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Summary. We explore the interior geometry of the CAT(0) spaces {Xα : 0 < α ≤ π/2},
constructed by Croke and Kleiner [Topology 39 (2000)]. In particular, we describe a diffrac-
tion effect experienced by the family of geodesic rays that emanate from a basepoint and
pass through a certain singular point called a triple point, and we describe the shadow
this family casts on the boundary. This diffraction effect is codified in the Transformation
Rules stated in Section 3 of this paper. The Transformation Rules have various applica-
tions. The earliest of these, described in Section 4, establishes a topological invariant of
the boundaries of all the Xα’s for which α lies in the interval [π/2(n+ 1), π/2n), where n
is a positive integer. Since the invariant changes when n changes, it provides a partition of
the topological types of the boundaries of Croke–Kleiner spaces into a countable infinity
of distinct classes. This countably infinite partition extends the original result of Croke
and Kleiner which partitioned the topological types of the Croke–Kleiner boundaries into
two distinct classes. After this countably infinite partition was proved, a finer partition
of the topological types of the Croke–Kleiner boundaries into uncountably many distinct
classes was established by the second author [J. Group Theory 8 (2005)], together with
other applications of the Transformation Rules.

1. Introduction. The CAT(0) spaces Xα (0 < α ≤ π/2) constructed
in [4] and known as Croke–Kleiner spaces are remarkable for the fact that
each space admits a geometric action (i.e. cocompact, propertly discontin-
uous, and by isometries) by the same group G, and yet the boundaries of
these spaces are not necessarily homeomorphic. In [4] it was proved that at
least two of the Croke–Kleiner spaces have topologically distinct boundaries.
Corollary 4.6 of this paper implies that there is at least a countable infin-
ity of distinct topological types among the boundaries of the Croke–Kleiner
spaces Xα. After the proofs in this paper were completed, it was shown
in [7] that there are uncountably many distinct topological types among the
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boundaries of the Croke–Kleiner spaces. Until recently(1), the Croke–Kleiner
spaces provided the only known example of this phenomenon, and it marks
a significant deviation from the strict boundary rigidity enjoyed by hyper-
bolic groups. A hyperbolic group has a unique boundary, in the sense that
if a finitely generated group G acts geometrically on two hyperbolic spaces
X and X ′, then there is an induced quasi-isometry from X to X ′ that ex-
tends to a G-equivariant homeomorphism between their boundaries. (For a
full treatment of the uniqueness of hyperbolic group boundaries, see [6].)
Clearly, the connection between the large-scale algebraic structure of the
group and the large-scale geometric structure of a space on which it acts is
considerably looser in the CAT(0) theory.

Despite the apparent simplicity of the Croke–Kleiner spaces, their bound-
aries are complex objects whose properties are not completely understood at
this juncture. One source of this complexity is the way that a geodesic ray can
diffract upon passage through a triple point (a point which is the intersection
of three planes). Most points cast 0-dimensional shadows on the boundary
in the sense that the collection of geodesic rays issuing from a common base-
point and passing through the point comprises a 0-dimensional subset of the
boundary. However, a geodesic passing through a triple point can thereafter
proceed in a one-dimensional set of directions. This phenomenon is quanti-
fied by the Transformation Rules (Proposition 3.1), and exploited in Section
4 to demonstrate that Croke–Kleiner boundaries exhibit at least a countable
infinity of distinct topological types.

2. Preliminaries. Before reviewing the Croke–Kleiner construction, we
recall some preliminary definitions; see [2] for a full treatment. A CAT(0)
space (X, d) is a complete metric space in which any two points can be joined
by a geodesic arc, and whose metric d satisfies the following condition. Given
any geodesic triangle 4abc in X and a comparison triangle 4a′b′c′ in the
Euclidean plane, then d(p, q) ≤ dE2(p′, q′) for every pair of points p, q in
4abc and their counterparts p′, q′ in 4a′b′c′. An important consequence of
this property is that the metric d is convex, which roughly means that once
a pair of geodesics in X begins to diverge, they must diverge at a rate that
is at least linear. In particular, every pair of points is joined by a unique
geodesic. The boundary of a CAT(0) space X is defined as follows. Choose
a basepoint p ∈ X and let R(p) denote the set of unit-speed geodesic rays
issuing from p. For simplicity, assume that every ray in R(p) has domain
[0,∞). To every ray in R(p), associate an endpoint σ(∞). For r > 0 and
ε > 0, two rays σ, τ ∈ R(p) are (r, ε)-close if d(σ(r), τ(r)) < ε. This defines a
topology, called the cone topology, on the set {σ(∞) : σ ∈ R(p)}. This space

(1) C. Mooney, PhD Thesis, UWM, 2008.
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is the boundary ∂X of X, and up to homeomorphism it is independent of
the choice of basepoint p. See [2, II.8.8].

For any two geodesic segments or rays σ and τ with a common point x in a
CAT(0) space X, we denote by ∠x(σ, τ) the Aleksandrov angle at x between
σ and τ . Note that a set of the form {τ(∞) : τ ∈ R(p) and ∠p(σ, τ) < δ},
where σ ∈ R(p) and δ > 0, is open in ∂X. (See [2], particularly II.1.6 and
II.1.7.)

The space Xα constructed by Croke–Kleiner is the universal cover of a
torus complex Xα, constructed as follows. Let T0, T1, T2 be three flat tori.
Let a1, a2 be a pair of geodesic loops in T0 that generate π1(T0) and that
meet in a single point in T0 at an angle α, 0 < α ≤ π/2. Note that any angle
α ∈ (0, π/2] and any choice of lengths for the geodesic loops a1 and a2 can be
realized by taking the orbit space of the action on E2 by the group generated
by two translations whose axes cross at an angle of α and which move points
through distances equal to the prescribed lengths of the two geodesics. Next
choose closed geodesics bi ⊂ Ti, i = 1, 2, such that length(bi) = length(ai),
and let Xα be the union of T0, T1, and T2, with ai identified with bi. For
i = 1, 2, let Yi = T0 ∪ Ti ⊂ Xα. The space Xα is the universal cover of Xα.
By a plane of Xα, we mean a component of the preimage of T0, T1, or T2.

The following facts about Xα were established in [4]:

1. Blocks: A component of the preimage of Yi in Xα is called a block.
Each block is a copy of the universal cover of Yi, and hence is isometric
to the metric product of a simplicial valence-4 tree with R.

2. Walls: Each block is a tree of planes of two types. A plane of the
type that covers T0 is referred to as a wall of the block. Each wall is
common to exactly two blocks (one covering Y1 and the other covering
Y2), which are called adjacent blocks. Any two blocks of Xα are either
disjoint or adjacent with a wall as their only intersection. Blocks and
walls are convex subsets of Xα.
The nerve of Xα is the (non-locally finite) graph that has one vertex
for every block of Xα and which has the property that vertices are
adjacent exactly when the corresponding blocks are adjacent. The
nerve of Xα is in fact a tree. We can equip the nerve with a metric
topology by defining each edge to have length one.

3. Block boundaries: Given a block B, its boundary ∂B embeds in
∂Xα and is homeomorphic to the suspension of a Cantor set. The two
suspension points, called poles of the block, are the common endpoints
of the lifts in B of either a1 or a2. A longitude of the block is an arc
in ∂B joining the two poles, i.e. the suspension of a point in the
Cantor set. If two blocks are adjacent with common wall W , then
their boundaries meet exactly in ∂W . If they are at distance two in
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the nerve, then their boundaries meet exactly in the two poles of the
block between them. If they are at distance three or more in the nerve,
then their boundaries are disjoint.
Let σ : J → Xα be an injective map whose domain J is a closed,
connected subset of R. We say that σ enters a plane V if there are
values a < b in J such that σ([a, b]) ⊂ V , and that σ enters a block B
if it enters a nonwall plane of B.

4. Block itineraries: Choose a basepoint p0 that lies in a nonwall plane
V0 of a block B0, away from all walls of B0. Then for every σ ∈ R(p0)
we can unambiguously define the block itinerary {B0, B2, B3, . . .} of σ,
where Bi is the ith block that σ enters. Since blocks are convex, a block
itinerary can contain no repetitions.

5. Topological invariance: Note that the metric on Xα depends on α.
Thus for α, β ∈ (0, π/2], Xα and Xβ are homeomorphic but not iso-
metric as CAT(0) spaces, and hence their boundaries are not necessar-
ily homeomorphic. However, any homeomorphism from ∂Xα to ∂Xβ

must take block boundaries to block boundaries, poles to poles, and
longitudes to longitudes.

At a point p ∈ Xα, the link of p is the metric space Link(p) of unit
tangent vectors or germs of geodesic rays that emanate from p. If σ is such
a ray, let g(σ) ∈ Link(p) denote its germ. More generally, if σ is a geodesic
such that σ(a) = p and σ([a, b]) ⊂ V for some plane V , let σ̂ be the unique
geodesic ray in V emanating from p and containing σ([a, b]), and define g(σ)
to be g(σ̂). If two elements a and b of Link(p) point into the same plane
of Xα, then the distance between them, A(a, b), is simply the angle between
them. If a and b point into different planes of Xα, then the distance A(a, b)
between them is defined to be the minimum value of all sums of the form
A(c0, c1) + A(c1, c2) + . . . + A(ck−1, ck) where a = c0, c1, . . . , ck = b are
elements of Link(p) such that ci−1 and ci point into the same plane of Xα

for 1 ≤ i ≤ k.
Points of Xα exhibit three types of links. If p belongs to only one plane

of Xα, then its link is a circle of radius one. If p lies on the intersection of
exactly two planes, its link is the union of two circles of radius one inter-
secting each other in a pair of points that are diametrically opposed on each
circle. If p is the intersection of three planes, then Link(p) is a union of three
circles C, D, and C ′ of radius one that intersect in the following way. C and
D intersect in a pair of diametrically opposed points a and b. Similarly, D
and C ′ intersect in a pair of diametrically opposed points x and y. In D,
the distance between a and x is α. In each case, the diametrically opposed
intersection points are germs of rays issuing from p and asymptotic with a
pair of poles of a block. See Figure 1.
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Fig. 1. Three types of links

We shall use the following fundamental principle regarding links in a
CAT(0) space. Let a < b < c be real numbers, and suppose σ : [a, c] → Xα

is a map with σ(b) = p such that σ|[a,b] and σ|[b,c] are geodesics. Then σ is
a geodesic exactly when the angle between the two geodesics at p is greater
than or equal to π. More precisely, define a geodesic σ∗ : [a, b] → X by
σ∗(t) = σ(a + b − t). (σ∗ is σ|[a,b] run backwards.) Then σ is a geodesic if
and only if A(g(σ∗), g(σ|[b,c])) ≥ π. (See [5, Lemma 1.39, p. 386].)

We want to label the poles of each block “north” and “south” in a coherent
way so that the Aleksandrov angle between north poles of adjacent blocks is
α and the angle between the north pole of one block and the south pole of
an adjacent block is π−α, where the angle is computed in the wall common
to the two blocks. This can be done by arbitrarily labeling the poles of our
base block B0 “north” and “south”, and then inductively labeling poles of
blocks at successively larger distances from B0 in the nerve. Note that to
compute the Aleksandrov angle between two points Q and Q′ lying in a
plane boundary ∂V , one can take geodesic rays emanating from an arbitrary
basepoint pV ∈ V and asymptotic with Q and Q′ in the cone topology
associated to R(p0).

Let σ : J → Xα be an injective map whose domain J is a closed, con-
nected subset of R, and whose image α(J) intersects each plane of Xα in
either the empty set, a single point, a line segment, a ray, or a line. Suppose
that α enters a plane V of a block B. Then we assign an angle of inclination
θ(σ, V,B) to σ in V relative to B. This angle is a real number that is de-
termined modulo 2π. Suppose 0 ≤ a < b are values such that σ([a, b]) ⊂ V .
Let τ be the ray emanating from σ(a) that terminates at the north pole
of B. Then the angle between σ|[a,b] and τ equals |θ(σ, V,B)| mod 2π. In
every plane V , there are two continuous choices for the function θ(σ, V,B);
one is the negative of the other. If V is a nonwall of B, then we are free
to make either choice for θ(σ, V,B). However, if V is a wall of B, with
V = B ∩ B′, then we impose the following restriction on the choice of
θ(σ, V,B) that determines it uniquely. If the ray τ ′ terminates at the north
pole of B′, then θ(τ ′, V, B) ≡ αmod 2π. (The incorrect choice would result in
θ(τ, V,B) ≡ −α mod 2π.) By continuity, the angles of inclination of all other
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rays traveling in V are now determined. Note that if a wall W is common to
blocks B and B′ and σ travels in W , then θ(σ,W,B) = α− θ(σ,W,B′).

3. Transformation rules. In general, when a geodesic ray passes from
one plane to another in Xα, the intersection of these planes is a line and
the angle of inclination that the ray makes with this line in the successive
planes is preserved. However, a ray may travel from a nonwall V of a block
B directly into a nonwall V ′ of an adjacent block B′ without traveling for
positive time in the intervening wall W = B ∩B′. To do this, it must travel
through a triple point, a singular point which is the only intersection of V
and V ′. A triple point is a lift of the intersection of the geodesic loops a1 and
a2 in the torus T0 . In this case, the ray may continue in a one-dimensional
array of different directions in V ′. Rule 3 of the following proposition details
the transformation of this angle of inclination when the ray passes through
a triple point.

Proposition 3.1 (Transformation Rules). Let σ : J → Xα be a unit
speed injective map whose domain J is a closed, connected subset of R, and
whose image σ(J) intersects each plane of Xα in either the empty set, a
single point, a line segment, a ray, or a line. Then σ is a geodesic if and
only if it satisfies the following three rules.

1. If σ enters planes V and V ′ successively, both of which lie in the same
block B, then θ(σ, V,B) ≡ ±θ(σ, V ′, B) mod 2π.

2. If σ enters a wall W that is the intersection of adjacent blocks B
and B′, then θ(σ,W,B) ≡ α− θ(σ,W,B′) mod 2π.

3. Suppose σ enters planes V and V ′ successively, where V and V ′ are
nonwall planes of adjacent blocks B and B′ respectively, and σ passes
from V to V ′ via a triple point p. Let β and β′ be representatives of
θ(σ, V,B) and θ(σ, V ′, B′) respectively that are chosen to lie in the
interval [−π, π].

• If |β| ≤ α, then |β′| ∈ [α− |β|, α+ |β|].
• If α ≤ |β| ≤ π − α, then |β′| ∈ [|β| − α, |β|+ α].
• If π−α ≤ |β| ≤ π, then |β′| ∈ [(π−α)−(π−|β|), (π−α)+(π−|β|)].

Transformation Rule 1 tells us that if a geodesic ray travels from a plane
V to another plane V ′ in the same block, then the geodesic ray may proceed
in either of two directions in V ′. As an illustration of Transformation Rule 3,
consider a geodesic segment σ : [0, t]→ Xα from the basepoint p0 to a triple
point p that is the intersection of the nonwall planes V and V ′ of adjacent
blocks B and B′ respectively. Suppose β = θ(σ, V,B) satisfies |β| ≤ α. Then
for every real number β′ satisfying |β′| ∈ [α−|β|, α+|β|], there is an extension
of σ to a geodesic ray that enters V ′ with angle of inclination β′.
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Proof of Proposition 3.1. Rule 2 holds for any oriented straight line seg-
ment in a wall by virtue of the manner in which we labeled poles and angles
of inclination. Consequently, Rule 2 holds for σ regardless of whether it is a
geodesic.

We will prove that Rules 1 and 3 provide a necessary and sufficient con-
dition for σ to be a geodesic. Since local geodesics are geodesics in CAT(0)
spaces (see [2, Prop. 1.4, p. 160]), it suffices to prove that σ is a local geodesic
at the points where it moves between planes if and only if it satisfies Rules 1
and 3 at these points. Recall that σ is a local geodesic at a point p where it
moves between two planes if and only if the distance in Link(p) between the
germs at p of the reversed incoming segment of σ and the outgoing segment
of σ is at least π (see [5, Lemma 1.39, p. 386]).

Rule 1 pertains to the case in which there are real numbers a < b < c
and planes V and V ′ lying in the same block B such that σ([a, b]) ⊂ V ,
σ([b, c]) ⊂ V ′, and σ(b) = p. In this case, Link(p) is of the second type or
third type depending on whether or not p is a triple point.

First suppose p is not a triple point and Link(p) is of the second type,
namely a union of two unit circles C and C ′ which meet at diametrically
opposed points n and s that are the germs of geodesic rays emanating from
p toward the north and south poles of B respectively. Let σ1 = σ|[a,b], let σ∗1
denote σ1 run backwards, and let σ2 = σ|[b,c]. Let β and β′ be representatives
of θ(σ, V,B) and θ(σ, V ′, B) that are chosen to lie in the interval [−π, π].
Recall that |β| is the Aleksandrov angle between σ1 and a ray approaching
the north pole of B. Thus |β| = π − A(g(σ∗1), n) = A(s, g(σ∗1)). Also, |β′| =
A(n, g(σ2)) = π−A(g(σ2), s). (See Figure 2.) Recall that σ is a local geodesic
at p if and only if the distance A(g(σ∗1), g(σ2)) in Link(p) is at least π.

/

:

σ∗
1

σ2

n

s|β|

|β′|

Fig. 2. Link(p) in the case of Rule 1
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We will now compute A(g(σ∗1), g(σ2)). There are two candidates for the
shortest path in Link(p) between g(σ∗1) and g(σ2). The first is via n, with
length L1 = A(g(σ∗1), n) + A(n, g(σ2)) = (π − |β|) + |β′|. The second is
via s, with length L2 = A(g(σ∗1), s) + A(s, g(σ2)) = |β| + (π − |β′|). Thus
A(g(σ∗1), g(σ2)) = min{L1, L2}. We conclude that σ is a local geodesic at
p if and only if L1 ≥ π and L2 ≥ π, i.e. if and only if |β′| − |β| ≥ 0 and
|β| − |β′| ≥ 0, i.e. if and only if β = ±β′.

Now suppose we are still in the case of Rule 1 but p is a triple point.
Then Link(p) is of the third type, namely the union of three unit circles
C, D, and C ′ where C and D consist of germs of geodesic rays emanating
from p into the planes V and V ′, and C ′ consists of germs of geodesic rays
emanating from p into a nonwall plane of a block B′ adjacent to B. Further-
more, C and D meet at diametrically opposed points n and s that are the
germs of geodesic rays emanating from p toward the north and south poles
of B, and D and C ′ meet at diametrically opposed points n′ and s′ that are
the germs of geodesic rays emanating from p towards the north and south
poles of B′. With σ1, σ∗1, σ2, β, and β′ as above, we have g(σ∗1) and g(σ2) in
C ∪D. Observe that any two points of C ∪D are joined by a shortest path
in C ∪D ∪ C ′ that is entirely contained in C ∪D. Consequently, the calcu-
lation of A(g(σ∗1), g(σ2)) performed in the previous paragraph also applies
here and gives the same conclusion: σ is a local geodesic at p if and only if
β = ±β′.

Finally we consider the case of Rule 3, in which there are real numbers
a < b < c and nonwall planes V and V ′ belonging to adjacent blocks B
and B′ respectively, such that σ([a, b]) ⊂ V , σ([b, c]) ⊂ V ′, and σ(b) = p
is a triple point. Then B and B′ meet in a wall W such that V ∩ V ′ =
V ∩W ∩ V ′ = {p}. In this case, Link(p) is of the third type, namely the
union of three unit circles C, D, and C ′ consisting of germs of geodesic rays
emanating from p into the planes V , W , and V ′ respectively. Furthermore,
C and D meet at diametrically opposed points n and s that are the germs
of geodesic rays emanating from p toward the north and south poles of B,
and D and C ′ meet at diametrically opposed points n′ and s′ that are the
germs of rays emanating from p toward the north and south poles of B′. Let
σ1, σ∗1, and σ2 be as above. Then g(σ∗1) ∈ C and g(σ2) ∈ C ′. Let β and
β′ be representatives of θ(σ, V,B) and θ(σ, V ′, B′) that lie in the interval
[−π, π]. Then |β| = π−A(g(σ∗1), n) = A(s, g(σ∗1)), and |β′| = A(n′, g(σ2)) =
π − A(g(σ2), s′). (See Figure 3.) As before, σ is a local geodesic at p if and
only if A(g(σ∗1), g(σ2)) ≥ π.

If a and b are points lying on the same circular arc J of diameter less
than π in Link(p), let ab denote the subarc of J joining a to b. A shortest
path in Link(p) from g(σ∗1) to g(σ2) must contain one of the four arcs nn′,
ss′, ns′, or sn′. Hence there are four candidates for such a path:
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σ∗
1

:

n

s
|β|

σ2

|β′|

n′

s′

D

C

C′

Fig. 3. Link(p) in the case of Rule 3

1. g(σ∗1)n ∪ nn′ ∪ n′g(σ2), with length L1 = A(g(σ∗1), n) + A(n, n′) +
A(n′, g(σ2)) = (π − |β|) + α+ |β′|;

2. g(σ∗1)s ∪ ss′ ∪ s′g(σ2), with length L2 = A(g(σ∗1), s) + A(s, s′) +
A(s′, g(σ2)) = |β|+ α+ (π − |β′|);

3. g(σ∗1)n ∪ ns′ ∪ s′g(σ2), with length L3 = A(g(σ∗1), n) + A(n, s′) +
A(s′, g(σ2)) = (π − |β|) + (π − α) + (π − |β′|);

4. g(σ∗1)s ∪ sn′ ∪ n′g(σ2), with length L4 = A(g(σ∗1), s) + A(s, n′) +
A(n′, g(σ2)) = |β|+ (π − α) + |β′|.

We know that σ is a geodesic exactly when A(g(σ∗1), g(σ2)) = min{L1, L2,
L3, L4} ≥ π, i.e. when Li ≥ π for all i. The three subcases listed in Rule 3
(|β| ≤ α, α ≤ |β| ≤ π − α, and π − α ≤ |β| ≤ π) exhaust all possibilities.
We now argue that the condition stated under each of these subcases is
equivalent to the restriction that Li ≥ π for all i.

• Assume |β| ≤ α. Then α − |β| ≥ 0, and hence L1 ≥ π. Furthermore,
since |β| ≤ α ≤ π/2, it follows that |β| ≤ π − α, and thus L3 ≥ L2.
Thus Li ≥ π for all i if and only if L2 ≥ π and L4 ≥ π. These
last two inequalities are equivalent to saying that |β′| ≤ α + |β| and
|β′| ≥ α− |β|, i.e. |β′| ∈ [α− |β|, α+ |β|], as required.
• Assume α ≤ |β| ≤ π−α. Then α−|β| ≤ |β|−α, which implies L4 ≥ L1,

and α+|β| ≤ π ≤ 2π−(α+|β|), so that L3 ≥ L2. Thus Li ≥ π for all i if
and only if L1 ≥ π and L2 ≥ π. These last inequalities are equivalent
to |β′| ≥ |β| − α and |β′| ≤ |β| + α, i.e. |β′| ∈ [|β| − α, |β| + α], as
required.
• Finally, assume π − α ≤ |β| ≤ π. Then α + |β| ≥ π, and so L2 ≥ π.

Also, π − |β| ≤ α ≤ π − α ≤ |β|, implying that L4 ≥ L1. Thus Li ≥ π
for all i if and only if L1 ≥ π and L3 ≥ π. These two inequalities are
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equivalent to |β′| ≥ |β|−α = (π−α)−(π−|β|) and |β′| ≤ 2π−|β|−α =
(π − α) + (π − |β|), i.e. β′ ∈ [(π − α)− (π − |β|), (π − α) + (π − |β|)],
as required.

Note that the angle transformation described in Rule 2 is simply a special
case of Rule 3: For suppose σ enters the wall W between adjacent blocks B
and B′, and β = θ(σ,W,B) and β′ = θ(σ,W,B′). According to Rule 2,
β′ ≡ α− β mod 2π. It is straightforward to verify the following:

• if |β| ≤ α, then |β′| = |α− β| = α− |β| or α+ |β|;
• if α ≤ |β| ≤ π − α, then |β′| = |α− β| = |β| − α or |β|+ α;
• if π − α ≤ |β| ≤ π, then |β′| = |α − β| = (π − α) − (π − |β|) or

(π − α) + (π − |β|),
in keeping with Rule 3. Thus if the weaker result of Rule 3 suffices for β′, it
may be used instead of Rule 2.

The Transformation Rules have various applications. In the next section
we describe the earliest of these applications which leads to a partition of
the topological types of the boundaries of Croke–Kleiner spaces into a count-
able infinity of distinct classes, thereby extending the main result of [4].
Subsequent instances of the use of the Transformation Rules appear in [7]
and [1].

4. A property of the boundary. In this section we will see that the
diffraction effect experienced by geodesic rays that pass through triple points
(as described in Transformation Rule 3) has an impact on the topology of
∂Xα. The size of this effect, which is controlled by the angle α, determines
how quickly poles of nearby blocks accumulate on the boundary of the base
block B0. Specifically, there is a partition of (0, π/2] into countably many
disjoint subintervals associated with distinct positive integers with the prop-
erty that if α lies in the interval associated with a positive integer n, then
n is the smallest integer such that every point of ∂B0 is a limit of poles
whose distance from B0 is no greater than n + 1. (This is the content of
Corollary 4.5.) This property is a topological invariant of ∂Xα. It follows
(Corollary 4.6) that as α ranges over (0, π/2], at least countably infinitely
many topologically distinct ∂Xα’s are encountered.

For each n ≥ 0, let P(n) denote the set of poles of blocks which are at
distance less than or equal to n from B0 in the nerve.

Theorem 4.1. If n ≥ 1 and π/2(n+ 1) ≤ α < π/2n, then ∂B0 6⊂
cl(P(n)). Also, if α = π/2, then ∂B0 6⊂ cl(P(1)).

Proof. First assume n ≥ 1 and π/2(n+ 1) ≤ α < π/2n. Note that for
all 0 < k ≤ n, α < π/2n ≤ π/2k, and so kα < π/2. Thus kα < π − kα
for all 0 ≤ k ≤ n. Let Ω be the set of all σ(∞) such that σ ∈ R(p0) and
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θ(σ, V0, B0) ∈ (nα, π − nα). Note that Ω is an open subset of ∂Xα. Clearly
Ω contains points of ∂V0 ⊂ ∂B0. We will show that Ω∩P(n) = ∅, and hence
that ∂B0 6⊂ cl(P(n)).

Suppose instead that σ ∈ R(p0) is a ray such that σ(∞) ∈ Ω ∩ P(n).
Then σ(∞) is a pole of a block Bm at distance m from B0 in the nerve, for
some m ≤ n. Note that the angle of inclination of σ in any plane of Bm
must equal a multiple of π. Recall that σ is only said to enter a block if it
travels for positive time in the block away from all walls. Thus σ can never
enter Bm in this sense. For suppose σ first encounters Bm at a point p. Then
p must belong to a wall Wm of Bm, even if p is a triple point. If p is not
a triple point, then σ must move in Wm parallel to and disjoint from the
lines of intersection of Wm with the nonwalls of Bm, because θ(σ,Wm, Bm)
is a multiple of π. On the other hand, if p is a triple point that lies in the
intersection ofWm with a nonwall V of Bm, then σ cannot leaveWm to enter
V because to do so would require θ(σ,Wm, Bm) to take on a value that is
not a multiple of π. Hence the itinerary of σ is of the form B0, B1, . . . , Bm−1.
Furthermore, if Wm = Bm−1 ∩ Bm is the common wall between these two
blocks, then σ terminates in Wm in the sense that σ([t,∞)) ⊂Wm for some
t > 0. Moreover, σ([t,∞)) is a ray in Wm that is parallel to the lines of
intersection of Wm with the nonwalls of Bm.

Set P0 = V0 and Pm = Wm, and for all 0 < i < m, let Pi be a plane
of Bi that σ enters. For 0 ≤ i ≤ m, let βi = θ(σ, Pi, Bi), and assume
βi ∈ [−π, π]. Note that if P ′i is any other plane of Bi that σ enters, then
|θ(σ, P ′i , Bi)| = |βi|, by Transformation Rule 1. Also note that |βm| = 0 or π
by an earlier remark.

Since σ(∞) ∈ Ω, it follows that β0 ∈ (nα, π−nα). We assert that in fact

(1) |βi| ∈ ((n− i)α, π − (n− i)α)

for all 0 ≤ i ≤ m. Assume this is true for some i between 0 and m − 1.
Since i ≤ m − 1 ≤ n − 1, it follows that 1 ≤ n − i; thus α ≤ (n − i)α
and π − (n − i)α ≤ π − α. Also, (n − i)α < π − (n − i)α, as noted at
the beginning of the proof. Thus ((n− i)α, π − (n− i)α) ⊂ (α, π − α), and
hence α < |βi| < π − α. The relation between |βi| and |βi+1| is governed
by Transformation Rule 2 or 3, and Rule 3 subsumes Rule 2. Thus |βi+1| ∈
[|βi|−α, |βi|+α]. From our inductive hypothesis (1), (n−(i+1))α < |βi|−α
and |βi| + α < π − (n − (i + 1))α, from which it follows that |βi+1| ∈
((n− (i+ 1))α, π − (n− (i+ 1))α). This proves our assertion.

Since m ≤ n, the assertion implies that |βm| ∈ (0, π), contradicting the
fact that |βm| = 0 or π. Thus Ω ∩ P(n) = ∅, and so ∂B0 is not contained in
cl(P(n)).

The proof of this theorem in the case that α = π/2 is very similar to
the previous argument. When α = π/2, let Ω be the set of all σ(∞) such
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that σ ∈ R(p0) and θ(σ, V0, B0) ∈ (0, π/2). Again Ω is an open subset of
∂Xα that contains points of ∂B0. In this case, we argue that Ω is disjoint
from P(1), proving that ∂B0 6⊂ cl(P(1)). To this end, assume that there is
a σ ∈ R(p0) such that σ(∞) ∈ Ω ∩ P(1). Then, as we argued previously,
there is a block B1 that shares a wall W1 with B0 such that σ([0,∞)) ⊂ B0,
σ terminates in W1, and σ(∞) is a pole of B1. Let β0 = θ(σ, V0, B0) and
β1 = θ(σ,W1, B1). Then |θ(σ,W1, B0)| = |β0| ∈ (0, π/2) by Transformation
Rule 1, and β1 is a multiple of π. The relationship between |β0| and |β1| is
governed by Transformation Rule 2 or 3, hence by Transformation Rule 3.
Since 0 < |β0| < π/2 = α, it follows that |β1| ∈ [α − |β0|, α + |β0|] ⊂ (0, π).
Therefore, β1 is not a multiple of π. We conclude that Ω ∩ ∂Xα = ∅, and
thus ∂B0 6⊂ cl(P(1)).

Theorem 4.2. If n ≥ 1 and π/2(n+ 1) ≤ α < π/2n, then ∂B0 ⊂
cl(P(n+ 1)). Also, if α = π/2, then ∂B0 ⊂ cl(P(2)).

Proof. First assume n ≥ 1 and π/2(n+ 1) ≤ α < π/2n. Let Φ be a
nonempty open subset of ∂Xα that contains a point of ∂B0. We will prove
that Φ intersects P(n+ 1).

The union of the boundaries of the nonwall planes of B0 minus the poles
of B0 is dense in ∂B0. Hence, there is a nonwall plane U0 of B0 and a point
Q ∈ ∂U0 ∩Φ such that Q is not a pole of B0. Then there is a geodesic ray σ
in B0 that emanates from p0 and terminates in U0 (i.e., σ([t,∞)) ⊂ U0 for
some t > 0), such that σ(∞) = Q. Let A denote the finite set {kα : 1 ≤ k
≤ n} ∪ {−π + kα : 1 ≤ k ≤ n}.

The remainder of the proof is accomplished in two steps, utilizing the
two lemmas below. In the first step, σ is approximated by a ray σ′ ∈ R(p0)
so that σ′(∞) ∈ Φ, σ′ passes from the block B0 to a block B1 via a triple
point, and σ′ enters and terminates in a nonwall plane U1 of B1 such that
the angle of inclination of σ′ in U1 is an element of the set A. In the second
step of the proof, σ′ is approximated by a ray σ′′ ∈ R(p0) so that σ′′(∞) ∈ Φ
and σ′′ follows an itinerary B0, B1, . . . , Bm, where 1 ≤ m ≤ n, such that the
successive angles of inclination of σ′′ in these blocks progress through the
elements of set A by jumps of size α, moving toward either α or −π + α,
with the result that σ′′(∞) is a pole of a block Bm+1 that is adjacent to Bm.

Lemma 4.3. Suppose n ≥ 1 and π/2(n+ 1) ≤ α < π/2n, U0 is a nonwall
plane of B0 and σ ∈ R(p0) is such that σ terminates in U0, σ(∞) is not a
pole of B0, and Φ is a neighborhood of σ(∞) in ∂Xα. Then there is a ray
σ′ ∈ R(p0) such that σ′(∞) ∈ Φ, and there is a block B1 adjacent to B0, such
that either σ′([0,∞)) ⊂ B0 and σ′(∞) is a pole of B1, or σ′ has itinerary
B0, B1, there is a nonwall plane U1 of B1 such that σ′ terminates in U1, and
θ(σ′, U1, B1) ∈ A.
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Proof. Since σ terminates in U0 and σ(∞) ∈ Φ, it follows that there is a
t0 > 0 and a δ > 0 such that σ([t0,∞)) ⊂ U0 and such that if σ′ ∈ R(p0)
and d(σ′(t0), σ(t0)) < δ, then σ′(∞) ∈ Φ. We assume that θ(σ, U0, B0) and
all other angles of inclination mentioned in this proof lie in the interval
[−π, π]. Since σ(∞) is not a pole of B0, it follows that |θ(σ, U0, B0)| ∈ (0, π).
Since π/2(n+ 1) ≤ α < π/2n, we see that (0, π) = (0, π/2] ∪ (π/2, π) ⊂
(0, (n + 1)α] ∪ [π − (n + 1)α, π). Hence, there is an integer m such that
0 ≤ m ≤ n and either

|θ(σ, U0, B0)| ∈ (0, π/2] and |θ(σ, U0, B0)| ∈ (mα, (m+ 1)α],

or

|θ(σ, U0, B0)| ∈ (π/2, π) and |θ(σ, U0, B0)| ∈ [π − (m+ 1)α, π −mα).

The proof now divides into three mutually exclusive cases:

• |θ(σ, U0, B0)| ∈ {α, π − α},
• |θ(σ, U0, B0)| ∈ {(m+ 1)α, π − (m+ 1)α}, where 1 ≤ m ≤ n,
• |θ(σ, U0, B0)| ∈ (mα, (m+ 1)α) ∪ (π − (m+ 1)α, π −mα), where 0 ≤
m ≤ n.

First, assume |θ(σ, U0, B0)| ∈ {α, π − α}. In this case we construct a ray
σ′ ∈ R(p0) that coincides with σ on [0, t0+1] and then enters and terminates
in a wall W1 of B0. Furthermore, if |θ(σ, U0, B0)| = α, then we insist that
σ′ enters the positive half of W1, so that θ(σ′,W1, B0) > 0. However, if
|θ(σ, U0, B0)| = π − α, then we insist that σ′ enters the negative half of W1,
so that θ(σ′,W1, B0) < 0. Clearly, σ′([0,∞)) ⊂ B0 and σ′(∞) ∈ Φ, because
σ′ and σ coincide at t0. Transformation Rule 1 implies that |θ(σ′,W1, B0)| =
|θ(σ′, U0, B0)| = |θ(σ, U0, B0)|. Hence, θ(σ′,W1, B0) = α if |θ(σ, U0, B0)| =
α, and θ(σ′,W1, B0) = −π+α if |θ(σ, U0, B0)| = π−α. Let B1 be the block
of Xα that intersects B0 in the wall W1. Transformation Rule 2 implies that
θ(σ′,W1, B1) ≡ α − θ(σ′,W1, B0) mod 2π. Consequently, θ(σ′,W1, B1) = 0
if |θ(σ, U0, B0)| = α, and θ(σ′,W1, B1) = π if |θ(σ, U0, B0) = π − α. Hence,
σ′(∞) is a pole of B1.

Second, assume |θ(σ, U0, B0)| ∈ {(m+ 1)α, π − (m+ 1)α}, where 1 ≤ m
≤ n. In this case we construct a ray σ′ ∈ R(p0) that coincides with σ
on [0, t0 + 1] and then enters a wall W1 of B0. Let B1 be the block of
Xα that intersects B0 in the wall W1. After spending a positive amount
of time in W1, σ′ leaves W1 and enters and terminates in a nonwall plane
U1 of B1. Furthermore, if |θ(σ, U0, B0)| = (m + 1)α, then we insist that
σ′ enters the positive half of W1, so that θ(σ′,W1, B0) > 0. However, if
|θ(σ, U0, B0)| = π − (m+ 1)α, then we insist that σ enters the negative half
of W1, so that θ(σ′,W1, B0) < 0. In addition, if |θ(σ, U0, B0)| = (m + 1)α,
then we insist that σ′ enters the positive half of U1, so that θ(σ′, U1, B1) > 0.
However, if |θ(σ, U0, B0)| = π − (m + 1)α, then we insist that σ′ enters
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the negative half of U1, so that θ(σ′, U1, B1) < 0. Clearly σ′ has itinerary
B0, B1, and σ′(∞) ∈ Φ because σ′ and σ coincide at t0. Transformation
Rule 1 implies that |θ(σ′,W1, B0)| = |θ(σ′, U0, B0)| = |θ(σ, U0, B0)|. Hence
θ(σ′,W1, B0) = (m+1)α if |θ(σ, U0, B0)| = (m+1)α, whereas θ(σ′,W1, B0) =
−π+(m+1)α if |θ(σ, U0, B0)| = π−(m+1)α. Transformation Rule 2 implies
θ(σ′,W1, B1) ≡ α − θ(σ′,W1, B0) mod 2π. Consequently, θ(σ′,W1, B1) =
−mα if |θ(, σ, U0, B0)| = (m+1)α, and θ(σ′,W1, B1)=π−mα if |θ(σ, U0, B0)|
= π − (m + 1)α. Again, Transformation Rule 1 implies that |θ(σ′, U1, B1)|
= |θ(σ′,W1, B1)|. Therefore, θ(σ′, U1, B1) = mα if |θ(σ, U0, B0)| = (m+1)α,
and θ(σ′, U1, B1) = −π + mα if |θ(σ, U0, B0)| = π − (m + 1)α. Thus,
θ(σ′, U1, B1) ∈ {mα,−π + mα}, where 1 ≤ m ≤ n. Consequently,
θ(σ′, U1, B1) ∈ A.

Third, assume |θ(σ, U0, B0)| ∈ (mα, (m + 1)α) ∪ (π − (m + 1)α,
π − mα), where 0 ≤ m ≤ n. We remark that if τ is a ray in Xα such
that τ([t0, t0 + 1]) ⊂ U0, then θ(τ, U0, B0) depends continuously on the
two points τ(t0) and τ(t0 + 1). We also note that if τ ∈ R(p0), then
d(σ(t0), τ(t0)) ≤ d(τ(t0 + 1), σ(t0 + 1)) because Xα is a CAT(0) space.
Consequently, we can assume that δ > 0 has been chosen so small that
if τ ∈ R(p0) and d(τ(t0 + 1), σ(t0 + 1)) < δ, then both |θ(τ, U0, B0)| and
θ(σ, U0, B0)| belong either to the interval (mα, (m+ 1)α) or to the interval
(π − (m + 1)α, π − mα). We observe that the triple points in U0 form a
quasi-dense subset. Indeed, the distance from a point of U0 to the nearest
triple point is no greater than the geodesic diameter of the torus Ti which is
covered by U0, since the triple points in U0 are simply the preimages of the
triple intersection point T0∩T1∩T2 under the locally isometric covering map
U0 → Ti. Hence, there is an r > 0 such that the r-neighborhood of every point
of U0 contains a triple point. Choose t1 > (max{1, 2r/δ})(t0 +1). Let p be a
triple point in U0 such that d(σ(t1), p) < r. Let τ ∈ R(p0) be the geodesic ray
that passes through the triple point p and terminates in U0. Let u = d(p0, p),
so that τ(u) = p. Hence, |t1− u| = |d(p0, σ(t1))− d(p0, p)| ≤ d(σ(t1), p) < r.
Therefore

d(σ(t1), τ(t1)) ≤ d(σ(t1), τ(u)) + d(τ(u), τ(t1))
= d(σ(t1), p) + |t1 − u| < 2r.

It follows by the CAT(0) condition that

d(σ(t0 + 1), τ(t0 + 1)) ≤ t0 + 1
t1

(2r) < δ.

Therefore d(σ(t0), τ(t0) < δ. Hence, both |θ(τ, U0, B0)| and |θ(σ, U0, B0)|
belong either to (mα, (m+ 1)α) or to the interval (π − (m+ 1)α, π −mα).
Since p is a triple point that belongs to U0, it follows that p also belongs to
a wall W1 of B0, there is a block B1 that meets B0 in the wall W1, and p
also belongs to a nonwall plane U1 of B1.
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Let σ′ be the union of the geodesic segment in Xα from p0 to p together
with the geodesic ray in U1 that emanates from the triple point p and satisfies
the following:

• θ(σ′, U1, B1) = α if m = 0 and |θ(σ, U0, B0)| ∈ (0, α);
• θ(σ′, U1, B1) = −π + α if m = 0 and |θ(σ, U0, B0)| ∈ (π − α, π);
• θ(σ′, U1, B1) = mα if 1 ≤ m ≤ n and |θ(σ, U0, B0)| ∈ (mα, (m+ 1)α);
• θ(σ′, U1, B1) = −π + mα if 1 ≤ m ≤ n and |θ(σ, U0, B0)| ∈ (π −

(m+ 1)α, π −mα).

Clearly, σ′ coincides with τ on [0, u]. We assert that σ′ is a geodesic ray. To
verify this, we must show that β = θ(τ, U0, B0) and β′ = θ(σ′, U1, B1) are
related as prescribed by Transformation Rule 3. Indeed:

• if m = 0 and |β| ∈ (0, α), then |β′| = α ∈ [α− |β|, α+ |β|];
• if m = 0 and |β| ∈ (π − α, π), then |β′| = π − α ∈ [(π − α)− (π − β),

(π − α) + (π − β)];
• if 1 ≤ m ≤ n and |β| ∈ (mα, (m + 1)α), then |β| − α < mα < |β|,

whence |β′| = mα ∈ [|β| − α, |β|+ α];
• if 1 ≤ m ≤ n and |β| ∈ (π − (m+ 1)α, π −mα), then |β| < π −mα <
|β|+ α, whence |β′| = π −mα ∈ [|β| − α, |β|+ α].

Thus σ′ is a geodesic ray. Hence, σ′ ∈ R(p0). Since σ′ coincides with τ on
[0, u], it follows that σ′(t0)=τ(t0). Therefore, d(σ′(t0), σ(t0)) = d(τ(t0, σ(t0))
< δ. Hence, σ′(∞) ∈ Φ. Also, σ′ enters and terminates in the nonwall
plane U1 of B1. Furthermore, θ(σ′, U1, B1) ∈ {α,−π + α} if m = 0, and
θ(σ′, U1, B1) ∈ {mα,−π +mα} if 1 ≤ m ≤ n. Thus θ(σ′, U1, B1) ∈ A.

Lemma 4.4. Suppose n ≥ 1 and π/2(n+ 1) ≤ α < π/2n, σ′ ∈ R(p0) has
itinerary B0, B1 where B1 is a block of Xα that is adjacent to B0, there is a
nonwall plane U1 of B1 such that σ′ terminates in U1 and θ(σ′, U1, B1) ∈ A,
and Φ is a neighborhood of σ′(∞) in ∂Xα. Then there is a ray σ′′ ∈ R(p0)
such that σ′′(∞) ∈ Φ and there is an integer m such that 1 ≤ m ≤ n
and there are blocks B2, B3, . . . , Bm, Bm+1 of Xα where B0, B1, B2, . . . , Bm,
Bm+1 are distinct, B0, B1, . . . , Bm is the itinerary of σ′′, Bm is adjacent to
Bm+1, and σ′′(∞) is a pole of Bm+1.

Proof. Since σ′ terminates in U1 and σ′(∞) ∈ Φ, it follows that there
is a t0 > 0 such that σ′([t0,∞)) ⊂ U1 and such that if τ ∈ R(p0) and
τ(t0) = σ′(t0), then τ(∞) ∈ Φ. We again assume that θ(σ′, U1, B1) and all
other angles of inclination mentioned in this proof lie in the interval [−π, π].

Since θ(σ′, U1, B1) ∈ A, it follows that there is an integer m such that
1 ≤ m ≤ n and θ(σ′, U1, B1) ∈ {mα,−π + mα}. We will construct a ray
σ′′ ∈ R(p0) and a sequence B2, . . . , Bm, Bm+1 of blocks of Xα with the
following properties:
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• σ′′ coincides with σ′ on [0, t0 + 1];
• B0, B1, B2, . . . , Bm, Bm+1 are distinct, B0, B1, B2, . . . , Bm is the itine-

rary of σ′′, and Bm is adjacent to Bm+1;
• Bi and Bi+1 meet in a common wall Wi+1 for 1 ≤ i ≤ m;
• σ′′ enters Wi+1 for 1 ≤ i ≤ m, and σ′′ terminates in Wm+1;
• if θ(σ′, U1, B1) = mα, then θ(σ′′,Wi+1, Bi) = (m + 1 − i)α for 1 ≤ i
≤ m;
• if θ(σ′, U1, B1) = −π+mα, then θ(σ′′,Wi+1, Bi) = −π+ (m+ 1− i)α

for 1 ≤ i ≤ m.

The construction of σ′′ is an inductive process in which a sequence τ1, τ2,
. . . , τm of progressively longer geodesic segments emanating from p0 are con-
structed.

The first step of the process is to construct a geodesic segment τ1 that
coincides with σ′ on [0, t0 + 1] and then enters and terminates in a wall
W2 of B1 that intersects U1. Furthermore, if θ(σ′, U1, B1) = mα, then we
insist that τ1 enters the positive half of W2, so that θ(τ1,W2, B1) > 0. How-
ever, if θ(σ′, U1, B1) = −π +mα, then we insist that τ1 enters the negative
half of W2, so that θ(τ1,W2, B1) < 0. Transformation Rule 1 implies that
|θ(τ1,W2, B1)| = |θ(τ1, U1, B1)| = |θ(σ′, U1, B1)|. Hence, if θ(σ′, U1, B1) =
mα, then θ(τ1,W2, B2) = mα; whereas if θ(σ′, U1, B1) = −π + maα, then
θ(τ1,W2, B1) = −π +mα.

For the inductive step of the process, let 1 ≤ k < m and assume that a
geodesic segment τk has been constructed and that B2, . . . , Bk of Xα have
been chosen with the following properties:

• τk coincides with σ′ on [0, t0 + 1];
• B0, B1, B2, . . . , Bk are distinct and form the itinerary of τk;
• Bi and Bi+1 meet in a common wall Wi+1 for 1 ≤ i < k and Wk+1 is

a wall of Bk that is disjoint from Bk−1;
• τk enters Wi+1 for 1 ≤ i ≤ k, and τk terminates in Wk+1;
• if θ(σ′, U1, B1) = mα, then θ(τk,Wi+1, Bi) = (m+1−i)α for 1 ≤ i ≤ k;
• if θ(σ′, U1, B1) = −π +mα, then θ(τk,Wi+1, Bi) = −π + (m+ 1− i)α

for 1 ≤ i ≤ k.
Let Bk+1 be the block that meets Bk in the wall Wk+1. Observe that
θ(τk,Wk+1, Bk) = (m + 1 − k)α whenever θ(σ′, U1, B1) = mα, and that
θ(τk,Wk+1, Bk) = −π + (m + 1 − k)α whenever θ(σ′, U1, B1) = −π + mα.
Transformation Rule 2 implies that θ(τk,Wk+1, Bk+1) ≡ α−θ(τk,Wk+1, Bk)
mod 2π. Consequently, if θ(σ′, U1, B1) = mα, then θ(τk,Wk+1, Bk+1) =
−(m − k)α; whereas if θ(σ′, U1, B1) = −π +mα, then θ(τk,Wk+1, Bk+1) =
π − (m− k)α. We now extend τk to a longer geodesic segment τk+1 by first
making τk+1 enter a nonwall plane Uk+1 of Bk+1 that intersects Wk+1. Then
we make τk+1 enter and terminate in a wall Wk+2 of Bk+1 that intersects
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Uk+1 and is disjoint from Bk. Furthermore, if θ(σ′, U1, B1) = mα, then we
insist that τk+1 enters the positive half of Wk+2 so that θ(τk+1,Wk+2, Bk+1)
> 0. However, if θ(σ′, U1, B1) = −π + mα, then we insist that τk+1 enters
the negative half of Wk+2 so that θ(τk+1,Wk+2, Bk+1) < 0. Transforma-
tion Rule 1 implies that |θ(τk+1,Wk+2, Bk+1)| = |θ(τk+1,Wk+1, Bk+1)| =
|θ(τk,Wk+1, Bk+1)|. Hence, if θ(σ′, U1, B1) = mα, then θ(τk+1,Wk+1, Bk+1)
= (m−k)α; whereas if θ(σ′, U1, B1) = −π+mα, then θ(τk+1,Wk+2, Bk+1) =
−π + (m − k)α. Also, since τk+1 is an extension of τk, it follows that
θ(τk+1,Wi+1, Bk) = θ(τk,Wi+1, Bi) for 1 ≤ i ≤ k. This establishes the
inductive step.

The final result of the inductive process is a geodesic segment τm and
blocks B2, . . . , Bm of Xα with the following properties:

• τm coincides with σ′ on [0, t0 + 1];
• B0, B1, B2, . . . , Bm are distinct and form the itinerary of τm;
• Bi and Bi+1 meet in a common wall Wi+1 for 1 ≤ i < m and Wm+1 is

a wall of Bm that is disjoint from Bm−1;
• τm enters Wi+1 for 1 ≤ i ≤ m, and τm terminates in Wm+1;
• if θ(σ′, U1, B1) = mα, then θ(τm,Wi+1, Bi) = (m + 1 − i)α for 1 ≤ i
≤ m;
• if θ(σ′, U1, B1) = −π+mα, then θ(τm,Wi+1, Bi) = −π+ (m+ 1− i)α

for 1 ≤ i ≤ m.

In particular, θ(τm,Wm+1, Bm) ∈ {α, π − α}. To complete the proof of
Lemma 4.4, we simply extend the geodesic segment τm to a geodesic ray
σ′′ that terminates in Wm+1. Since σ′′, τm, and σ′ all coincide on [0, t0],
it follows that σ′′(∞) ∈ Φ. Clearly, B0, B2, . . . , Bm is the itinerary of σ′′.
Let Bm+1 be the block that meets Bm in the wall Wm+1. Then Transfor-
mation Rule 2 implies that θ(σ′′,Wm+1, Bm+1) = θ(τm,Wm+1, Bm+1) ≡
α − θ(τm,Wm+1, Bm) mod 2π. Hence, θ(σ′′,Wm+1, Bm+1) ∈ {0, π}. Conse-
quently, σ′′(∞) is a pole of Bm+1.

We now complete the proof of Theorem 4.2 in the case that n ≥ 1 and
π/2(n+ 1) ≤ α ≤ π/2n. Recall that Φ is a nonempty open subset of ∂Xα

that contains a point of ∂B0. We must prove that Φ intersects P(n + 1).
Let σ ∈ R(p0) be such that σ(∞) ∈ Φ. If σ(∞) is a pole of B0, then
σ(∞) ∈ Φ ∩ P(n + 1), and the proof is over. So assume that σ(∞) is not
a pole of B0. Then Lemma 4.3 provides a ray σ′ ∈ R(p0) and a block B1

adjacent to B0 such that σ′(∞) ∈ Φ and either σ′(∞) is a pole of B1 or σ′ has
itinerary B0, B1, σ′ terminates in a nonwall plane U1 of B1, and θ(σ′, U1, B1)
lies in the set A = {kα : 1 ≤ k ≤ n} ∪ {−π + kα : 1 ≤ k ≤ n}. If σ′(∞) is
a pole of B1, then σ′(∞) ∈ Φ ∩ P(n + 1), and the proof is over. So assume
σ′(∞) is not a pole of B1. Then Lemma 4.4 provides a ray σ′′ ∈ R(p0),
an integer m such that 1 ≤ m ≤ n, and blocks B2, B3, . . . , Bm, Bm+1 of Xα
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such that σ′′(∞) ∈ Φ, B0, B1, B2, . . . , Bm, Bm+1 are distinct, B0, B1, . . . , Bm
is the itinerary of σ′′, Bm is adjacent to Bm+1, and σ′′(∞) is a pole of Bm+1.
Since m+ 1 ≤ n+ 1, it follows that σ′′(∞) ∈ Φ ∩ P(n+ 1). This concludes
the case that n ≥ 1 and π/2(n+ 1) ≤ α ≤ π/2n.

The proof of this theorem in the case that α = π/2 parallels the pre-
vious proof. We assume that Φ is a nonempty open subset of ∂Xα that
contains a point of ∂B0, and we must prove that Φ intersects P(2). As we
argued previously, there is a geodesic ray σ ∈ R(p0) that terminates in
a nonwall plane U0 of B0 such that σ(∞) ∈ Φ. If σ(∞) is a pole of B0,
then the proof is over. So we assume that σ(∞) is not a pole of B0. Then
|θ(σ, U0, B0)| lies in one of the three sets (0, π/2), {π/2}, or (π/2, π). If
|θ(σ, U0, B0)| = π/2, then following the proof of Lemma 4.3, we can approx-
imate σ by a geodesic ray σ′ ∈ R(p0) such that σ′(∞) ∈ Φ and σ′(∞) is a
pole of a block B1 that is adjacent to B0. In this situation, σ′(∞) ∈ Φ∩P(2),
and again the proof is over. So we assume that |θ((σ, U0, B0)| 6= π/2. Then
|θ((σ, U0, B0)| is an element of one of the two sets (0, π/2) or π/2, π). We
follow the proof of Lemma 4.3 in this case as well, approximating σ by a
geodesic ray σ′ ∈ R(p0) such that σ′(∞) ∈ Φ, and σ′ passes from B0 via a
triple point into a nonwall plane U1 of an adjacent block B1, σ′ terminates
in U1, and θ(σ′, U1, B1) = π/2. (Since α = π/2, Transformation Rule 3 will
allow a geodesic ray entering a triple point with angle of inclination in ei-
ther of the intervals (0, π/2) or (π/2, π) to leave the triple point with angle
of inclination equal to π/2.) Finally, we follow the proof of Lemma 4.4,
approximating σ′ by a geodesic ray σ′′ ∈ R(p0) such that σ′′(∞) ∈ Φ
and σ′′(∞) is a pole of a block B2 that is adjacent to B1. Thus σ′′(∞) ∈
Φ ∩ P(2).

Combining Theorems 4.1 and 4.2, we obtain:

Corollary 4.5. If n ≥ 1 and π/2(n+ 1) ≤ α ≤ π/2n, then ∂B0 6⊂
cl(P(n)) and ∂B0 ⊂ cl(P(n + 1)). Also, if α = π/2, then ∂B0 6⊂ cl(P(1))
and ∂B0 ⊂ cl(P(2)).

The principal theorem of [4] established that ∂Xα is not homeomor-
phic to ∂Xπ/2 whenever 0 < α < π/2. Furthermore, it was shown in [4]
that for α, β ∈ (0, π/2], any homeomorphism between ∂Xα and ∂Xβ pre-
serves block boundaries and block adjacency. Thus, distance in the nerve is
preserved by such a homeomorphism, as are the sets P(n). Consequently,
any homeomorphism between ∂Xα and ∂Xβ preserves the condition that
∂B0 6⊂ cl(P(n)) and ∂B0 ⊂ cl(P(n + 1)). These observations together
with Corollary 4.5 give rise to the following topological differentiation of
the boundaries of the Croke–Kleiner spaces into countably many distinct
classes:
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Corollary 4.6. If α, β ∈ (0, π/2] and there is an integer n ≥ 1 such
that α < π/2n ≤ β, then ∂Xα is not homeomorphic to ∂Xβ.

We note that a much finer definitive topological differentiation of the
boundaries of the Croke–Kleiner spaces was proved after Corollary 4.6.
Specifically, if α, β ∈ (0, π/2] and α 6= β, then ∂Xα is not homeomorphic to
∂Xβ . See [7].
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