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A Class of Contrations in Hilbert Spae and AppliationsbyNik DUNGEYPresented by Jerzy ZABCZYK
Summary. We haraterize the bounded linear operators T in Hilbert spae whih sat-isfy T = βI + (1 − β)S where β ∈ (0, 1) and S is a ontration. The haraterizationsinlude a quadrati form inequality, and a domination ondition of the disrete semigroup
(T n)n=1,2,... by the ontinuous semigroup (e−t(I−T ))t≥0. Moreover, we give a strongerquadrati form inequality whih ensures that sup{n‖T n − T n+1‖ : n = 1, 2, . . .} < ∞.The results apply to large lasses of Markov operators on ountable spaes or on loallyompat groups.1. Introdution. Let H be a omplex Hilbert spae. In this note, weharaterize in several ways the bounded linear operators T ∈ L(H) whihan be written in the form(1) T = βI + (1 − β)Swhere S is a ontration (‖S‖ ≤ 1) and β ∈ (0, 1). In partiular, we showthat T has this form if and only if T is a ontration whih satis�es thequadrati form inequality(2) ‖f‖2 − ‖Tf‖2 ≥ α Re((I − T )f, f)for some α > 0 and all f ∈ H; or, if and only if the spetrum of T is ontainedin the unit disk {z ∈ C : |z| ≤ 1} and one has(3) ‖Tnf‖ ≤ ‖e−εn(I−T )f‖for some ε ∈ (0, 1) and all f ∈ H, n ∈ N := {1, 2, 3, . . .}. The ondition (3)is a type of domination of the disrete semigroup (Tn)n∈N by the ontinuoustime semigroup (e−t(I−T ))t≥0. We remark that (1) implies that the spetrum2000 Mathematis Subjet Classi�ation: 47A30, 47A10, 60G50, 60G15.Key words and phrases: ontration operator, Hilbert spae, Markov operator, onvo-lution operator. [347℄ © Instytut Matematyzny PAN, 2007
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of T is ontained in a disk {z ∈ C : |z − β| ≤ 1 − β}. The above onditions(1), (2), (3), and further onditions on T , are studied in Setion 2 below.For operators in Banah spaes, a generalization of (1) was onsideredby Nevanlinna, who obtained the following results (for details see [11, The-orem 8℄ and [9, Theorem 4.5.3℄).Theorem 1.1. For X a omplex Banah spae and T ∈ L(X ), the fol-lowing two onditions are equivalent.(I) There exist β ∈ (0, 1), S ∈ L(X) suh that supn∈N ‖Sn‖ < ∞ and

T = βI + (1 − β)S.(II) There exist onstants c, α > 0 suh that
‖ezT‖ ≤ ce|z|(1−αθ2)for all z ∈ C with z = |z|eiθ, θ ∈ [−π, π].Moreover , if these onditions hold , then(4) sup

n∈N

‖Tn‖ < ∞, sup
n∈N

n1/2‖Tn − Tn+1‖ < ∞.In partiular, (4) holds whenever T is given by (1) with S a ontrationin Hilbert spae. (Additional note: onversely, the author reently proved in[6℄ that in any Banah spae, onditions (4) imply the onditions (I) and(II), and gave further onditions equivalent to these.)The preeding results apply to very large lasses of Markov operatorsassoiated with random walks, as we disuss in Setion 3 below. In partiular,it seems interesting that estimates of type (3) and (4) hold for many Markovoperators, a result whih we have not seen in the literature.Operators satisfying the estimate supn∈N(‖Tn‖ + n‖Tn − Tn+1‖) < ∞,whih is stronger than (4), have reently been well studied. See [1℄, [2℄,[5℄, [7℄, [9℄, [10℄, [11, Theorem 10℄ and referenes therein. In Hilbert spae,Theorem 2.3 below shows that a simple quadrati form inequality is su�ientfor that estimate.2. Proof of the main theorem. Let us �x some notation. For a ∈ C,
r ≥ 0, we set D(a; r) := {z ∈ C : |z−a| < r}, D(a; r) := {z ∈ C : |z−a| ≤ r}and D := D(0; 1) = {z ∈ C : |z| ≤ 1}. Let H be a omplex Hilbert spae. If
S ∈ L(H) and if F is a funtion holomorphi on an open neighborhood of thespetrum σ(S), then the operator F (S) is de�ned by the Dunford funtionalalulus, and the spetral mapping theorem states that σ(F (S)) = F (σ(S))(see [13, Setion VIII.7℄). Von Neumann's inequality says that if ‖S‖ ≤ 1then

‖F (S)‖ ≤ ‖F‖L∞(D)whenever F is holomorphi on a neighborhood of D.
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Here is our main result.Theorem 2.1. Given T ∈ L(H), eah of the following onditions (I) to(VI) is equivalent.(I) There exists β ∈ (0, 1) suh that ‖T −βI‖ ≤ 1−β; that is, (1) holdswith ‖S‖ ≤ 1.(II) ‖T‖ ≤ 1, and there exists α > 0 suh that (2) holds for all f ∈ H.(III) There exists γ ∈ (0, 1) suh that ‖Tf‖ ≤ ‖γf + (1 − γ)Tf‖ for all

f ∈ H.(IV) There exists β ∈ (0, 1) suh that σ(T ) ⊆ D(β; 1 − β) and
‖F (T )‖ ≤ ‖F‖L∞(D(β;1−β))for all funtions F whih are de�ned and holomorphi on a neigh-borhood of D(β; 1 − β).(V) σ(T ) ⊆ D, and there exists ε ∈ (0, 1) suh that (3) holds for all

f ∈ H and n ∈ N.(VI) σ(T ) ⊆ D, and there exists ε ∈ (0, 1) suh that ‖Teε(I−T )‖ ≤ 1.Moreover , if these onditions hold , then supn∈N n1/2‖Tn − Tn+1‖ < ∞.
Remarks. In general, given T ∈ L(H), the real-valued quadrati forms

QT : H → R and Q′
T : H → R de�ned by

QT (f) := ‖f‖2 − ‖Tf‖2, Q′
T (f) := Re((I − T )f, f)are losely related to properties of the disrete semigroup (Tn)n∈N and theontinuous semigroup (e−t(I−T ))t≥0. For example, QT ≥ 0 if and only if Tis a ontration, while Q′

T ≥ 0 if and only if the semigroup (e−t(I−T ))t≥0 isontrative. From this point of view, the equivalene of onditions (II) and(V) above is not so surprising.Note that QT ≤ 2Q′
T for arbitrary T ∈ L(H); this result is a onsequeneof the identity(5) ‖f‖2 − ‖Tf‖2 + ‖(I − T )f‖2 = 2Re((I − T )f, f)valid for all f ∈ H. Observe also that there exist non-ontrations T satis-fying QT ≥ αQ′

T for some α > 0; for example, take T = 2I, α = 3.Proof of Theorem 2.1. The statement that supn n1/2‖Tn − Tn+1‖ < ∞is a onsequene of ondition (I) and Theorem 1.1. Alternatively, this �nalstatement an be derived by applying ondition (IV) to the funtions z 7→
(1 − z)zn.Condition (I) means that ‖Tf − βf‖2 ≤ (1 − β)2‖f‖2 for all f ∈ H. Byexpanding

‖Tf − βf‖2 = ‖Tf‖2 − 2β Re(Tf, f) + β2‖f‖2
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and rearranging, we see that ondition (I) is equivalent to the inequality

2β Re((I − T )f, f) ≤ (1 − β)2‖f‖2 + 2β‖f‖2 − β2‖f‖2 − ‖Tf‖2

= ‖f‖2 − ‖Tf‖2.Thus ondition (I) implies (II) with α = 2β. Conversely, assume that ondi-tion (II) holds; then ‖T‖ ≤ 1 implies that Re((I − T )f, f) ≥ 0, and heneby dereasing α if neessary we an assume that α ∈ (0, 2). Then ondition(I) holds with β = α/2.Next, ondition (III) implies that ‖Tf‖ ≤ γ‖f‖ + (1 − γ)‖Tf‖, so that
‖T‖ ≤ 1. Moreover, by squaring and expanding one rewrites ondition (III)as

‖Tf‖2 ≤ γ2‖f‖2 + (1 − γ)2‖Tf‖2 + 2γ(1 − γ) Re(Tf, f)or equivalently, after rearranging,
2(1 − γ)(2 − γ)−1 Re((I − T )f, f) ≤ ‖f‖2 − ‖Tf‖2for all f ∈ H. From this, it is easy to dedue that onditions (III) and (II)are equivalent.Let us derive ondition (IV) from ondition (I). One has

σ(T ) = β + σ(T − βI) ⊆ β + D(0; 1 − β) = D(β; 1 − β)by ondition (I). The desired estimate of ‖F (T )‖ is easily obtained by ap-plying von Neumann's inequality to the ontration S := (1−β)−1(T −βI).Conversely, ondition (IV) implies (I) trivially, by onsidering the fun-tion F (z) = z − β.Conditions (V) and (VI) are easily seen to be equivalent, sine eε(I−T ) isthe operator inverse to e−ε(I−T ).To show that ondition (IV) implies (VI) with ε = β, we hek that theholomorphi funtion
Fβ(z) := zeβ(1−z)satis�es ‖Fβ‖L∞(D(β;1−β)) ≤ 1. For z ∈ D(β; 1−β), the inequality |z−β|2 ≤

(1 − β)2 implies that
|z|2 ≤ 1 − 2β(1 − Re(z)) ≤ e−2β(1−Re(z)) = |e−β(1−z)|2by the elementary estimate 1 − t ≤ e−t, t ∈ R. Thus |Fβ(z)| ≤ 1, and

‖Fβ‖L∞(D(β;1−β)) ≤ 1.Finally, we show that ondition (VI) implies (I). This proof an be om-pared with [7, Setion 2℄, where the inverse of the mapping z 7→ zez isused for a di�erent purpose. Take ε ∈ (0, 1) as in ondition (VI), and write
Fε(z) = zeε(1−z), z ∈ C. We need the following results on Fε.Lemma 2.2. Given ε ∈ (0, 1), put Aε := {z ∈ C : |z| ≤ 1, |Fε(z)| ≤ 1}.There exists a holomorphi funtion Wε de�ned on a neighborhood of D suh
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that Wε(Fε(z)) = z for all z in some neighborhood of Aε. Moreover , thereexists a β = β(ε) ∈ (0, ε) suh that D(ε; 1 − ε) ⊆ Aε ⊆ D(β; 1 − β) and(6) Wε(D) ⊆ D(β; 1 − β).Proof of Lemma 2.2. There exists a holomorphi funtion

W̃ : D(0; e−1) → Csuh that W̃ (ze−z) = z for all z in some neighborhood of 0; see, for example,[7, p. 465℄. Then de�ning Wε : D(0; ε−1eε−1) → C by
Wε(w) := ε−1W̃ (εe−εw),one has Wε(Fε(z)) = z for all z in a neighborhood of 0. Beause ε−1eε−1 > 1,the domain of de�nition of Wε ontains D. After observing that Aε is aompat onneted region ontaining 0, one sees by analyti ontinuationthat Wε(Fε(z)) = z for all z in a neighborhood of Aε.It is not di�ult to show that Fε maps Aε bijetively onto D, and that

Wε(D) = Aε. The inlusion D(ε; 1−ε) ⊆ Aε was established in the argumentthat (IV) implies (VI).To omplete the proof of the lemma, we show that Aε ⊆ D(β; 1− β) forsome β ∈ (0, ε). Fixing c ∈ (0, 1) suh that e−t ≤ 1 − ct for all t ∈ [0, 4], wehave
|z|2 ≤ e−2ε(1−Re(z)) ≤ 1 − 2cε(1 − Re(z))for all z ∈ Aε. Thus |z − cε|2 ≤ (1 − cε)2, and Aε ⊆ D(cε; 1 − cε).Continuing the notation of Lemma 2.2, assume that T satis�es ondition(VI). Then σ(T ) ⊆ D and, by the spetral mapping theorem, Fε(σ(T )) =

σ(Teε(I−T )) ⊆ D. Therefore σ(T ) ⊆ Aε. By Lemma 2.2 and the Dunfordfuntional alulus we may write
T − βI = Wε(Teε(I−T )) − βI.The hypothesis ‖Teε(I−T )‖ ≤ 1 and von Neumann's inequality then yield

‖T − βI‖ ≤ sup
z∈D

|Wε(z) − β| ≤ 1 − βwith the last inequality by (6). This establishes ondition (I), and the proofof Theorem 2.1 is omplete.
Example. For a normal operator T ∈ L(H), it is easy to see that theonditions of Theorem 2.1 hold if and only if σ(T ) ⊆ D(β; 1 − β) for some

β ∈ (0, 1). For self-adjoint T , the onditions hold if and only if σ(T ) ⊆ (−1, 1](and in that ase, the inequality (7) below is also satis�ed).To onlude this setion, we desribe a quadrati form inequality whihis stronger than (2) and implies that supn∈N n‖Tn − Tn+1‖ < ∞.
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Theorem 2.3. Let T ∈ L(H) be suh that there exists α > 0 with(7) ‖f‖2 − ‖Tf‖2 ≥ α|((I − T )f, f)|for all f ∈ H. Then the onditions of Theorem 2.1 are satis�ed , and moreover

supn∈N n‖Tn − Tn+1‖ < ∞.Proof. Inequality (7) implies that ‖f‖2 − ‖Tf‖2 ≥ 0 so that T is aontration. Thus (7) implies ondition (II) of Theorem 2.1. Also, (7) and(5) show that
|((I − T )f, f)| ≤ 2α−1 Re((I − T )f, f).This last inequality is a setorial estimate whih implies (see for example [8,Theorem IX.1.24℄) that the semigroup (e−t(I−T ))t≥0 is bounded holomorphi,hene one has an estimate ‖(I−T )e−t(I−T )‖ ≤ ct−1 for all t > 0. Then using(3) yields a bound

‖(I − T )Tn‖ ≤ ‖(I − T )e−εn(I−T )‖ ≤ c′n−1for all n ∈ N.In onnetion with Theorem 2.3 and its proof, we mention the situa-tion in general Banah spaes. For a bounded linear operator in Banahspae, the ondition supn∈N(‖Tn‖+n‖Tn −Tn+1‖) < ∞ holds if and only if
σ(T ) ⊆ D(0; 1) ∪ {1} and the semigroup (e−t(I−T ))t≥0 is bounded holomor-phi (see [10, Theorem 2.1℄ and [1, 2℄). The simple proof above of Theorem 2.3depended ruially on the estimate (3).3. Markov operators. This setion presents two distint settings ofMarkov operators where the preeding results apply.Markov operators on a ountable spae. Let T be a Markov operatoron a ountable set Ω. That is, we assume that there exists a Markov ker-nel (p(x, y))x,y∈Ω with p(x, y) ≥ 0, ∑

y∈Ω p(x, y) = 1, suh that T ats onbounded funtions f : Ω → C by the formula
(Tf)(x) =

∑

y∈Ω

p(x, y)f(y)

for all x ∈ Ω. Suppose further that m is an invariant measure for p, meaningthat m : Ω → (0,∞) with ∑
x∈Ω m(x)p(x, y) = m(y) for all y ∈ Ω. Forsubsets A ⊆ Ω we set m(A) :=
∑

x∈A m(x). Then it is standard that T is aontration in the Banah spaes Lr(Ω; m), r ∈ [1,∞].Our result in this setting is the following.Proposition 3.1. Suppose there exists β ∈ (0, 1) suh that(8) p(x, x) ≥ β
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for all x ∈ Ω. Then T satis�es the onditions of Theorem 1.1 in eah of theBanah spaes Lr(Ω; m), r ∈ [1,∞], and satis�es the onditions of Theo-rem 2.1 in the Hilbert spae L2(Ω; m).Proof. Observe from (8) that the operator S := (1 − β)−1(T − βI) isalso a Markov operator, orresponding to the Markov kernel q(x, y) := (1 −
β)−1(p(x, y) − βδx(y)) (where δx(y) is 1 or 0 aording as x = y or x 6= y).The measure m is invariant for q. Thus S is a ontration in Lr(Ω; m),
r ∈ [1,∞], and the proposition follows from Theorems 1.1 and 2.1.The ondition (8) is not new and has been used in studying random walks;see, for example, [3℄ and referenes therein, and see also [4, Lemma 1.3℄ for aresult essentially weaker than Proposition 3.1. While many authors assumethat p is reversible with respet to m, whih implies that T is self-adjoint in
L2(Ω; m), we make no reversibility assumption above.Markov onvolution operators on a loally ompat group. Let G be aloally ompat, ompatly generated group, with a �xed left invariant Haarmeasure dg. (For bakground information, see [12℄ and [5℄.) We �x an open,relatively ompat neighborhood U of the identity e of G suh that U = U−1and U generates G. The modulus ̺ = ̺U : G → N is de�ned by ̺(g) :=
inf{n ∈ N : g ∈ Un}, where Un ⊆ G denotes the set of all n-fold produts ofelements of U .Given µ ∈ P(G), where P(G) is the set of regular Borel probability mea-sures on G, onsider the Markov onvolution operator Tµ given by Tµf :=
µ ∗ f for all f ∈ Lr := Lr(G; dg), r ∈ [1,∞]. The involute µ∗ ∈ P(G) of
µ is de�ned by µ∗(A) := µ(A−1) for Borel sets A ⊆ G. We say that µ isadapted if the smallest losed subgroup of G ontaining the support of µ is
G itself; alternatively, say that µ is aperiodi if the measure µ∗∗µ is adapted.Aperiodiity is a stronger ondition than adaptedness.Here is our result in this setting.Theorem 3.2. Let µ ∈ P(G) be aperiodi, non-singular with respet toHaar measure dg, and suh that TG dµ(g) ̺(g)2 < ∞. Then Tµ satis�es theonditions of Theorem 2.1 in the Hilbert spae L2 = L2(G; dg).In the situation of Theorem 3.2, unlike that of Proposition 3.1, the op-erator S := (1− β)−1(Tµ − βI) is not neessarily a Markov operator for any
β ∈ (0, 1). For example, onsider the disrete group G = Z of integers andan aperiodi µ ∈ P(Z) whih satis�es µ({0}) = 0.The proof of Theorem 3.2 requires the following lemma whih is ontainedin, for example, [5, Propositions 3.2, 3.3℄; results in the same spirit are in[12, Chapters VI, VII℄.Lemma 3.3. Suppose that ν ∈ P(G) is symmetri (that is, ν∗ = ν),adapted , non-singular with respet to dg, and suh that TG dν(g) ̺(g)2 < ∞.
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Write Γ (f) :=

T
U dg

T
G dh |f(gh)− f(h)|2. Then there exists c > 1 suh that

c−1Γ (f) ≤ ((I − Tν)f, f) ≤ cΓ (f)for all f ∈ L2.Proof of Theorem 3.2. The measures ν1 := 2−1(µ + µ∗) ∈ P(G) and
ν2 := µ∗ ∗ µ ∈ P(G) satisfy the hypotheses of Lemma 3.3. Sine Tµ∗ is theadjoint operator of Tµ in L2, one �nds that

Re((I − Tµ)f, f) = 2−1((I − Tµ)f, f) + 2−1(f, (I − Tµ)f)

= ((I − Tν1)f, f)

≤ cΓ (f)

≤ c′((I − Tν2)f, f) = c′(‖f‖2
2 − ‖Tµf‖2

2)for all f ∈ L2. Thus ondition (II) of Theorem 2.1 is satis�ed.More re�ned L2 estimates depend on the notion of enteredness forprobability measures; see [5℄ for details. Atually, if µ ∈ P(G) is as inTheorem 3.2 and is entered, then [5, Proposition 3.2℄ gives an estimate
|((I − Tµ)f, f)| ≤ cΓ (f), f ∈ L2, so that Tµ satis�es the inequality (7).
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