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Notes on Retra
ts of Coset Spa
esbyJ. VAN MILL and G. J. RIDDERBOSPresented by Czesªaw BESSAGASummary. We study retra
ts of 
oset spa
es. We prove that in 
ertain spa
es the set ofpoints that are 
ontained in a 
omponent of dimension less than or equal to n, is a 
losedset. Using our te
hniques we are able to provide new examples of homogeneous spa
esthat are not 
oset spa
es. We provide an example of a 
ompa
t homogeneous spa
e whi
his not a 
oset spa
e. We further provide an example of a 
ompa
t metrizable spa
e whi
his a retra
t of a homogeneous 
ompa
t spa
e, but whi
h is not a retra
t of a homogeneousmetrizable 
ompa
t spa
e.1. Introdu
tion. If G is a topologi
al group a
ting transitively on aspa
e Z, then for every z ∈ Z we let γz : G → Z be de�ned by γz(g) =
gz. A spa
e Z is 
alled a 
oset spa
e provided that there is a topologi
algroup G with 
losed subgroup H su
h that Z and G/H = {gH : g ∈ G} arehomeomorphi
. It is easy to show that Z is a 
oset spa
e if and only if thereis a topologi
al group G a
ting transitively on Z su
h that for some z ∈ Z(equivalently: for all z ∈ Z) the fun
tion γz : G → Z is open.In the present paper we are primarily interested in retra
ts of 
osetspa
es. In [9℄ van Mill proved that 
oset spa
es satisfy a 
ertain �strong�homogeneity 
ondition. Below we show that a weaker form of this propertyis preserved under taking retra
tions and therefore it is valid for retra
ts of
oset spa
es. We will use this property to prove some results for retra
ts of
oset spa
es, whi
h leads to interesting examples. One of our main resultsis that if a σ-
ompa
t spa
e is a retra
t of a 
oset spa
e, then the set of allpoints that are 
ontained in a 
omponent of dimension less than or equal to
n is a 
losed set.It is well known that 
oset spa
es are homogeneous. Conversely, Un-gar [11℄ proved that if Z is homogeneous, separable, metrizable and lo
ally2000 Mathemati
s Subje
t Classi�
ation: 54C15, 54F45, 54H11.Key words and phrases: 
oset spa
e, retra
tion, homogeneous spa
e, dimension.[169℄
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ompa
t then Z is a 
oset spa
e. This is a 
onsequen
e of the E�ros theoremon transitive a
tions of Polish groups on Polish spa
es (E�ros [3℄; see alsovan Mill [10℄). In [6℄ Ford gave an example of a homogeneous spa
e whi
h isnot a 
oset spa
e. Ford's example is neither metrizable nor lo
ally 
ompa
t.In [9℄ van Mill gave an example of a metrizable homogeneous spa
e that isnot a 
oset spa
e. Of 
ourse, this example 
annot be lo
ally 
ompa
t, it ishowever σ-
ompa
t. We will improve Ford's example in the other dire
tion:we give an example of a 
ompa
t homogeneous spa
e whi
h is not (a retra
tof) a 
oset spa
e.We further present an example of a 
ompa
t metrizable spa
e whi
h isa retra
t of a homogeneous 
ompa
t spa
e, but whi
h is not a retra
t of ahomogeneous metrizable 
ompa
t spa
e. In fa
t we show that this exampleis not a retra
t of a 
oset spa
e and thus by Ungar's results in [11℄, it followsthat it is not a retra
t of a homogeneous metrizable 
ompa
t spa
e.Results on retra
ts of 
ompa
t homogeneous spa
es were obtained earlierby Motorov (
f. Arkhangel'ski�� [1℄). He was able to show that 
ertain spa
esare not a retra
t of a 
ompa
t and homogeneous spa
e. For example, thewell-known sin 1/x-
urve in the plane is su
h an example. Using our resultswe are able to show that the sin 1/x-
urve is not a retra
t of a 
oset spa
e.Uspenski�� has shown in [12℄ that for every spa
e X there is a spa
e Wsu
h that X × W ≈ W and W is homogeneous. So if W is Uspenski��'sspa
e asso
iated with the sin 1/x-
urve, then W is yet another example of ahomogeneous spa
e whi
h is not a 
oset spa
e.2. A weak form of Ungar's theorem. We assume that all spa
es areTikhonov. Let U be a 
over of the spa
e Z. If A ⊆ Z and f : A → Z then wesay that f is limited by U provided that for every z ∈ A there is an element
U ∈ U 
ontaining both z and f(z). The following theorem 
an be found invan Mill [9, Theorem 2.1℄. For 
ompleteness, we in
lude the proof.Theorem 2.1. Let Z be a 
oset spa
e. Then for every open 
over U of Zand every 
ompa
t K ⊆ Z there is an open 
over V of Z with the followingproperty : for all V ∈ V and x, y ∈ V there is a homeomorphism h : Z → Zsu
h that h(x) = y and h↾K is limited by U .Proof. Let G be a topologi
al group a
ting transitively on Z su
h thatfor every z ∈ Z the fun
tion γz : G → Z is open. For z ∈ K let Vz be anopen neighbourhood of e in G su
h that γz[V

2
z ] is 
ontained in an elementof U . There is a �nite F ⊆ K su
h that

K ⊆
⋃

z∈F

γz[Vz].Let V =
⋂

z∈F Vz, and let W be a symmetri
 open neighbourhood of e in Gsu
h that W 2 ⊆ V . Put V = {γz[W ] : z ∈ Z}. Then V is an open 
over of Z,
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and we 
laim that it is as desired. To see this pi
k arbitrary z, p, q ∈ Z su
hthat p, q ∈ γz[W ]. There are h, g ∈ W su
h that hz = p and gz = q. Then
ξ = gh−1 ∈ W 2 and ξp = q. So it su�
es to prove that if α ∈ W 2 and y ∈ Kare arbitrary then there exists U ∈ U 
ontaining both y and αy. Pi
k z ∈ Fsu
h that y ∈ γz[Vz] ⊆ γz[V

2
z ]. Then there is an element f ∈ Vz su
h that

fz = y. Sin
e αy = (αf)z ∈ γz[V
2
z ] and γz[V

2
z ] is 
ontained in an elementof U , this 
ompletes the proof.As a 
orollary we prove the following result for retra
ts of 
oset spa
es.We use this 
orollary to prove some of the main results in this paper.Corollary 2.2. Let X be a retra
t of a 
oset spa
e. Let K ⊆ X be
ompa
t and suppose that U is an open 
over of X. Then there is an open
over V of X with the following property : for all V ∈ V and x, y ∈ V thereis a 
ontinuous fun
tion f : X → X su
h that f(x) = y and f↾K is limitedby U .Proof. Let r : Z → X be a retra
tion where Z is a 
oset spa
e. We applyTheorem 2.1 to the 
over {r−1[U ] : U ∈ U} and the 
ompa
t set K ⊆ Z. We�nd a 
overW of Z with the given properties. We let V = {W∩X : W ∈ W}.Clearly, V is an open 
over of X. If x, y ∈ V for some V ∈ V, then x, y ∈ Wfor some W ∈ W , so there is a homeomorphism h : Z → Z su
h that

h(x) = y and h↾K is limited by {r−1[U ] : U ∈ U}. If we de�ne f : X → Xby f(z) = r(h(z)) for z ∈ X, then it is 
lear that f(x) = y and it is easilyveri�ed that f↾K is limited by U .For 
ompa
t metri
 spa
es we may restate the previous result as follows.Corollary 2.3. Let (X, ̺) be a 
ompa
t metri
 spa
e and suppose that
X is a retra
t of a 
oset spa
e. Then for every ε > 0 there is a δ > 0 su
hthat whenever ̺(x, y) < δ there is a 
ontinuous map f : X → X su
h that
f(x) = y and f moves no point of X more than ε.Proof. Apply Corollary 2.2 to the 
over U 
onsisting of all ε/2-balls in
X to obtain an open 
over V of X. The number δ is any Lebesgue numberfor V.This last result is a weak form of a theorem due to Ungar [11℄, whi
hstates that in a 
ompa
t and homogeneous metri
 spa
e X, for every ε > 0there is some δ > 0 su
h that whenever ̺(x, y) < δ there is a homeomorphism
h of X su
h that h(x) = y and h moves no point of X more than ε.3. Appli
ations. Whenever X is a topologi
al spa
e, and R is a par-tition of X, then by X/R we denote the quotient spa
e asso
iated to R,and π : X → X/R is the 
orresponding quotient map. Whenever x ∈ X,by Rx we denote the unique element of R that 
ontains x. Note that Rx =



172 J. van Mill and G. J. Ridderbos
π−1[π(x)]. We say that the partition R is an invariant partition if the fol-lowing holds: for every 
ontinuous fun
tion f : X → X and for all R, Q ∈ R,if f [R] ∩ Q 6= ∅ then f [R] ⊆ Q. Examples of invariant partitions are C and
P where C is the family of all 
omponents in X, and P is the family of allpath-
omponents in X. We will always use C and P for these families. Inparti
ular we use Cx (Px) for the (path)-
omponent 
ontaining x.In this se
tion we will prove results that are valid for invariant partitionsin retra
ts of 
oset spa
es.Theorem 3.1. Suppose X is a retra
t of a 
oset spa
e and R is aninvariant partition of X. Then π : X → X/R is an open map.Proof. Let U ⊆ X be open. We will show that π−1[π[U ]] is open. Assumeto the 
ontrary that this set is not open. Then there is an x ∈ π−1[π[U ]]su
h that V 6⊆ π−1[π[U ]] for every neighbourhood V of x. De�ne A = X \
π−1[π[U ]]. By assumption we have x ∈ A.Sin
e π(x) ∈ π[U ] we have U ∩ Rx 6= ∅. So we may 
hoose y ∈ U ∩ Rx.Let K be the 
ompa
t set {y}. Let U = {U, W} where W = X \ {y}.It follows from Corollary 2.2 that we may �nd a 
ontinuous fun
tion
f : X → X with the property that f(x) ∈ A and {f(y), y} ⊆ U . Let
f(x) = a. By invarian
e of R it follows that f(y) ∈ Ra. However, sin
e
a ∈ A we have a 6∈ π−1[π[U ]] and therefore Ra∩π−1[π[U ]] = ∅. In parti
ularit follows that Ra ∩ U = ∅. But we have just shown that f(y) ∈ Ra ∩ U ,whi
h is a 
ontradi
tion.It is a well-known fa
t of dimension theory that every �nite 
olle
tion of
losed subsets of a normal spa
e admits an open swelling (see for exampleEngelking [4, Theorem 3.1.1℄). The following lemma is a 
orollary to thisresult; we give a sket
h of the simple proof.Lemma 3.2. Let F be a �nite 
olle
tion of 
losed subsets of a normalspa
e X. Then there is an open 
over V of X su
h that for all F, G ∈ Fand U, V ∈ V the following holds:
(∗) If F ∩ G = ∅, F ∩ U 6= ∅ and G ∩ V 6= ∅ then U ∩ V = ∅.Proof. Let U = {UF : F ∈ F} be an open swelling of the family F . Forour purposes it su�
es to know that whenever F, G ∈ F are disjoint thenso are UF and UG. For every x ∈

⋃

F we set Wx =
⋂

{UF : x ∈ F ∈ F}and Gx =
⋃

{F ∈ F : x 6∈ F}. One easily veri�es that the 
over V given by
{Wx \ Gx : x ∈

⋃

F} ∪ {X \
⋃

F} satis�es (∗).Theorem 3.3. Suppose X is a retra
t of a 
oset spa
e and R is aninvariant partition of X. Suppose further that all elements of R are σ-
ompa
t. Let n < ω and 
onsider the set A 
onsisting of all points a in Xsu
h that dim Ra ≤ n. Then A is a 
losed subset of X.
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Proof. Assume that p ∈ A. We will show that p ∈ A. Sin
e Rp is σ-
ompa
t it is Lindelöf and therefore Rp is normal. It follows from the 
ount-able 
losed sum theorem (
f. [4, Theorem 3.1.8℄) that it su�
es to show thatany 
ompa
t subset K of Rp satis�es dimK ≤ n.Fix a 
ompa
t set K in Rp. We will prove that every family of n+1 pairsof disjoint 
losed subsets of K is inessential. So let {(Ai, Bi) : 1 ≤ i ≤ n+1}be su
h a family. Let F be the family 
onsisting of all 
ompa
t sets Ai and Bifor 1 ≤ i ≤ n+1. The 
olle
tion F is a family of 
losed subsets of the normalspa
e βX, so we may apply the previous lemma to obtain an open 
over V of

βX with property (∗). Restri
ting the 
over V to X, we obtain an open 
over
U of X with property (∗). In parti
ular it follows that whenever Ai ∩U 6= ∅and Bi ∩ V 6= ∅ for some U, V ∈ U then U ∩ V = ∅. By Corollary 2.2 andthe fa
t that p ∈ A, there is a 
ontinuous map f of X whi
h maps p onto
a for some a ∈ A and f↾K is limited by U . By invarian
e of R, we have
f [Rp] ⊆ Ra.By 
ompa
tness, the 
olle
tion Γ = {(f [Ai], f [Bi]) : 1 ≤ i ≤ n + 1}is a family of n + 1 pairs of 
losed subsets of Ra. We will show that it isalso a 
olle
tion of pairs of disjoint subsets of Ra. So let f(z) ∈ f [Ai] and
f(w) ∈ f [Bi], where z ∈ Ai and w ∈ Bi. Then there are U, V ∈ U su
hthat {z, f(z)} ⊆ U and {w, f(w)} ⊆ V . By (∗) it follows that U ∩ V = ∅ so
f(z) 6= f(w). It follows that f [Ai] ∩ f [Bi] = ∅.Sin
e Γ is a family of n + 1 pairs of disjoint 
losed subsets of Ra and
a ∈ A, it follows that it is an inessential family in Ra. By 
ontinuity of f ,we 
on
lude that the original family {(Ai, Bi) : 1 ≤ i ≤ n + 1} is inessentialin K. Thus we have shown that dimK ≤ n. This 
ompletes the proof.For appli
ations of the previous theorem, we note that every 
omponentof a given spa
e is 
losed. It follows that if X is σ-
ompa
t, then everyelement of C is σ-
ompa
t as well.We will use the following theorem to show that the sin 1/x-
urve is nota retra
t of a 
oset spa
e.Theorem 3.4. Suppose X is a retra
t of a 
oset spa
e and R is aninvariant partition of X. Let R, Q ∈ R be su
h that R ∩ Q 6= ∅. Then
R ⊆ Q.Proof. Let R, Q ∈ R with R∩Q 6= ∅. Fix z ∈ R and let U be an arbitraryneighbourhood of z in X. Apply Corollary 2.2 to the 
ompa
t set K = {z}and the 
over U = {U, W} of X where W = X \ {z}, to obtain a 
over Vwith the stated properties. Pi
k y ∈ R ∩ Q. Sin
e V 
overs X there is a set
V ∈ V with y ∈ V . Sin
e y ∈ R, we have R ∩ V 6= ∅, so let x ∈ R ∩ V . Bythe properties of V we may �nd a 
ontinuous fun
tion f : X → X su
h that
f(x) = y and {z, f(z)} ⊆ U . By invarian
e of R it follows that f [R] ⊆ Qand therefore it follows that f(z) ∈ Q. We have shown that f(z) ∈ U ∩ Q.
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Sin
e U was an arbitrary neighbourhood of z, we have shown that z ∈ Q.Sin
e z was arbitrary we have shown that R ⊆ Q.Corollary 3.5. Suppose X is a retra
t of a 
oset spa
e and R is aninvariant partition of X. Let R, Q ∈ R. The following are equivalent :(1) R ∩ Q 6= ∅,(2) Q ∩ R 6= ∅,(3) R = Q.Proof. It su�
es to show the equivalen
e of (1) and (3). It is 
lear that(3)⇒(1), so assume (1), i.e. R ∩ Q 6= ∅. By the previous theorem it followsthat R ⊆ Q and thus R ⊆ Q. In parti
ular Q ∩ R 6= ∅ and again it followsthat Q ⊆ R. Thus R = Q.For 
ompa
t metri
 spa
es (X, ̺) we 
an also prove the following re-sult; details of the proof will appear elsewhere. For 
ompa
t metri
 spa
es,Theorem 3.3 follows from this result when R = C.Theorem 3.6. Suppose (X, ̺) is a 
ompa
t metri
 spa
e whi
h is a re-tra
t of a 
oset spa
e. Let A ⊆ X be a subset of X with p ∈ A. Then thereis a sequen
e (Cn)n of 
omponents of elements of A su
h that Cp is hom-eomorphi
 to the inverse limit of some inverse sequen
e {Cn, hn

m}m<n<∞.Furthermore, there is a homeomorphism z : Cp → C∞ su
h that for every
x ∈ Cp we have

x = lim
n→∞

z(x)n.

4. Examples of homogeneous spa
es that are not 
oset spa
es.Using the te
hniques developed in the previous se
tion, we now provide ex-amples. Our �rst example improves Ford's example [6℄ 
onsiderably as it isan example of a 
ompa
t homogeneous spa
e whi
h is not a retra
t of a 
osetspa
e. Se
ondly, we present an example of a 
ompa
t metrizable spa
e whi
his not a retra
t of a homogeneous metrizable 
ompa
t spa
e, but whi
h is aretra
t of a homogeneous 
ompa
t spa
e. Our strategy is to show that thespa
e we 
onstru
t is not a retra
t of a 
oset spa
e, and 
onsequently by theresults of Ungar [11℄ it follows that the spa
e is not a retra
t of a homoge-neous metrizable 
ompa
t spa
e. Finally, we show that the sin 1/x-
urve isnot a retra
t of a 
oset spa
e.Example 4.1. Our example is an adaptation of an example by J. vanMill [8℄ (see also Hart and Ridderbos [7℄ for an alternative des
ription). Weuse the method of resolutions (see Fedor
huk [5℄ and Watson [13℄ for details).The underlying set of the spa
e X is given by C × S
1. Here C = 2ω is theusual Cantor set and S

1 the 
ir
le in the plane. We topologize X as follows.



Retra
ts of Coset Spa
es 175
Whenever s ∈ 2<ω, so s is a �nite sequen
e of zeros and ones, we put

[s] = {x ∈ C : s ⊆ x}.The family {[s] : s ∈ 2<ω} is the 
anoni
al base for the topology on C. Given
x ∈ C and n ∈ ω we put Ux,n = [x↾n], the nth basi
 neighbourhood of x, and
Cx,n = Ux,n \Ux,n+1. Note that Cx,n is of the form Uy,n+1 for some suitably
hosen y ∈ C.It is well known that S

1 has a point d with a dense positive semi-orbitunder some homeomorphism η of S
1, i.e. the set {ηn(d) : n ∈ ω} is denseis S

1. We de�ne dn = ηn(d) for n ∈ ω. For every x ∈ C we de�ne theresolution maps fx : C \ {x} → S
1 by fx(y) = dn i� y ∈ Cx,n.Now we de�ne basi
 open sets of X = C×S

1 as follows. Whenever x ∈ C,
Ux is a neighbourhood of x in C and W ⊆ S

1 is open, we de�ne
Ux ⊗ W = ({x} × W ) ∪

⋃

{{x′} × S
1 : x′ ∈ Ux ∩ f−1

x [W ]}.Topologized in this way, X is the resolution of the Cantor set into 
ir
les bythe maps fx. The spa
e X is 
ompa
t and Hausdor� (see for example [13℄).Carefully following the argument of van Mill (
f. [8℄ and [7℄) one 
an showthat X is homogeneous. Unlike the spa
e 
onstru
ted in [8℄, it is homoge-neous even in ZFC. Homogeneity follows from the inequality ω < p whi
his valid in ZFC. In [8℄ the inequality ω1 < p is needed to prove homogene-ity, sin
e the weight of the un
ountable torus is ω1. We have repla
ed theun
ountable torus with the 
ir
le and the weight of this spa
e is ω.We will show that the proje
tion π : X → X/C is not an open mapping.The 
omponents of X are pre
isely the sets {x} × S
1, thus we may identify

X/C with the set C. Consider a basi
 open set of the form Ux ⊗ W in X.Then
π[Ux ⊗ W ] = {x} ∪ {x′ ∈ C : x′ ∈ Ux ∩ f−1

x [W ]}.Then π−1[π[Ux ⊗ W ]] is the set
({x} × S

1) ∪
⋃

{{x′} × S
1 : x′ ∈ Ux ∩ f−1

x [W ]}.Whenever W is not dense in S
1, this set is not open in the resolution topology.This follows from the observation that if V ∩ W = ∅ and V is open in S

1,then Ux ⊗ V is an open neighbourhood of some point of {x} × S
1, but

Ux ∩ f−1
x [V ] 6⊆ Ux ∩ f−1

x [W ].Sin
e π : X → X/C is not an open mapping but C is an invariant partitionof X, it follows from Theorem 3.1 that X is not a retra
t of a 
oset spa
e.We now present an appli
ation of Theorem 3.3. We 
onstru
t a spa
e Ywhi
h is not a retra
t of a 
oset spa
e. In parti
ular, sin
e every homogeneousmetrizable 
ompa
t spa
e is a 
oset spa
e, it follows that Y is not a retra
tof a homogeneous metrizable 
ompa
t spa
e. We will however prove the
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surprising property that Y is a retra
t of a homogeneous 
ompa
t spa
e, infa
t Y is a retra
t of the spa
e X 
onstru
ted in the previous example.Example 4.2. The spa
e X is as in the previous example; it is a homo-geneous 
ompa
t spa
e whi
h is not a retra
t of a 
oset spa
e. We de�ne thesubspa
e Y of X as follows. Let e be the point of C with all 
oordinates zero.We abbreviate Ue,n and Ce,n by Un and Cn respe
tively. For every n < ω wepi
k xn ∈ Cn. The spa
e Y is given as the union of A and B where

A = {e} × S
1, B = {(xn, dn) : n < ω}.The spa
e Y inherits the topology of X, but this 
oin
ides with the topologythat Y inherits from the usual 
artesian produ
t of the Cantor set and the
ir
le in the plane. One 
an easily verify this. It su�
es to note that B is adis
rete subspa
e of X, and (Ue ⊗ W ) ∩ Y = (Ue × W ) ∩ Y whenever Ue isan open neighbourhood of e in C and W is an open subset of S

1.So as Y is a subspa
e of the 
artesian produ
t C×S
1, it follows that Y isa 
ompa
t metrizable spa
e, so all 
omponents in Y are 
ompa
t. Note that

B 
onsists of 
omponents all of dimension 0, and A is a 
omponent of Y ofdimension 1. Sin
e B is dense in Y , it follows from Theorem 3.3 that Y isnot a retra
t of a 
oset spa
e.We will show that Y is a retra
t of X. We de�ne the fun
tion r : X → Yas follows:
r(w, z) =

{

(w, z) if w = e,
(xn, dn) if w ∈ Cn.We show that r is 
ontinuous. First note that r−1[(xn, dn)] is open in X sin
ethis set is Cn × S

1 and this is just the basi
 open subset Cn ⊗ S
1 of X.Next we 
onsider basi
 open subsets V of Y that interse
t the set A.Suppose

V = ({e} × W ) ∪ {(xn, dn) : n ≥ N and dn ∈ W},where W ⊆ S
1 is open and N < ω. We will show that r−1[V ] is open in X.First note that

r−1[V ] = ({e} × W ) ∪
⋃

{Cn × S
1 : n ≥ N and dn ∈ W}.Sin
e sets of the form Cn × S

1 are open in X, we are done if we 
an showthat the set UN ⊗W , whi
h 
ontains the set {e}×W , is 
ontained in r−1[V ].The basi
 open set UN ⊗ W is given by
({e} × W ) ∪

⋃

{{x′} × S
1 : x′ ∈ UN ∩ f−1

e [W ]}.The set {e}×W is 
ontained in r−1[V ], so suppose that {x′}×S
1 ⊆ UN ⊗Wwhere x′ 6= e. Then x′ ∈ Cn for some n < ω. Sin
e x′ ∈ UN , it follows that

n ≥ N . By de�nition of fe we have fe(x
′) = dn, therefore sin
e fe(x

′) ∈ W ,it follows that dn ∈ W . So the set {x′} × S
1 is 
ontained in r−1[V ].
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We have shown that r−1[B] is open for every B ∈ B for some basis Bof Y . It follows that r is a retra
tion. Note that sin
e Y is a retra
t of X, itfollows on
e again that X is not a retra
t of a 
oset spa
e.As an appli
ation of Corollary 3.5 we show that the sin 1/x-
urve is not aretra
t of a 
oset spa
e. If W is the asso
iated spa
e 
onstru
ted by Uspenski��in [12℄ then W is a homogeneous spa
e whi
h is not a 
oset spa
e.In parti
ular it also follows that the sin 1/x-
urve is not a retra
t of ahomogeneous metrizable 
ompa
t spa
e. This result is not new sin
e Motorovhas proved the more general theorem stating that the sin 1/x-
urve is not aretra
t of a homogeneous 
ompa
t spa
e. However our general result does notfollow from Motorov's observations, sin
e 
oset spa
es need not be 
ompa
t.Example 4.3. The sin 1/x-
urve in the plane is given as the union of itstwo path 
omponents P1 and P2 where

P1 = {(0, x) : −1 ≤ x ≤ 1}, P2 = {(x, sin 1/x) : 0 < x ≤ 1}.Sin
e P1 ⊆ P2 but P1 = P1 it follows from Corollary 3.5 that this spa
e isnot a retra
t of a 
oset spa
e.5. Further examples. In this se
tion we provide some further examplesto illustrate some limitations of our results. We will show that the inequalitiesin Theorem 3.3 
annot be repla
ed by equality. We provide a spa
e X whi
his a retra
t of a 
ompa
t homogeneous metrizable spa
e, and a dense subset
A ⊆ X where dimCa = 1 for every a ∈ A, but dimCx = 0 for some x ∈ X.Re
all that a 
ompa
t and homogeneous metrizable spa
e is a 
oset spa
e.A spe
ial 
lass of retra
ts of 
oset spa
es is the 
lass of all 
ompa
tmetrizable spa
es X for whi
h Xω is homogeneous; su
h spa
es are powerhomogeneous. It was noted by Arkhangel'ski�� (
f. [2℄) that if in a powerhomogeneous spa
e some point has a 
lopen base, then the spa
e is zero-dimensional. It follows that the previous example is not power homogeneous.Our se
ond example will be a 
ompa
t metri
 spa
e X for whi
h Xω ishomogeneous and for some dense set A in X we have dim Ca = 2 for every
a ∈ A whereas dimCx = 1 for some x ∈ X.Example 5.1. Our �rst example is a subspa
e of the plane R

2. It isgiven by
X = {(0, 0)} ∪

⋃

{{1/n} × [0, 1/n] : n ∈ N}.It is a trivial observation that X is a retra
t of the spa
e Z × I where Z isthe 
onvergent sequen
e given by {0}∪{1/n : n ∈ N} and I is the usual unitinterval. Sin
e (Z × I)ω is homogeneous, it follows that X is a retra
t of a
ompa
t homogeneous metrizable spa
e.
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The set ⋃

{{1/n} × [0, 1/n] : n ∈ N} is dense in X and it 
onsists of
omponents of X, all of dimension 1. The set {(0, 0)} is a 
omponent ofdimension 0, showing that the inequalities in Theorem 3.3 
annot be repla
edby equality.The previous example does not seem to be very powerful. As announ
ed,we will now provide an example with similar properties, but whi
h is fur-thermore a 
ompa
t spa
e whi
h is even power homogeneous.Example 5.2. As in the previous example, Z is the 
onvergent sequen
eand X is given by
X = {0} ∪

⋃

n∈N

[1/(2n + 1), 1/2n].We endow Z with the usual topology and X is a subspa
e of R. The spa
e
X is 
learly homeomorphi
 to the spa
e des
ribed in the previous example.The example is X×I. We will prove that this spa
e is power homogeneous.By Q we denote the Hilbert 
ube I

ω. The following is our main observation:Proposition 5.3. The spa
es Z × Q and X × Q are homeomorphi
.Proof. We write X = {0} ∪
⋃

n∈N
In where In = [1/(2n + 1), 1/2n].For every n ∈ N we �x a homeomorphism hn : In → I. We de�ne a map

h : X × Q → Z × Q as follows. For (x, y) ∈ X × Q, h(x, y) = (x, y) if x = 0and h(x, y) = (1/n, w) if x ∈ In and w is given by
wm =







ym if m < n,
hn(x) if m = n,
ym−1 if m > n.Thus the set In×Q is mapped onto {1/n}×Q and the interval In is mappedonto the nth interval in Q. It is not hard to verify that h is a homeomorphism,and this 
ompletes the proof.Corollary 5.4. The spa
e (X × I)ω is homogeneous.Proof. By the previous proposition it follows that

(X × I)ω ≈ (X × Q)ω ≈ (Z × Q)ω ≈ Zω × Q.This last spa
e is the produ
t of the Cantor set and the Hilbert 
ube and istherefore homogeneous.
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