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Summary. We work in ZF set theory (i.e., Zermelo–Fraenkel set theory minus the Axiom
of Choice AC) and show the following:

1. The Axiom of Choice for well-ordered families of non-empty sets (ACWO) does not
imply “the Tychonoff product 2R, where 2 is the discrete space {0, 1}, is count-
ably compact” in ZF. This answers in the negative the following question from
Keremedis, Felouzis, and Tachtsis [Bull. Polish Acad. Sci. Math. 55 (2007)]: Does
the Countable Axiom of Choice for families of non-empty sets of reals imply 2R is
countably compact in ZF?

2. Assuming the Countable Axiom of Multiple Choice (CMC), the statements “every
infinite subset of 2R has an accumulation point”, “every countably infinite subset
of 2R has an accumulation point”, “2R is countably compact”, and UF(ω) = “there
is a free ultrafilter on ω” are pairwise equivalent.

3. The statements “for every infinite set X, every countably infinite subset of 2X has
an accumulation point”, “every countably infinite subset of 2R has an accumulation
point”, and UF(ω) are, in ZF, pairwise equivalent. Hence, in ZF, the statement “2R

is countably compact” implies UF(ω).
4. The statement “every infinite subset of 2R has an accumulation point” implies

“every countable family of 2-element subsets of the powerset P(R) of R has a
choice function”.

5. The Countable Axiom of Choice restricted to non-empty finite sets, (CACfin), is,
in ZF, strictly weaker than the statement “for every infinite set X, 2X is countably
compact”.
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1. Notation and terminology

Definition 1.1.

1. ACWO (Form 40 in [4]): Every well-ordered family of non-empty sets
has a choice function.

2. DC (principle of Dependent Choices and Form 43 in [4]): If R is a
relation on a non-empty set X such that ∀x ∈ X, ∃y ∈ X, xRy, then
there is a sequence (xn)n∈ω of elements of X such that xnRxn+1 for
all n ∈ ω. (As usual ω denotes the set of natural numbers and N
denotes the set of positive integers.)

3. CAC (Countable Axiom of Choice, Form 8 in [4]): Every countable
family of non-empty sets has a choice function. (ACWO ⇒ DC ⇒
CAC; see [5, Theorems 8.1 and 8.2, pp. 120–121]).

4. CMC (Countable Axiom of Multiple Choice, Form 126 in [4]): Every
countable family A of non-empty sets has a multiple choice function,
i.e., a function which assigns to every x ∈ A a non-empty finite subset
of x.

5. CACfin (Form 10 in [4]): CAC restricted to families of non-empty
finite sets.

6. AC(R) (Form [79 A] in [4]): Every family of non-empty sets of reals
has a choice function. Equivalently, R is well orderable.

7. CAC(R) (Form 94 in [4]): AC(R) restricted to countable families of
non-empty sets of reals.

8. CACfin(P(R)): Every countable family of non-empty finite subsets
of P(R) has a choice function.

9. CUCfin(P(R)): Every countable family of non-empty finite subsets
of P(R) has a countable union.

10. Let X be a non-empty set. A non-empty collection F ⊆ P(X) \ {∅}
is called a filter on X if it satisfies the following two conditions:

(i) if F1, F2 ∈ F , then F1 ∩ F2 ∈ F ,
(ii) if F ∈ F and F ⊆ G, then G ∈ F .

A filter F on X is called free if
⋂
F = ∅. A maximal, with respect

to inclusion, filter on X is called an ultrafilter on X.
11. Let (X,T ) be a topological space and let F be a filter on X. We say

that the filter F converges to a point x ∈ X if every open neighbor-
hood of x belongs to F .

12. UF(ω) (Form 70 in [4]): There is a free ultrafilter on ω.

Definition 1.2.

1. Let X be a non-empty set. A non-empty collection H ⊆ P(X) \ {∅}
has the finite intersection property, FIP for abbreviation, if for every
Q ∈ [H]<ω (the set of all finite subsets of H),

⋂
Q 6= ∅.
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2. Let (X,T ) be a topological space.

(a) X is called compact if every open cover of X has a finite sub-
cover. Equivalently, X is compact if and only if every family of
non-empty closed subsets of X with the FIP has a non-empty
intersection.

(b) X is called countably compact if every countable open cover of
X has a finite subcover. Equivalently, X is countably compact if
and only if every countable family of non-empty closed subsets of
X with the FIP has a non-empty intersection.

(c) X is called sequentially accumulation point compact if every se-
quence in X has an accumulation point.

(d) X is called ultrafilter-compact if every ultrafilter on X converges.

3. Let X be an infinite set.

(a) 2X will denote the Tychonoff product of the discrete space 2 =
{0, 1}. The family {[p] : p ∈ Fn(X, 2)}, where Fn(X, 2) is the set
of all finite partial functions from X into 2 and [p] = {f ∈ 2X :
p ⊂ f}, will denote the standard clopen (= simultaneously closed
and open) base for the Tychonoff product 2X .

(b) TPC(2X): The Tychonoff product 2X is countably compact.

2. Introduction and some preliminary results. The research on
the set-theoretic strength of the statement TPC(2R) (i.e., 2R is countably
compact) was initiated in [7] where it was proved that TPC(2R) is not a the-
orem of ZF set theory (i.e., Zermelo–Fraenkel set theory minus the Axiom
of Choice); see Theorems 6 and 7 in [7]. Furthermore, in [7], characteriza-
tions of the former statement were supplied in terms of the extendability
of countable closed filters in 2R as well as in terms of projections of closed
subsets of 2R on countably many copies of 2; see Theorems 8 and 14 in [7].

Clearly, TPC(2R) is a theorem of ZF + AC(R) since AC(R) is equivalent
to the statement “R is a well orderable set”, and in ZF, the Tychonoff
product 2ℵ, ℵ a well ordered cardinal number, is compact; see [6]. In [7]
the following question was posed: Is TPC(2R) provable in the theory ZF +
CAC(R)?

In this paper we answer this question in the negative. We achieve our
goal by first establishing that, in ZF, UF(ω), “for every infinite set X, every
countably infinite subset of 2X has an accumulation point”, and “every
countably infinite subset of 2R has an accumulation point” are equivalent
(see Theorem 3.5). Since for every infinite set X, TPC(2X) implies that
every countably infinite subset of 2X has an accumulation point, we obtain
as a corollary (Corollary 3.1) to Theorem 3.5 that, in ZF, “for every infinite
set X, TPC(2X)” implies UF(ω) and in particular TPC(2R) implies UF(ω).
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Subsequently, in Theorem 3.6, we prove that the conjunction of CAC(R)
and “every countably infinite subset of 2R has an accumulation point” im-
plies that there is a non-Lebesgue measurable set of reals. Now, Solovay [14]
has constructed a model (model M5(ℵ) in [4]) of ZF + DC + “every set
of reals is Lebesgue measurable”, hence TPC(2R) fails in Solovay’s model
and DC (hence CAC) does not imply TPC(2R) in ZF set theory (Theorem
3.7). Theorem 3.5 enables us to establish (see Theorem 3.8) that TPC(2R)
also fails in Feferman’s forcing model (see [1] or model M2 in [4]) in which
ACWO holds true (see [15]). Therefore, ACWO does not imply TPC(2R) in
ZF. (However, in every Fraenkel–Mostowski permutation model, CAC im-
plies that for every infinite set X, the Tychonoff product 2X is countably
compact; see Theorem 2.1(2)).

From Theorem 3.7 we also see that the statement “every countably in-
finite subset of 2R has an accumulation point”, hence “every infinite subset
of 2R has an accumulation point”, is not provable in ZF, and in Theorem
3.9 we show that, in ZF, the latter statement implies that every countable
family of two-elements subsets of P(R) has a choice function.

Regarding the set-theoretic strength of the statement (stronger than
TPC(2R)) “for every infinite set X, 2X is countably compact”, we establish
(Theorem 2.1(1)) that, in ZF, it is provable from CAC + UF(ω) and that it
implies the weak choice principle CACfin (Theorem 3.11). In view of Theo-
rem 3.7 or Theorem 3.8, this implication is not reversible in ZF (see Remark
3.3).

In contrast to the result “CAC + UF(ω) ⇒ (∀X, TPC(2X))” (Theorem
2.1(1)), if we weaken CAC to CMC, then the resulting statement fails to be
true in ZF0 (i.e., ZF minus the Axiom of Regularity), that is, there exists
a model of ZF0 in which CMC + UF(ω) is valid, hence by Proposition
2.4, “for every infinite set X, every countably infinite subset of 2X has an
accumulation point” is true in that model, whereas there exists an infinite
set X such that 2X fails to be countably compact in that model (see the
paragraph before Lemma 3.1). In contrast to the previous result, we show
(Theorem 3.10) that if we restrict ourselves to X = R, then under CMC,
the statements “every countably infinite subset of 2R has an accumulation
point”, “every infinite subset of 2R has an accumulation point”, TPC(2R),
and UF(ω) are pairwise equivalent.

Before setting out the main results of the paper, let us first provide some
preliminary results we shall need.

Proposition 2.1 ([6]). (ZF) For every well-ordered cardinal number ℵ,
the Tychonoff product 2ℵ is compact.

Proposition 2.2 ([3]). Assume CAC. Then a topological space (X,T )
is countably compact iff it is sequentially accumulation point compact.
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Proposition 2.3 ([2, Proposition 2.2(3)]). (ZF) Every Tychonoff prod-
uct of ultrafilter-compact T2 spaces is ultrafilter-compact. In particular, for
every infinite set X, the Tychonoff product 2X is ultrafilter-compact.

Proposition 2.4. In ZF, UF(ω) implies that for every infinite set X,
every countably infinite subset of 2X has an accumulation point. Hence,
UF(ω) implies that for every infinite set X, the Tychonoff product 2X has
no countably infinite closed relatively discrete subsets.

Proof. Fix an infinite set X and let A = {an : n ∈ ω} be a count-
ably infinite subset of 2X . By UF(ω), let F be a free ultrafilter on A.
Put

G = {Y ⊆ 2X : Y ∩A ∈ F}.
It can be readily verified that G is an ultrafilter on 2X . Since 2X is ultrafilter-
compact (see Proposition 2.3), G converges to a point g ∈ 2X . Since F is
free, it follows that for every open neighborhood Og of g, Og∩A is an infinite
set. Hence, g is an accumulation point of A, finishing the proof.

Proposition 2.5. Assume CAC. Then the following statements are
pairwise equivalent:

(1) For every infinite set X, TPC(2X).
(2) For every infinite set X, every infinite subset of 2X has an accumu-

lation point.
(3) For every infinite set X, every countably infinite subset of 2X has

an accumulation point.

Proof. (1)⇒(2). Fix an infinite set X and an infinite set A ⊆ 2X . By
CAC, A has a countably infinite subset, say B. By Proposition 2.2, B has
an accumulation point, say g ∈ 2X . Clearly, g is also an accumulation point
of A, finishing the proof of the implication.

(2)⇒(3). This is straightforward.
(3)⇒(1). This follows from Proposition 2.2.

Theorem 2.1.

(1) CAC + UF(ω) implies “for every infinite set X, TPC(2X)”.
(2) In every Fraenkel–Mostowski permutation model, CAC implies “for

every infinite set X, TPC(2X)”.

Proof. (1) The statement follows from Propositions 2.2 and 2.4.
(2) This follows from (1) and the fact that UF(ω) holds in every permu-

tation model; see [4].

Proposition 2.6 ([7, Proposition 3]). (ZF) If |X| = |Y | (i.e., there
is a bijection f : X → Y ), then the Tychonoff products 2X and 2Y are
topologically homeomorphic.
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3. Main results

3.1. The Tychonoff product 2R. In this part we prove that the choice
principle ACWO does not imply that 2R is countably compact in ZF. First,
we show why the weak choice principle CAC(R) suffices in order to show
that the family of Lebesgue measurable sets is a σ-algebra. We begin by
observing that CAC(R) implies the σ-subadditivity of the outer measure
m∗ (for definitions see [12]).

Theorem 3.1. Assume CAC(R). Let {An : n ∈ N} be a family of sets
of reals. Then m∗(

⋃
n∈NAn) ≤

∑∞
n=1m

∗(An).

Proof. We follow the proof in [12] indicating the use of CAC(R). First
note that if m∗(An) =∞ for some n ∈ N, then the inequality holds trivially.
So assume that m∗(An) < ∞ for all n ∈ N. Let ε be an arbitrary positive
number. Let C denote the collection of all open intervals. For every I ∈ C,
l(I) denotes the length of the interval I. By the definition of the outer
measure (see [12]) it follows that for each n ∈ N, the set

Fn =
{
f ∈ CN : An ⊆

⋃
{f(m) : m ∈ N} and

∑
m

l(f(m)) < m∗(An) +
ε

2n

}
is non-empty. It is well-known that |C| = 2ℵ0 and |RN| = 2ℵ0 , hence we may
view each Fn as a non-empty set of reals. By CAC(R), let {(n, fn) : n ∈ N}
be a choice function of the family {Fn : n ∈ N}. Then {fn(i) : n, i ∈ N} is a
countable collection of open intervals whose union covers

⋃
An. Thus,

m∗
(⋃

An

)
≤
∑
n,i

l(fn(i)) =
∑

n

∑
i

l(fn(i)) <
∑

n

(
m∗(An) +

ε

2n

)
=
∑

n

m∗(An) + ε.

Since ε was arbitrary, we have the result.

Using the σ-subadditivity of the outer measure (and assuming CAC(R))
one shows that the collection M of all (Carathéodory) measurable sets is a
σ-algebra (see [12, Corollary 8, Lemma 9, Theorem 10]). Then one defines
the Lebesgue measure m on M by requiring ∀A ∈ M, m(A) = m∗(A). We
would like to point out that in the absence of CAC(R) one may not be able
to define the Lebesgue measure. To see this, recall the Feferman–Levy model
(modelM9 in [4]) in which R is expressed as a countable union of countable
sets. Since CAC(R) implies the countable union of countable sets of reals is
countable, we see that CAC(R) fails in this model. If the Lebesgue measure
m could be defined in it, then +∞ = m(R) = 0 (the latter equality would
follow from the fact that the outer measure m∗ of a singleton is zero, hence
by the σ-subadditivity of m∗, m∗(A) = 0 for every countable set A ⊆ R;
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therefore in this model, even m∗ is not σ-subadditive and consequently m
cannot be σ-additive). The above discussion serves to justify what follows
and concerns the σ-algebra of measurable sets and the σ-additivity of the
Lebesgue measure.

Definition 3.1. Let b be a positive integer greater than 1. A sequence
of the form

d1

b
,
d2

b2
, . . . ,

dn

bn
, . . .

in which each di is an integer with 0 ≤ di ≤ b − 1 is called a development
with base b. When b = 2 we have a binary development and di is 0 or 1 for
all i.

If, in a development with base b, only a finite number of the di are
different from 0, then the development is called terminating ; otherwise it is
called non-terminating.

If there exists an integer i0 such that di = b − 1 for all i > i0, then we
say the development is improper ; otherwise it is called proper.

For the proof of the next couple of theorems we refer the reader to [11].

Theorem 3.2. (ZF) Consider an arbitrary binary development (di/2i)i∈N
and define sn =

∑n
i=1 di/2i, n = 1, 2, . . . . Then:

(1) limn→∞ sn = a where a ∈ [0, 1].
(2) a = 1 if and only if di = 1 for every i = 1, 2, . . . .
(3) If the development is improper, then there are positive integers n and

p such that a = p/2n with p ≤ 2n.

Theorem 3.3. (ZF) Let a ∈ [0, 1). Then there is a unique proper binary
development (di/2i)i∈N such that limn→∞ sn = a, where sn =

∑n
i=1 di/2i,

di ∈ {0, 1} for all i ∈ N.

Definition 3.2. A subset X of 2N is called a tail set if whenever x ∈ X
and y ∈ 2N differs from x in a finite number of coordinates only, then
y ∈ X.

The mapping g : 2N → [0, 1] defined by g((xi)i∈N) =
∑∞

i=1 xi/2i is
onto (not one-to-one) and defines a measure µ(E) = m(g(E)) on the class
{E ⊆ 2N : g(E) is Lebesgue measurable}, where m is the Lebesgue measure.
µ can be taken as the definition of the product measure in 2N; see [10].

According to the zero-one law of Kolmogoroff for the product measure,
the following result holds; for its proof the reader is referred to [10, Theorem
21.3, p. 84].

Theorem 3.4. If E is a measurable tail set in 2N, then either µ(E) = 0
or µ(E) = 1.
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Theorem 3.5. In ZF, the following statements are pairwise equivalent:

(i) UF(ω).
(ii) For every infinite set X, every countably infinite subset of 2X has

an accumulation point.
(iii) Every countably infinite subset of 2R has an accumulation point.

Proof. (i)⇒(ii). This has been established in Proposition 2.4.
(ii)⇒(iii). This is straightforward.
(iii)⇒(i). First note that since |P(N)| = |R| in ZF, in view of Proposition

2.6 we may assume that every countably infinite subset of the Tychonoff
product 2P(N) has an accumulation point.

Now, for every n ∈ N, let fn be the function from P(N) into 2 defined
as follows:

fn(A) = 1 ⇔ n ∈ A,

for every A ∈ P(N). In other words, fn codes the principal ultrafilter on N
corresponding to {n}. Put F = {fn : n ∈ N}. By our assumption on 2P(N),
the countably infinite set F has an accumulation point, say g ∈ 2P(N). We
assert that g codes a free ultrafilter on N. In particular, let U = g−1({1}).
We show that U is a free ultrafilter on N.

1. We show that N ∈ U . If not, then g(N) = 0. Consider the open neigh-
borhood Og = [{(N, 0)}] of g and let n ∈ N be such that fn ∈ Og. Then
fn(N) = 0, hence by the definition of fn we have n /∈ N, a contradic-
tion. Thus, N ∈ U as asserted. Similarly, one can show that ∅ /∈ U .

2. Let A,B ∈ U . Then g(A) = g(B) = 1. We show that A ∩ B ∈ U .
Assume the contrary; then g(A ∩ B) = 0 and we consider the open
neighborhood Og = [{(A, 1), (B, 1), (A ∩ B, 0)}] of g. Since g is an
accumulation point of the set F , let n ∈ N be such that fn ∈ Og.
From this fact and the definition of fn we deduce that n ∈ A∩B and
n /∈ A ∩B. This is a contradiction, hence A ∩B ∈ U as required.

3. Let A ∈ U (hence g(A) = 1) and let B ∈ P(N) be such that A ⊆ B.
We show that B ∈ U . Assume the contrary; then g(B) = 0. Consider
the open neighborhood Og = [{(A, 1), (B, 0)}] of g and let n ∈ N be
such that fn ∈ Og. By the definition of fn it follows that n ∈ A − B,
which contradicts the fact that A ⊆ B. Hence, B ∈ U as required.
From the above we conclude that U is a filter on N.

4. For every A ∈ P(N), either A ∈ U or Ac ∈ U . Assume the contrary
and let A ∈ P(N) be such that g(A) = g(Ac) = 0. Consider the
open neighborhood Og = [{(A, 0), (Ac, 0)}] of g and let n ∈ N be such
that fn ∈ Og. Then n /∈ A ∪ Ac = N, a contradiction. Thus, U is an
ultrafilter on N.
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5.
⋂
U = ∅. If not, then since U is an ultrafilter on N, we may conclude

that U is the principal ultrafilter on N corresponding to {n} for some
n ∈ N. Since {n} ∈ U we have g({n}) = 1. Consider the open neigh-
borhood Og = [{({n}, 1)}] of g. Since g is an accumulation point of
the set F = {fn : n ∈ N} and 2P(N) is a Hausdorff space, it follows
that Og meets F in an infinite set. However, Og ∩F = {fn}. This is a
contradiction, hence U is a free ultrafilter on N.

This completes the proof of the implication and of the theorem.

Corollary 3.1. In ZF, the statement “TPC(2X) for every infinite
set X” implies UF(ω). In particular, TPC(2R) implies UF(ω).

Theorem 3.6. Assume CAC(R) + “every countably infinite subset of
2R has an accumulation point”. Then there exists a subset of [0, 1] which is
not Lebesgue measurable.

Proof. It is well-known (see [5, Problem 10, p. 7]) that UF(ω) (which,
by Theorem 3.5, is equivalent to “every countably infinite subset of 2R has
an accumulation point”) implies the existence of a subset A of 2N such that:

1. ∀x ∈ 2N, x ∈ A if and only if x∗ = 1− x /∈ A, where 1 is the constant
function f(n) = 1 for all n ∈ N,

2. A is a tail set in 2N.

In particular, A = {χU : U ∈ U}, where χU is the characteristic function of
U and U is a free ultrafilter on N. Let µ be the product measure in 2N. Now,
if A were a µ-measurable set, then Ac = {a∗ : a ∈ A} = {1−a : a ∈ A} (due
to statement 1) would also be µ-measurable, and we should have µ(A) =
µ(Ac) = 1/2. Indeed, let B = g[A] = {y ∈ [0, 1] : y =

∑∞
n=1 xn/2n for

some (xn)n∈N ∈ A}, where g is the function defined in the paragraph before
Theorem 3.4. Then Bc = g[Ac] = {y ∈ [0, 1] : y =

∑∞
n=1 (1− xn)/2n for

some (xn)n∈N ∈ A} = {1−b : b ∈ B} = 1−B. [To see this, let y ∈ [0, 1]−B.
If y = 1, then y =

∑∞
n=1 1/2n and the sequence (xn)n∈N, where xn = 1

for all n ∈ N, does not belong to A. Since A satisfies property 1 above, we
find that the sequence (yn)n∈N, where yn = 0 for all n ∈ N, belongs to A.
Hence,

∑∞
n=1 yn/2n ∈ B and y = 1 −

∑∞
n=1 yn/2n ∈ 1 − B. If y ∈ [0, 1),

let (dn/2n)n∈N be the unique proper binary development of y (see Theorem
3.3). Then y =

∑∞
n=1 dn/2n and (dn)n∈N /∈ A (recall that y /∈ B). Thus,

by item 1, (1 − dn)n∈N ∈ A, and y = 1 −
∑∞

n=1 (1− dn)/2n ∈ 1 − B.
Hence, Bc ⊆ 1 − B. Now, let y ∈ 1 − B. Then y = 1 −

∑∞
n=1 xn/2n for

some (xn)n∈N ∈ A. By way of contradiction assume that y ∈ B, hence y =∑∞
n=1 yn/2n for some (yn)n∈N ∈ A. Then 1 −

∑∞
n=1 xn/2n =

∑∞
n=1 yn/2n,

hence 1 =
∑∞

n=1 (xn + yn)/2n. By Theorem 3.2(2) we have xn + yn = 1
for all n ∈ N, hence xn = 1 − yn for all n ∈ N and since (xn)n∈N ∈ A, it
follows that (1− yn)n∈N ∈ A. As (yn)n∈N ∈ A it follows, by property 1, that
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(1 − yn)n∈N /∈ A, a contradiction. Thus, y ∈ Bc and 1 − B ⊆ Bc. Thus,
Bc = 1−B as required.]

So, if B is Lebesgue measurable, then so is Bc and since for any set
X ⊂ R, m∗(X) = m∗(−X), where m∗ is the outer measure and −X =
{−x : x ∈ X} (m∗(X) = m∗(−X) follows easily from the definition of the
outer measure m∗), and the Lebesgue measure is translation invariant, we
see that m(B) = m(−B) = m(−B + 1) = m(Bc) where −B + 1 = {−b+ 1 :
b ∈ B} = 1 − B. Since [0, 1] = B ∪ Bc, m([0, 1]) = 1, and the Lebesgue
measure m is σ-additive (CAC(R) is needed here; see Theorem 3.1 and
[12]), we must have m(B) = m(Bc) = 1/2. Therefore, µ(A) = µ(Ac) = 1/2.

Since Ac is also a tail set and µ(A) = µ(Ac) > 0, by Kolmogoroff’s
zero-one law (see Theorem 3.4) we should have µ(A) = µ(Ac) = 1, which is
impossible. Consequently, the set B = g[A] ⊂ [0, 1] is not Lebesgue measur-
able, finishing the proof of the theorem.

Although the result of Theorem 3.8 below is stronger than the result of
the next Theorem 3.7, we incorporate both of them since we wish to indicate
that TPC(2R) fails in two important forcing models, namely in Feferman’s
model [1] and in Solovay’s model [14].

Theorem 3.7. If ZF is consistent, then so is ZF + CAC + “the Ty-
chonoff product 2R contains a countably infinite, closed and relatively dis-
crete subset”. Consequently, if ZF is consistent, then so is ZF+CAC + “the
Tychonoff product 2R is not countably compact”.

Proof. In Solovay’s forcing model (model M5(ℵ) in [4]) the principle of
dependent choices DC is true (and ACWO is false), hence the weaker axioms
CAC and CAC(R) also hold in this model. On the other hand, Solovay’s
model satisfies “every set of reals is Lebesgue measurable”, hence by The-
orem 3.6 it follows that in M5(ℵ) there exists a countably infinite subset
of 2R with no accumulation points (see the proof of Theorem 3.6). Con-
sequently, the statement “the Tychonoff product 2R contains a countably
infinite, closed and relatively discrete subset” is true in M5(ℵ). Since, in
ZF, “2R is countably compact” implies “every countably infinite subset of
2R has an accumulation point”, we deduce that 2R fails to be countably
compact in Solovay’s model. This completes the proof.

Theorem 3.8. If ZF is consistent, then so is ZF + ACWO+ “the Ty-
chonoff product 2R is not countably compact”.

Proof. Truss [15] shows that in Feferman’s forcing model (model M2
in [4]; see also [1]) the choice principle ACWO holds true and that the family
of pairs A = {{[X], [N −X]} : X ⊆ N}, where for every X ⊆ N, [X] is the
equivalence class of X under the equivalence relation X ∼ Y if and only if
|X4Y | < ℵ0 where 4 is the symmetric difference operation, does not have
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a choice function in this model. It is easy to see that UF(ω) implies that
A has a choice function, thus UF(ω) does not hold in Feferman’s model.
By Corollary 3.1 we also infer that 2R fails to be countably compact in this
model. This completes the proof.

From Theorems 3.5, 3.7 (or 3.8) we see that the statement “every count-
ably infinite subset of 2R has an accumulation point” is not provable in ZF.
Hence, the stronger statement “every infinite subset of 2R has an accumula-
tion point” is not a theorem of ZF either. In the following theorem we relate
the latter proposition to a weak choice form.

Theorem 3.9. In ZF, if every infinite subset of 2R has an accumulation
point, then every countable family of two-element subsets of P(R) has a
choice function. The latter choice principle is not provable in ZF.

Proof. Let A = {Ai : i ∈ N} be a family of two-element subsets of P(R).
Without loss of generality we may assume that the collection

⋃
A is pairwise

disjoint. [To see this, first consider the family B = {Bi : i ∈ N}, where for
i ∈ N, Bi = {X × {i} : X ∈ Ai}. Since in ZF it is true that |R × N| = |R|,
we may view B as a (pairwise disjoint) family of subsets of P(R). Second,
for every i ∈ N, if Bi = {Xi, Yi}, then we may assume that Xi − Yi 6= ∅ and
Yi − Xi 6= ∅. Otherwise, we may choose from Bi the element

⋂
Bi. Define

C = {Ci : i ∈ N}, where Ci = {X − Y : X,Y ∈ Bi, X 6= Y }. Then
⋃
C is

pairwise disjoint and we may work in the proof below with C instead of A].
For each i ∈ N, let

Bi = {f ∈ 2R : (∀j ≤ i, ∃P ∈ Aj , (f [P ] = {1} ∧ f [(
⋃
Aj) \ P ] = {0}))

∧ (∀j > i, f [
⋃
Aj ] = {0})}.

Notice that Bi is a finite set for all i ∈ N. Put B =
⋃
{Bi : i ∈ N}. By

our hypothesis, the infinite set B has an accumulation point, say g. Then for
each i ∈ N, g separates the two elements of Ai, that is, there exists P ∈ Ai

such that g[P ] = {1} and g[(
⋃
Ai) \ P ] = {0}. Indeed, assume the contrary

and let i ∈ N be such that g does not separate the elements of Ai = {Fi, Gi}.
We consider the following two cases:

(1) ∃x ∈ Fi, ∃y ∈ Gi such that g(x) = g(y) = a for some a ∈ 2. Consider
the basic open neighborhood O = [{(x, a), (y, a)}] of g. If a = 1 or
i = 1, then O ∩ B = ∅, which is a contradiction since g being an
accumulation point of B in the Hausdorff space 2R has the property
that each one of its neighborhoods meets B in an infinite set. Hence,
we may assume that a = 0 and i > 1. But then O∩B =

⋃
{Bj : j < i},

which is a finite set, a contradiction again.
(2) ∃x, y ∈ Fi such that g(x) = 1 and g(y) = 0. Then Q = [{(x, 1), (y, 0)}]

is a neighborhood of g which avoids B, a contradiction.
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Thus, g separates the elements of Ai for all i ∈ N as required. Clearly,
g−1({1}) is a choice set of A, finishing the proof of the first assertion of the
theorem.

For the second assertion, it is known (see [4]) that in Cohen’s second
model (model M7 in [4]) there is a countable family of 2-element subsets
of P(R) which has no infinite subfamily with a choice function. Hence, the
statement “every countable family of two-element subsets of P(R) has a
choice function” fails in this model. This completes the proof of the theo-
rem.

In view of Proposition 2.5 we find that CAC + “for every infinite set X,
every countably infinite subset of 2X has an accumulation point” implies
“for every infinite set X, TPC(2X)”. However, if we weaken CAC to CMC,
then the implication ceases to be true in the setting of ZF0. Indeed, in the
second Fraenkel permutation model (model N2 in [4]), CMC + UF(ω) holds
(see [4]), hence by Proposition 2.4, the statement “for every infinite set X,
every countably infinite subset of 2X has an accumulation point” also holds
in N2. However, “for every infinite set X, TPC(2X)” implies CACfin (see
Theorem 3.11 below) and the latter fails in N2; see [4].

On the other hand, if we consider the particular case where X = R,
then under CMC, the statements “every countably infinite subset of 2R has
an accumulation point”, “every infinite subset of 2R has an accumulation
point”, and TPC(2R) are pairwise equivalent. We establish this in Theorem
3.10. First we need the following lemma.

Lemma 3.1.

(i) In ZF, CMC ⇒ CAC(R) ⇒ CACfin(P(R)). Hence, in ZF, CMC
implies that every countable family of non-empty subsets of P(R)
has a choice function.

(ii) In ZF, CMC implies that every infinite subset of 2R has a countably
infinite subset. The latter statement is not provable in ZF.

(iii) In ZF, CACfin(P(R)) if and only if CUCfin(P(R)).

Proof. (i) Using the standard linear order of R, it is straightforward to
verify that CMC implies CAC(R).

We prove now that CAC(R) implies CACfin(P(R)). Let A = {Ai : i ∈ ω}
be a family of non-empty finite subsets of P(R). Similarly to the proof
of Theorem 3.9 we may assume without loss of generality that the family
{
⋃
Ai : i ∈ ω} is pairwise disjoint. Furthermore, we may assume that

(1) (∀i ∈ ω) (∀A,B ∈ Ai) (A 6= B ⇒ A−B 6= ∅ ∧B −A 6= ∅).
[Otherwise, for each i ∈ ω, let Bi = {X ∈ Ai : X is ⊂-maximal}. Then, the
family B = {Bi : i ∈ ω} is such that for all i ∈ ω and for all A,B ∈ Bi, if
A 6= B, then A−B 6= ∅ and B −A 6= ∅.]
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Claim. For each i ∈ ω, there exists a finite subset Wi of R such that
for all A,B ∈ Ai with A 6= B, it is the case that A ∩Wi 6= B ∩Wi.

Proof of Claim. Fix an i ∈ ω. For each (A,B) ∈ Ai × Ai such that
A 6= B, choose an element x(A,B) ∈ A \B. Put

Wi = {x(A,B) : (A,B) ∈ Ai ×Ai, A 6= B}.

In view of (1) we have Wi 6= ∅ and it is evident that A ∩Wi 6= B ∩Wi for
all A,B ∈ Ai with A 6= B.

For each i ∈ ω, put

Bi = {W ∈ [R]<ω : (∀A,B ∈ Ai) (A 6= B ⇒ A ∩W 6= B ∩W )},

where [R]<ω is the set of all finite subsets of R. By the claim we know that
Bi 6= ∅ for all i ∈ ω. Since in ZF, |[R]<ω| = |R|, we may view each Bi as
a subset of R. Hence, by CAC(R), let f be a choice function of the family
B = {Bi : i ∈ ω}. Then F =

⋃
{f(Bi) : i ∈ ω} is countable, being a

countable union of finite subsets of R. Put

U = {A ∩ f(Bi) : A ∈ Ai, i ∈ ω}.

Then U is countable being a subset of [F ]<ω which is countable since F
is countable (recall that in ZF, |[ω]<ω| = ℵ0). Consider now the function
h :

⋃
A → U defined as follows: Let A ∈

⋃
A. By our assumption that

{
⋃
Ai : i ∈ ω} is pairwise disjoint, there exists a unique i ∈ ω such that

A ∈ Ai. Put h(A) = A∩f(Bi). Since for each i ∈ ω, f(Bi) satisfies the claim
and {

⋃
Ai : i ∈ ω} is pairwise disjoint, it follows that h is one-to-one. Thus,⋃

A is countable and A has a choice function as required. This completes
the proof of the implication.

The last assertion of (i) is, in view of the above, straightforward. The
proof of (i) is complete.

(ii) Assume CMC and let A be an infinite subset of 2R. Now, in ZF,
|(2R)ω| = |2R×ω| = |2R|, and since for every n ∈ ω,

|(2R)n| = |(2R)n × {0} × {0} × · · · | ≤ |(2R)ω|,

where 0 is the constant function f(x) = 0 for all x ∈ R, we may effectively
define (i.e., without choice) an injection from (2R)n into 2R for every n ∈ ω.
Thus, for all n ∈ ω, we may view the elements of (2R)n as elements of 2R.
For each n ∈ ω, put In = {f ∈ An : f is an injection}. As A is infinite, it
follows that In 6= ∅ for all n ∈ ω. By CMC and (i) it follows that the disjoint
family {In : n ∈ ω} has a choice set, say {fn : n ∈ ω}. By induction and
using the fn’s we may construct a countably infinite subset of A.

For the second assertion of (ii) we recall that in the second Cohen model
(model M7 in [4]) there is a countable family of 2-element subsets of P(R)
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which has no infinite subfamily with a choice function. Therefore, the state-
ment “every infinite set A ⊂ 2R has a countably infinite subset” fails in this
model. This completes the proof of (ii).

(iii) It suffices to show that CACfin(P(R)) ⇒ CUCfin(P(R)) as the re-
verse implication is evident. Fix a family A = {Ai : i ∈ ω} of non-empty
finite subsets of P(R). For every i ∈ ω, define

Bi = {f ∈ (P(R))ω : (f [|Ai|] = Ai) ∧ (f [ω \ |Ai|] = {∅})}.

Clearly, Bi is a non-empty finite subset of (P(R))ω. Furthermore, since in
ZF, |(P(R))ω| = |(2R)ω| = |2R| = |P(R)|, we may view Bi, i ∈ ω, as a
non-empty finite subset of P(R). Therefore, applying CACfin(P(R)) to the
family B = {Bi : i ∈ ω} we obtain a choice function f of B. On the basis
of the functions f(i)||Ai| we may easily construct an enumeration of

⋃
A.

Therefore,
⋃
A is countable as required. This completes the proof of (iii)

and of the theorem.

Remark 3.1. In [4] it is stated as unknown whether CMC implies the
weak choice principle “every family A = {Ai : i ∈ ω} such that 0 6= |Ai| ≤
2(2ℵ0 ) for all i ∈ ω, has a choice function”. In view of Lemma 3.1(i), we
partially fill this gap.

Theorem 3.10. Assume CMC. Then the following statements are pair-
wise equivalent:

(i) TPC(2R).
(ii) Every countably infinite subset of 2R has an accumulation point.
(iii) Every infinite subset of 2R has an accumulation point.
(iv) UF(ω).

Proof. (i)⇒(ii). This follows from the fact that in ZF, every countably
compact is sequentially accumulation point compact; see Proposition 2.2.

(ii)⇒(iii). Fix an infinite set A ⊂ 2R. By Lemma 3.1(ii), A has a count-
ably infinite subset, say B. Clearly, any accumulation point of B is also an
accumulation point of A.

(iii)⇒(i). Let G = {Gn : n ∈ ω} be a nested family of non-empty closed
subsets of 2R. By way of contradiction, assume that

⋂
G = ∅. By CMC

and Lemma 3.1(i), the disjoint family {Gn \ Gn+1 : n ∈ ω} has a choice
set, say G = {gn : n ∈ ω}. Clearly, G is a countably infinite, closed and
relatively discrete subset of 2R. This contradicts our hypothesis that every
infinite subset of 2R has an accumulation point. Therefore,

⋂
G 6= ∅ and 2R

is countably compact as required. This completes the proof of the implica-
tion.

(ii)⇔(iv) is established in Theorem 3.5.
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Remark 3.2. In view of Theorems 2.1(1) and 3.5 we infer that under
CAC, the statements “for every infinite set X, TPC(2X)” and UF(ω) are
equivalent.

3.2. Arbitrary Tychonoff powers of 2. In this part of the paper we
study the deductive strength of the statement “for every infinite set X, 2X

is countably compact” in terms of weak choice principles.

Theorem 3.11. Each of the following statements implies the one be-
neath it:

(i) For every infinite set X, 2X is countably compact.
(ii) CACfin.

(iii) For every infinite set X, every countable basic open cover of 2X has
a finite subcover.

(iv) For every n ∈ N, CAC≤n (= Every countable family of ≤ n-sized
non-empty sets has a choice function).

Proof. (i)⇒(ii). Let A = {Ai : i ∈ ω} be a disjoint family of non-empty
finite sets. By our hypothesis, the Tychonoff product 2X , where X =

⋃
A,

is countably compact. For each i ∈ ω, let

Bi = {f ∈ 2X : (∀j ≤ i) |f−1({1}) ∩Aj | = 1}.
For every i ∈ ω, Bi is a non-empty closed subset of 2X . Indeed, let i ∈ ω
and f ∈ 2X \ Bi. Then for some j ≤ i, |f−1({1}) ∩ Aj | 6= 1. There are two
cases:

(a) Aj ⊆ f−1({0}). Then Of = [{(x, 0) : x ∈ Aj}] is a neighborhood of
f which does not meet Bi.

(b) |f−1({1}) ∩ Aj | ≥ 2. Let x, y ∈ Aj be such that f(x) = f(y) = 1.
Consider the neighborhood Of = [{(x, 1), (y, 1)}] of f . Clearly,
Of ∩Bi = ∅.

Therefore, Bi is closed in 2X and clearly it is non-empty. Furthermore,
B = {Bi : i ∈ ω} is a descending family, thus, by the countable compactness
of 2X , there exists an element g ∈

⋂
B. Then Ci = g−1({1}) ∩ Ai is a

singleton for every i ∈ ω and C =
⋃
{Ci : i ∈ ω} is a choice set of A. This

completes the proof of the implication.
(ii)⇒(iii). Let X be an infinite set and let U = {[pi] : i ∈ ω} be a

basic open cover of 2X . By CACfin, the set D =
⋃
{Dom(pi) : i ∈ ω} is

countable, hence 2D is compact; see Proposition 2.1. Let V = {Vi : i ∈ ω}
with Vi = {f ∈ 2D : pi ⊆ f}. Then V is an open cover of 2D, hence it has a
finite subcover, say {Vi1 , . . . , Vin}. Consequently, W = {[pi1 ], . . . , [pin ]} is a
finite subcover of U , finishing the proof of the implication.

(iii)⇒(iv). We prove only that (iii) ⇒ CAC2 (i.e., CAC restricted to
families of 2-element sets) and by an easy induction this can be generalized.
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Let A = {Ai : i ∈ ω} be a disjoint family of pairs. Assume that A has no
choice function. Let

U = {[pi,a] : i ∈ ω, a ∈ 2},
where pi,a is the partial function on Ai which is constant with value a.
Since A has no choice function, U is a cover of 2

S
A. However, U does not

have any finite subcover, contradicting the statement of (iii) regarding the
infinite set X =

⋃
A. The proof of the implication, as well as of the theorem,

is complete.

Remark 3.3. In view of Theorem 3.7 none of the statements given by
(ii), (iii), and (iv) in Theorem 3.11 implies “for every infinite set X, 2X is
countably compact” in ZF set theory (each of (ii), (iii), and (iv) holds in
Solovay’s model (M5(ℵ) in [4]) whereas 2R fails to be countably compact
in this model). This is in striking contrast with the fact that, in ZF, the
following statements are pairwise equivalent (see [8]):

1. For every infinite set X, 2X is compact (if and only if BPI, i.e., every
Boolean algebra has a prime ideal and Form 14 in [4]; see [9]).

2. For every infinite set X, 2X is Lindelöf (i.e., every open cover of 2X

has a countable subcover).
3. For every infinite set X, every cover of 2X consisting of basic open

sets has a countable subcover.
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