is not a retract of a coset space. In particular, since every homogeneous
metrizable compact space is a coset space, it follows that Y is not a retract
of a homogeneous metrizable compact space. We will however prove the



176 J. van Mill and G. J. Ridderbos

surprising property that Y is a retract of a homogeneous compact space, in
fact Y is a retract of the space X constructed in the previous example.

EXAMPLE 4.2. The space X is as in the previous example; it is a homo-
geneous compact space which is not a retract of a coset space. We define the
subspace Y of X as follows. Let e be the point of C with all coordinates zero.
We abbreviate U, ,, and C¢,, by U,, and C), respectively. For every n < w we
pick x,, € C},. The space Y is given as the union of A and B where

A={e} xS, B={(zn,dy):n<wl

The space Y inherits the topology of X, but this coincides with the topology
that Y inherits from the usual cartesian product of the Cantor set and the
circle in the plane. One can easily verify this. It suffices to note that B is a
discrete subspace of X, and (U. @ W)NY = (U. x W)NY whenever U, is
an open neighbourhood of e in C and W is an open subset of S!.

So as Y is a subspace of the cartesian product C x S!, it follows that Y is
a compact metrizable space, so all components in Y are compact. Note that
B consists of components all of dimension 0, and A is a component of Y of
dimension 1. Since B is dense in Y, it follows from Theorem 3.3 that Y is
not a retract of a coset space.

We will show that Y is a retract of X. We define the function r: X — Y
as follows:
(w, z) if w=e,

r(w,z) = { (Tp,dy) if we Cy.

We show that r is continuous. First note that r~![(x,,,d,)] is open in X since
this set is C,, x S! and this is just the basic open subset C,, ® S! of X.
Next we consider basic open subsets V' of Y that intersect the set A.
Suppose
V =({e} x W)U{(zn,dp) :n > N and d, € W},
where W C S! is open and N < w. We will show that r~![V] is open in X.
First note that

r 'Vl =({e} x W) u| J{Cn x S" :n > N and d, € W}

Since sets of the form C,, x S! are open in X, we are done if we can show
that the set Uy ® W, which contains the set {e} x W, is contained in 7~ 1[V/].
The basic open set Uy ® W is given by

{e} x WyuJ{{a'} x S' 2’ e Un 0 £ W]}

The set {e} x W is contained in r~![V], so suppose that {z'} xS! C Uy @ W
where 2/ # e. Then 2/ € C,, for some n < w. Since 2’ € Uy, it follows that
n > N. By definition of f. we have f.(z') = d,, therefore since f.(z') € W,
it follows that d,, € W. So the set {2’} x S! is contained in r~1[V].
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We have shown that r~![B] is open for every B € B for some basis B
of Y. It follows that r is a retraction. Note that since Y is a retract of X, it
follows once again that X is not a retract of a coset space. m

As an application of Corollary 3.5 we show that the sin 1/x-curve is not a
retract of a coset space. If W is the associated space constructed by Uspenskii
in [12] then W is a homogeneous space which is not a coset space.

In particular it also follows that the sin 1/x-curve is not a retract of a
homogeneous metrizable compact space. This result is not new since Motorov
has proved the more general theorem stating that the sin 1/x-curve is not a
retract of a homogeneous compact space. However our general result does not
follow from Motorov’s observations, since coset spaces need not be compact.

EXAMPLE 4.3. The sin 1/z-curve in the plane is given as the union of its
two path components P; and P, where

P ={0,z): -1<zx <1}, Po={(z,sinl/x):0<z <1}

Since P; C P, but P; = P; it follows from Corollary 3.5 that this space is
not a retract of a coset space. =

5. Further examples. In this section we provide some further examples
to illustrate some limitations of our results. We will show that the inequalities
in Theorem 3.3 cannot be replaced by equality. We provide a space X which
is a retract of a compact homogeneous metrizable space, and a dense subset
A C X where dim C, = 1 for every a € A, but dim C, = 0 for some z € X.
Recall that a compact and homogeneous metrizable space is a coset space.

A special class of retracts of coset spaces is the class of all compact
metrizable spaces X for which X“ is homogeneous; such spaces are power
homogeneous. It was noted by Arkhangel’skii (cf. [2]) that if in a power
homogeneous space some point has a clopen base, then the space is zero-
dimensional. It follows that the previous example is not power homogeneous.
Our second example will be a compact metric space X for which X% is
homogeneous and for some dense set A in X we have dim C, = 2 for every
a € A whereas dim C,, = 1 for some z € X.

EXAMPLE 5.1. Our first example is a subspace of the plane R?. It is
given by

X ={0,00y ul J{{1/n} x [0,1/n] : n € N}.

It is a trivial observation that X is a retract of the space Z x I where Z is
the convergent sequence given by {0} U{1/n : n € N} and I is the usual unit
interval. Since (Z x I)¥ is homogeneous, it follows that X is a retract of a
compact homogeneous metrizable space.
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The set Y{{1/n} x [0,1/n] : n € N} is dense in X and it consists of
components of X, all of dimension 1. The set {(0,0)} is a component of
dimension 0, showing that the inequalities in Theorem 3.3 cannot be replaced
by equality. =

The previous example does not seem to be very powerful. As announced,
we will now provide an example with similar properties, but which is fur-
thermore a compact space which is even power homogeneous.

EXAMPLE 5.2. As in the previous example, Z is the convergent sequence
and X is given by

X ={oyu [ J1/@2n+1),1/2n].
neN
We endow Z with the usual topology and X is a subspace of R. The space
X is clearly homeomorphic to the space described in the previous example.
The example is X xI. We will prove that this space is power homogeneous.
By @ we denote the Hilbert cube . The following is our main observation:

PROPOSITION 5.3. The spaces Z X () and X x Q are homeomorphic.

Proof. We write X = {0} U, ey In where I, = [1/(2n + 1),1/2n].
For every n € N we fix a homeomorphism h,, : I,, — I. We define a map
h:X xQ — Z xQ as follows. For (z,y) € X x Q, h(z,y) = (z,y)if x =0
and h(z,y) = (1/n,w) if x € I,, and w is given by

Ym if m <mn,
Wy = hp(z) if m=n,
Ym—1 if m>n.

Thus the set I, x @ is mapped onto {1/n} x @ and the interval I, is mapped
onto the nth interval in Q. It is not hard to verify that h is a homeomorphism,
and this completes the proof. =

COROLLARY 5.4. The space (X x I)* is homogeneous.
Proof. By the previous proposition it follows that
(X xD*= (X xQ)=(ZxQ)=~ZxQ.

This last space is the product of the Cantor set and the Hilbert cube and is
therefore homogeneous.
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