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Summary. We prove the central limit theorem for symmetric diffusion processes with
non-zero drift in a random environment. The case of zero drift has been investigated in
e.g. [18], [7]. In addition we show that the covariance matrix of the limiting Gaussian
random vector corresponding to the diffusion with drift converges, as the drift vanishes,
to the covariance of the homogenized diffusion with zero drift.

1. Introduction. We consider the symmetric diffusion process with a
drift in a random environment. Let x,,(t) = (z}(t),...,2%(t)), t > 0, be the
solution of the Itdé stochastic differential equation

. d
dzP) (1) = Z <% Oy apg (X (t);w) + Uq) dt

q=1

d
+Z Opq(Xw(t);w)dwy(t),

(2 (s) = =,

forp=1,...,d, where w(t) = (w1 (t),...,wq(t)) is a d-dimensional standard
Brownian motion over a probability space 7 := (X, A,Q), 0 = [oyj] :=
[a;;]/? and v = (v1,...,v4) # 0. Here [a;;(x;w)], x € RY, w € 02, is a
symmetric matrix valued stationary random field defined over a probability
space 7o := (£2,B(£2),P). We assume that (2 is a Polish metric space, B(2)

is the Borel o-field and P is a probability measure. Since the field is assumed
to be stationary we may and will assume that it is given by a;;(x;w) =
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188 E. Nieznaj

a;ij(Txw), where {Tx},cpra is a measure preserving group of transformations
on 7y that satisfies: Tk : 2 — 2, Top = I, TxTy = Txyy, Tx(A) € B(£2),
P[Ty(A)] = P[A] for all x,y € R? and A € B(£2). We assume that the
random matrix [a;; (w)]f j—1 satisfies the following assumptions:

(A1)  aij(w) = aji(w) fori,j =1,...,d,
(A2)  there exists 7 > 0 such that for P-a.s. w € 2 and & = (&1,...,&)
€ R4,

d
VEN® <D aij(w)ég;
ij=1

where [[¢[? =& + - + &,
(A3) there exists a deterministic constant C' > 0 such that
sup [a;;(w)| < C
wes?
P-a.s. for every i,5 =1,...,d,
(A4)  the mapping x — a;j(Txw) is continuous together with the deriva-
tives up to the second order, and the first derivative is locally Lip-
schitz for 7,5 = 1,...,d, for P-a.s. w.

For a fixed w the process given by (1.1) is a diffusion with the generator

d
LEF) = 5 7 O, (04y (o), F(09) + v T (),

ij=1

where f € C2(R?). The diffusion in a random environment is a process x(t),
t > 0, defined over the product probability space 7 ® 7y := (2 x X, B(2) ®
AP ® Q) given by x(t;w,0) := x,(t;0) for any (w,0) € 2 x X. It should
be stressed that although for a frozen w, the process x,,(¢; o) is Markovian,
the process x(t) need not have the Markov property when considered over
the product space.

We are interested in investigating the asymptotic behavior of trajectories
of x(t). It is fairly standard to show, via the ergodic theorem, that x(¢)/t — v
a.s., as t — 00. The next step is therefore to establish whether the central
limit theorem (CLT) holds, i.e. whether the laws of the random vector (x(t)—
vt)/+/t converge to a normal law as t — co.

For v = 0 the problem has already been investigated: see e.g. the paper
by Papanicolaou and Varadhan [18], or Kozlov—Zhikov—Olemik [10]. It has
been shown that the CLT holds in that case. In this paper we are interested
in the effect of the anisotropy of the medium, reflected by the assumption
that v # 0, on the asymptotic behavior of the particle. Our main result is

that the CLT persists in this case (see Theorem 2 below).
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We should stress that although we have diffusive behavior of the particle
in both cases of v .= 0 and v # 0 there are important differences in the
proofs caused by the presence of a non-zero drift. The principal object used
in the proof of CLT, the so-called corrector field E(x;w) (see the definition
(2.6) below), behaves differently in the two cases. In the isotropic case, i.e.
when v = 0, we have sublinear growth of the second moment of the corrector
field, i.e. for every K >0 and p=1,...,d,

E®)
lim sup LEZ e
a—00 ‘X‘SKG a
(see e.g. [18, p. 848]). On the other hand, when the drift in the direction of
v is present then the growth is much slower in the direction parallel to the
drift. Namely (see Theorem 1 below), we have
EW®)
(1.2) lim sup 1B )2 =0

470 xeC(v,a) a

where C(v,a) := {x € R?: |x-v| < a®K, |Py(x)| < aK} and Py (x) denotes
the complement of the orthogonal projection along the direction of v.

To prove (1.2) we use the Harnack inequality and methods of partial
differential equations. In Section 4 we show that (1.2) implies CLT (Theo-
rem 2). Additionally in Theorem 3 we prove that the covariance matrix of
the limiting normal random vector corresponding to the diffusion with v £ 0

converges, as v — 0, to the covariance of the homogenized diffusion with
v=0.

2. Preliminaries and the statement of the main theorems. Let
L?(£2) denote the Hilbert space of all square integrable random variables
over the probability space Ty. For F,G € L?(f2) we denote by (F,G) 2 the
standard scalar product, i.e.

(F,G)2 =\ FGdP.

The norm is then given by ||F| 2 := \/(F, F), F € L?*(£2). We define the
unitary group by UXF = F(Tyw), x € R%. Tts generators are given by
0
Dy F = —F(T;

V(@) = 5 F(Tiw)
for F € D(Dy), where the differentiation is understood in the L?({2) sense.
By Corollary 1.1.6 of [2] the infinitesimal generators are closed and densely
defined in L?(£2). Let Cj"(§2) denote the space of all F' € L?({2) which
have m deterministically bounded derivatives. Since {Tx}ycra is measure

x=0
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preserving, for F,G € D(Dy) and for any k =1,...,d we have
| DLFGaP = — | FD,G dP.
2 2
Substituting G = 1 we obtain
(2.1) | DyFaP =0
2

(see also [14, p. 16| for more details).
Using x,,(t) we introduce (for fixed w € 2) the environment process &

defined by

(2.2) & = T,y (w)

for ¢ > 0 with state space £2. For ¢ > 0 let P'F(w) = | F(Txw)p®(t, 0, x) dx
where p“(t,z,y) is a transition of probability density corresponding to diffu-
sion (1.1), F € B(£2). Since {p“(t,x,y) dx = {p“(t,x,y) dy it follows that
(P'FdP = (FdP for F € B({2) and (P") can be extended to a C( semi-
group on L%(£2). It turns out that & is a Markov process with (P') as its
transition of probability semigroup (see [6, p. 104]), and its generator equals

d
- % > Di(aij(w)DjF(w)) +v - VF(w)
2,7=1

where V = (Dy,...,D,) and F € C?(£2), which is a core of L.
Next we solve the resolvent equation in L?(£2):

(2.3) AEY — LEW — )

with A > 0, where
1 &
7P)(w) = 3 Z;Diaip(w)
1=

for p=1,...,d. Multiplying (2.3) by Ei P) and integrating over {2 we get

1
(24) AJ[EYPP(dw) - 5 Z | Dilais(w)D;EY ) EY B(de)
n i,j=10
1 d
- S V- VE(p) =3 Z S Dijaip(w (dw)
k0] i=1

Since

| DEPEY P(dw) = — | EPDEP P(dw), i=1,....d,
9] n
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this term equals zero. Thus we can rewrite (2.4) in the form of the so-called
energy inequality

l\DI»—\

d
(25) T MEP 2+ 2 37§ aij(w)DEY DEY P(dw)
2

4,j=1

l\')ll—‘

d
Z X aip(w (dw)
Q

i=1
From (2.5) we conclude that

sup HDE HL2<C fori=1,...,d,
0<A

where C is a constant 1ndependent of A and v. Hence there exists a sequence
An, — 0 as n — oo such that

e,(cp):nlLIgoDkEf\i) fork=1,....d

in the weak L? sense. Next we define the following random field, called the
corrector field:

Bx;w) = (BO(xw), ..., ED(x;w)),  (xiw) € R x 0,
where

d
(2.6) E®)(x;w) Z

k=1

ep (Tixw)zpdt, p=1,...,d,

O ey

and E®)(0;w) = 0.
PROPOSITION 1. The following conditions are satisfied:
(i) B®)(x;) € L?,
(ii) 8ij(p)(X;w) = e§p)(wa) forj=1,...,d,
(iii) for any continuously differentiable function ¢ : R? x £2 — R such

that ¢(-,w) is compactly supported for every w € 2 and ¢(x,-) € L?
for any x € R* we have

d
(2.7) %Z [ ] 055 (1), B9 (33 )0, 35, ) i P(d)

i,j=1Rd 2

+

M-~

S szE(p)(x W) Oy, (%, w) dx P(dw)
1 Rd 2

iy

1=

i

S aip(Txw) 0y, (%, w) dx P(dw).
9]

l\Dl*—‘
—_

Rd
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Proof. From (2.6) it follows that 9,, E®) (x;w) = (p)( Txw) so (i) and (ii)
hold. For (iii) see e.g. [18, proof of Theorem 2|. =

In the present paper we use the following version of the ergodic theorem
(see [11, Theorem 2.13, p. 210] and [9, Proposition 6, p. 103]).

PROPOSITION 2. Suppose f € LY(£2) and ¢ € Co(R?). Then

1 X2

1
(28)  lim RSdf(waM(F »

,...,%)dx:]E[f] | o) dx

R4

P-a.s. and in the L' norm.
Now we can formulate the main results.

THEOREM 1. The random field E(x;w) satisfies

() 9
(2.9) lim  sup M:O.

=0 xecC(v,a) a
We show in Section 4 the following corollary of Theorem 1.

THEOREM 2. Suppose that the random matriz-valued field [a;;] satisfies
the assumptions (A1)—(A4). Then the sequence of the laws corresponding to
the random vectors (x(t) — vt)/\/t converges weakly, as t — oo, to the law
of a normal random vector of mean 0 with covariance matriz D*.

REMARK 1. A more detailed description of D* will be given in Section 4
(see Remark 2).

Multiplying both sides of (2.3) by ¢ € C}(£2), integrating over (2 and
letting A — 0 we obtain

d d d
1 (») 1
(210) 5 Z [ aijel”’ DjgdP — 3" | viel” g P = -3 Z | aipDig dP.
1,j=1 2 =1 2 i=1 2
THEOREM 3. (i There is a unique solution el(»p), i=1,...,d, of (2.10)
such that Se D;¢pdP = Seg»p)Did)d]P’. We denote this solution by
el(.p) (v).

(ii) We have
lim (e (v), ..., e (v)) = (P(0),..., P (0))

v—0

in the L? sense.
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3. Proof of Theorem 1. From the definition of E(x;w) it follows that
it satisfies, in the weak p.d.e. sense, the following equation:

d d
(3.1) % Z axj(aij(wa)aij(p) (x)) + ZviaziE(p) (x)

ij=1 i=1
L&
=3 Z O, ip(Txw)
i=1

P-a.s. Let x(P)(,x) := E®)(x + vt). It has the following properties:
axP(t,x) = v - VL EP (x + vi), axjx(p)(t,x) = ijE(p) (x + vt),

hence

(32) oW (t,x)

d d
1 1
=-3 Z awi(aij(wa)aij@) (x+vt)) — 5 Zamiaip(wa)-
ij=1 i=1
Let y®)(t,x) := x,+x P (t,x). Notice that 8zqy(p) (t,x) = 5pq—|—8qu(p) (t,x),
hence () (t,x) is a weak solution of the following inverse time parabolic
p.d.e.:

d
1
Ay (t,x) + 3 i;; 8xi(aij(wa)8x].y(P) (t,x)) = 0.

It is now easy to see that (2.9) is equivalent to the condition

(3.3) lim sup —HX(p)(t’X)HLQ =0
TN <Ka?, |x|<Ka a
We define the scaled functions
XP (%) = a”'xP(a®t,ax),  yP(t,x) = o'y (0’ ax),

for a > 0. Hence the function yép) (t,x) satisfies the inverse time parabolic

p-d.e.

d
1
(3.4) Ay (t,x) = —3 Z O, (a;;(a®vit + ax)@mjyép)(t,x)).
ij=1
The condition (3.3) (and in consequence (2.9)) will be proven if we can show
that
(3.5) lim — sup  [IxP(,%)]|2 =0
T SK, x| <K
for any K > 0.

We prove (3.5) in several steps. We use the following elementary lemma
(see e.g. [19, pp. 114-116].
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LEMMA 1. Assume that on a probability space (£2,F,P) we have two
sequences of random variables, {X,} and {Z,}, n > 1. If the following
conditions hold:

(i) limp—00 Xy, =0, P-a.s.,
(i) 0< Xp < Zn, n > 1,

(iii) Z, — Z in the L'-norm,

then
n—oo

The first step is to show that

(3.6) sup |yl (t,x) — zp| — 0, P-as,
(t,X)EQT’R
where 2rp = [0 < t < T] x Bg(0). This fact is a consequence of the
Harnack inequality (see (3.9)) and
(3.7) lim S [P (t,x) — xplo(t,x)dtdx =0, P-as.,
a—00
N7 R

where ¢ € Cy(f27 r). The equality (3.7) will be proven at the end of the
section.

The second step is to show that
(3.8) E[ sup [yP(t,x) -z} =0

(t,x)ERT R

as a — oo. This will be a consequence of the first step and Lemma 1. With
the help of this fact we can easily estimate the expression

Elly®) (t,x) —ap|*) <E[ sup |y (s,2) — 2], V(t,%) € Qpp,

(s,2)€0T R

and take the limit as a — oc.

We will show that

lim “ Vi P) (¢, %) [? dt dx < 0o
27 R
(cf. (3.12) below). Recall that ny((lp)(t,x) = e, + VxxP)(a?t, ax).
We will also prove that
lim “ P (t,x)| dt dx < Cy

a—o0
27 R

and

sup [P (t,x)) < Oy || [P (t,x)|dtdx, Pas.

(t,x)EQT/’R/ Q1R

Now we begin the proof of (3.6). We use the Harnack inequality for
subsolutions of parabolic p.d.e. proved by Moser in [13]. Since p(x) =
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Vx2 41 is a twice differentiable convex function, the function u? (t7 X) =

y((lp) (t,x)2+1 is a subsolution of (3.4) (see [13, p. 117 for definition]). Using
the triangle inequality and Theorem 3, p. 113 of [13] applied for (3.4) and

the subsolution ugp ) we have

(3.9) sup  |yP(t,x) — xp| < C( SS [u®) (¢, x)]2 dt dx) 2

(t,X)EQT/’R/ Qr R

where ET',R’ C {27 r and C is an absolute constant that only depends
on 7", T, R', R but not on w. We use (3.9) in order to show that the term
on the left hand side of this inequality is bounded (see (3.10) below). A
consequence of the Harnack inequality is the following result (see also [13,

p. 109]): the family {yép)}wg is equicontinuous on {27 . The fact that the
family {y,(zp )}a>0 is also bounded allows us to use the Arzela—Ascoli theorem

on 27 r. The last two statements and the compactness of {y((lp )}a>0 imply

(3.6).
We show the following facts:
(3.10) lim SS (WP (t,x)]?dtdx < 00, P-as.
a OOQT7R
and
(3.11) lim E || [ul)(t,x)]”dt dx < o

27 R

Now we start the proof of (3.10). Using the Fubini’s theorem, the Poincaré

(p)

inequality (for fixed ¢) and the definition of u, ' we get the estimate (cf. [3,

p. 768])
(3.12) W P xpPdax= || ([ t,x)*+1)dtdx
{2272R {227 2R
2T 9
<c §§ V@t xPdatdx+c | a( | yPtx)ax) +C
{227 2R 0 Bar

where C' is an absolute constant. The right hand side of the above inequality
will be used as the upper estimate in part (ii) of Lemma 1. Denote by M (R)
the first and by N(R) the second term on the right hand side of (3.12). Since

(%kyé )(t,x) = (0,,y"))(a?t, ax) we have
W [0nyP %) dtdx = | [(0,y") (0, ax)]* dt dx.

QQT,QR QQT,ZR

Recall that e,(f) = 8xky(p) and use the ergodic theorem in the form of Propo-
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sition 2 for M (R) to obtain

Tim ] (8@ (021, ax))? dt dx = | Qo 25l E(el)?
{227 2R

P-a.s. and in the L!-norm. The second term N(R) can be written as

(3.13) S yP) (¢, x) dx = S yP) (0, x) dx +S (dis S yP)(s, %) dx> ds.

Bagr Bar 0 Bar

As in the previous expression, denote by I the first and by II the second
term on the right hand side of (3.13). Then

I=a"! S E®) (ax) dx.
Bar
Thanks to (3.4) we have
t
1l = Sds S dsyP) (s5,%) dx
0 Bogr
d t

= — Z S ds S O, [aij(a*s + ax)@xjyép)(s,x)] dx

d t
== Z ds S aij(as + ax)(‘)xjyc(tp)(s,x) i gs.
ij=1 Sor x|
We can estimate N(R) by
2T 9 2T 2T
{ dt( { ygm(t,x)dx) g2( | 2+ | U?dt).
0 Bsr 0 0
Let us rewrite I in the following form:
d d 1
I=at S <S @E(p)(axu) du> dx = Z S xj dxgeﬁp)(axu) du.
Bar Jj=1Bar 0

Now we can use the estimate
1
I’ < C’RQS du S [e(p)(axu)]zdx.
0 Baor
Set
E(au) :== S [e§p)]2(axu) dx.
Bar
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From the ergodic theorem it follows that

(3.14) | [€%12(bx) dx — E[e{”]?| Bzg|
Bar

P-a.s., as b — oo. Denote the right hand side of (3.14) by £(b;w) and the left
hand side by £(o0). From this equation it follows that there exists by such
that for b > by(w) we have

£(b) < E(c0) + 1

Next note that

1
P <CrR\E(au)du=CR* |  Elaw)du+CR* | &(au)du
0 1>au>bg(w) 0<au<bgo(w)
S 00) + 1) + CR? S S [egp)]2(aux) dx
0<au<bo(w) B2r
1
< CRYE(00)+1)+CR? | ) | e2(y) ay
0<ay<bg(w) y Boaur
< OR*(£(c0) +1) + CR? sup [e!”?|2Bg|.
Bavyr

From the ergodic theorem we conclude that the above estimate holds P-a.s.
Now we prove that we also have L!-convergence (cf. (3.11)), i.e.

1
(3.15) Tim E|{du | [e ;
0  Ba2r

p)(aux)] dx — Ele; p |BQR|’—0

From the mean ergodic theorem it follows that

(3.16) Tim E| | [e) (b)) dx 5(00)‘ —0.
Bar

Denote the left hand side of (3.15) by S(a) and the left hand side of (3.16)
by R(b). For any € > 0 there exists by such that for every b > by we have
R(b) < e. Hence

Sty < | R(ua) du~|—E‘ { du( | 1% (aux))? dx—€(oo))‘
bo<ua<l 0<au<bg Baor
< &+ 2| Bop[E(e)? b,

which vanishes as a — oo.
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Now we estimate the term I1:

2T
3.17) | I*at
’ d 2T 2T 9
<cy (d (g gyaij(a2s+ax)|\e§p>(a23+ax)|5(dx))
i,7=1 0 0 Sor
d 2T

<C Z S S |aij(a*s + ax)|? |e (CL28 + ax)[? S(dx) =: ﬁ(R)
i,j=1 0 Sor
All the above calculations have led us to the following estimate:
(3.18) W WP, %) dtdx < C'(A(R) + B(R))
2972R

where C’ is a constant, and A(R) and B(R) denote the two terms on the
right hand side of (3.12). Let Ry > 0 be fixed; then

2Ro

319 Ro || wPxPdtdx< | dr (| [uP(t,x))dtdx
{227 2R, Ro $2272R
2Ro -
<C' | (AR)+ I*(R) + II(R))dR
Ro
2Ry
< C'RyA(2Ro) + C'Cop,Ro+ C' | II(R)dR.
Ro
Set fij(a%s + ax) := a;j(a*s + ax)e;j(a® + ax) and note that fi; is also a

time-space stationary random field. The right hand side of (3.19) can be
written as
2T

d

C/RQA(QR()) + C/CQRORO + ' Z S ds S fij(CLQS + CLX) dx.

4,j=1 0 Byry\B2r,

A consequence of these estimates is the upper bound
W [t %)) dtdx < C'A(2Ro) + C'Cang,
297 2R

el d 2 (a? dx.
+R0.Z_:S s S fij(a®s + ax) dx

1,j=1 0 Bapry\B2r

By the ergodic theorem the third term on the right hand side of this in-
equality converges both in the L'-norm and P-a.s. So we have proved (3.10)
and (3.11).
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What remains to show is (3.7). We prove that for ¢(¢,x) € Co(£2r,Rr),

T T
lim S S yP) (¢, %) (t, x) dt dx = S S xpo(t,x) dt dx
a—00 e e

both P-a.s. and in the L'-norm. For ¢(x) € Co(RY) we have

(3200 | 4P (t,x)¢(x) dx
R4

d t
= S yP) (0, x)p(x) dx + Z S ds S aijeg-p)amjgédx.

R4 ij=10 R
Using the ergodic theorem [3, p. 765|, we have
lim S ¥ P10, x)p(x) dx = S rpo(x) dx
a—0o0
R4 R4
both P-a.s. and in the L'-norm. For fixed ¢ > 0 the second term on the right
hand side of (3.20) tends (P-a.s. and in L!) to

d t

Z aj, e ] LzS ds S o(x) dx,
ij=1 0 Rd

which equals zero, for any ¢ € Co(R?).

¥ € Cp(R); then
Jim §us(t)dt | [y (8, x)0(x) dx| = Tim §o(t) dt [52(0, x)6(x) dx

Now choose any compactly supported

a—00

+ lim Z S w(t)dtgaw(a s+ ax) ;p)(a s+ ax) dx
ij=1-R

for some R > 0. As in the previous case, the last limit is zero.

4. Proof of Theorem 2. It has been shown (see [15, Chapter 1]|) that
for the validity of the central limit theorem one needs to verify

(4.1) hm )\HE HLz =0

for any p=1,...,d. It follows then, according to [15], that
: (» _ )y o _ C_

(4.2) /\lg&_HDiE)\p —e|l2=0, i=1,...,d

Let us briefly outline why (4.1) implies CLT. We rewrite the process x,, ()
in the form (using (2.3))

t

d t
0) =yt = A B ds = | L0 (€ s+ D (&) (o),
0 0 q=10
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Now using the It6 formula we have

t
(4.3) 2@ () — vt = A EP (&)ds + BV (¢0) — B (&) + M)
0
where
d t
(4.4) MP) = 3" [(DEP () + 68)0vg (€) duwg(s)
q,r=10

and 67 denotes the Kronecker symbol. Dividing both sides of (4.3) by v/t
and taking A = 1//t we can use (4.1) to argue that the terms corresponding

to the first three terms on the right hand side of (4.3) vanish as ¢ — oco. The

(p)
1/Vtt
We use the martingale CLT in the version of Helland (see [4, Theorem 5.4])

adapted to our situation. It deals with the martingales admitting jumps so
the convergence claimed there is in the sense of the Stone topology on the
Skorokhod space D([0, 00); R?). The statement of the theorem, modified for
the case of martingales with continuous trajectories considered here, can be
read as follows.

weak convergence of (1/v/t)M follows from the CLT for martingales.

THEOREM 4. Let (M)(\l)(t),...,JM)(\d)(t))7 t > 0, be a family of square
integrable, continuous trajectory, R*-valued martingales indexed by a param-
eter A > 0. Denote by (Fa(t))i>0, A > 0, the filtration that corresponds to a
given martingale. Suppose further that the quadratic covariations of martin-
gales satisfy

(i) (Mﬁj),]\/f)(\j)ﬂt) — Sé ij(s)ds as A — 0+ in P probability for all
t > 0, where f; is a measurable, non-negative function such that
SE f3(s)ds < oo for all t > 0.
(i) (M, MY () — 0 for all t >0 and i # ;.
Then
MO @), ... MP (1) = (YO @),...,.Y D)
as X\ — 0+, where YU)(t) = S fi(s)dw;(s) and wy,...,wq are indepen-

dent standard Brownian motions. The convergence here is the convergence
of stochastic processes with continuous trajectories.

We apply the above theorem in the following way. Let us define M )(\p ) (t) :=

)\M(t)/)\2 p=1,...,d, and

NPt Zc M2, p=1,....d,



Central Limit Theorem for Diffusion Processes 201

where C := [cpq] = [D*]7'/? (from Remark 3 it is clear that C exists). Using
(4.2) and the mean ergodic theorem we conclude immediately that

(N NIV = 6,5t as A— 0.

Applying Theorem 4 we infer that the laws of the martingales (Nil)(t), .
..,N/gd) (t)), t > 0, converge weakly, as A — 0+, to the law of a standard
d-dimensional Brownian motion. Hence, the laws of (M)(\l)(t), . .,M)(\d) (1))

converge to the law of a Brownian motion with zero mean and covariance

matrix D*. In the particular case when ¢t = 1 and A = 1/4/t we obtain the
weak convergence of the laws of (1/\/_)(M1(}1/t, . Ml(izft) as t — 00 to

the law of a normal vector with mean zero and covariance D*.
From (2.5) it follows that (4.1) holds if we show the energy identity

d d
(4.5) S (ael?, ez = =3 (i, ) 2.
ij=1 i=1

Now we prove that (4.5) is a consequence of (2. 7) and (2.9). Without any
loss of generality we may assume that v = (1,0,...,0). Our goal is to use
an appropriate test function in equation (2.7).

Let h(x) be compactly supported C'* function such that {3, h(x) dx = 1.
We also assume that the support of h is contained in [0, l]d. In order to use
(2.9) we make a suitable scaling. Define

1
ho(x) = h<ﬂ @ﬂ> x € RY,

adtl "\ a?’ a a
for any a > 0. Henceforth we will use the vector-like notation @ := (a% a, ..., a)
where @ has d-coordinates, and x/a := (x1/a?,x2/a,...,z4/a). Now we de-

fine the function ¢, (x;w) := E® (x;w)he(x) to be used in (2.7). The first
term on the left hand side of (2.7) then equals

(4.6) 2ad+1 Z S Saw Txw)0y E( )(x;w)ﬁwiE(p)(x;w)h<%> dx P(dw)

1,J=1Rd 2

T S iy (T, B9 )9 )0, [h(%)]dxwm)

3,j=1Rd 2

Taking the limit as @ — oo in the first term of (4.6) and using (ii) and
the ergodic theorem, we get the term on the left hand side of (4.5). For
the second term of (4.6), note that 0., [he(x/a@)] = a=2(0r ha)(x/a) and
Oz, [ha(x/a)] = a= (9, ha)(x/a) for i = 2,...,d. Therefore this term can be
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estimated, with the help of the Cauchy—Schwarz inequality, by

()

which vanishes as a — oo. The term on the right hand side of (2.7) equals

d
d IE® (x, )12
carr (g loollef]12) Y- sup AT

dx,
i—1 X€C(v,a) a

Rd

d

_2a‘§+1 Z S S az’p(wa)axiE(P) (x;w)h<§> dxP(dw)
) 2

i1 o
2ad+1 Z | § aip(Tew) E® (x:0), [hGﬂ dx P(dw)

i=1 Rd 2

and by an analogous argument (as in (4.6)) applied to these terms we obtain
the expression on the right hand side of (4.5). What remains yet to be proved
is the fact that the second term on the left hand side of (2.7) vanishes as
a — oo. Recall that v = (1,0,...,0) so we can rewrite this term in the form

—dl—i-l | SE(p)(x;W)axlE(p)(x;w)h(ﬁ) dx P(dw)

C T pap a

—ad1+1 S S E(P)(x;w)E(P)(x;w)axl [h(%)] dxP(dw).
Rd 2

_l’_

Integration by parts in the first term of the above expression gives

—dl—i-l | SE(p)(x;W)axlE(p)(x,w)h@) dx P(dw)
a a
R4 2

— e, [E@(x;w)h(ﬁﬂE<p><x;w>dxw><dw>

R4 2 “
S §jor (g)E@(x;w) dx P(dw)
_ ad% de (g} E®) (x;0)0,, [h@ﬂ E®) (x;w) dx P(dw).

From the above equality we conclude that

e | 1 [P (5 [ 0

== | S[E@)(X;w)p(amh)(%) dx P(dw).
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In order to establish (4.5) we need to show that

5 § 1BV G201 (3 ) axcBi)
R4 £2

tends to zero as a — oo. Indeed, this expression can be estimated by

ad1+1 sup <||E(P)(;<,-)||L2>2S (Vxh)(%)

xeC(v,a) R
REMARK 2. By the definition of D* = [Dpp/]gp/zl we have

dx,

which vanishes as a — oo by virtue of (2.9). m

E(M(p) ’M(P,) )
Dy = lim UVLE UV

t—o0 t

By (4.4), the fact that dwq(s)dw,(s) = d4-ds and the ergodic theorem we
have

d
Dpp,zE[ S (P 4 5007 + 67 )ong)
ror!,q=1

Hence, since 02 = A, we have

(4.7) D* =E[(E+T)A(E + 1))

where E = [l (w)], A = [a;()], I = [0, 1.5 = 1,....,d.
REMARK 3. From (4.7) it is clear that D* > ~I.

5. Proof of Theorem 3. (i) Assume that there are two solutions of
(2.10); denote them by el(pl), e§p2). Define egpg) = 2( §p1) + 61(2)) Then by (4.5),

d d
1 (p) (p) (p)
) Z Qij gpp zl 2+ 5 Z Qg jp27 12 QZ_Z(C"LIH 13)L
j=1 2,J=1 i=1
= Z a;je 337 13
3,j=1

Hence e(pl) = e( P) P-as.
(ii) By (2.10), eg )(V) — el(p)(O) in the weak L? sense, since the left hand
side of (2.10) does not depend on el(p). By the energy identity (4.5) we have
d d

lim >~ (ayel (v), e (V)2 = 3 (el (0), e (0)) 2.
i,j=1 =1
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Since
d
el (v) = P 072 < D7 (aij (e (v) = ¢ (0), e (v) = ¢ (0))
=

by (A2), we conclude that limy_.q Heg.p) (v) — ( )|Zs = =1,...,d.
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