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Sharp Norm Inequalities for Martingalesand their Di�erential SubordinatesbyAdam OS�KOWSKIPresented by Stanisªaw KWAPIE�
Summary. Suppose f = (fn), g = (gn) are martingales with respet to the same �ltra-tion, satisfying

|fn − fn−1| ≤ |gn − gn−1|, n = 1, 2, . . . ,with probability 1. Under some assumptions on f0, g0 and an additional ondition thatone of the proesses is nonnegative, some sharp inequalities between the pth norms of
f and g, 0 < p < ∞, are established. As an appliation, related sharp inequalities forstohasti integrals and harmoni funtions are obtained.1. Introdution. Let (Ω,F ,P) be a probability spae equipped with adisrete �ltration (Fn)n≥0. Let f = (fn), g = (gn) be two adapted martin-gales taking values in a separable Hilbert spae H, with

fn =
n

∑

k=0

dfk, gn =
n

∑

k=0

dgk.Aording to Burkholder, we say that f is di�erentially subordinate to g if
|dfn| ≤ |dgn|almost surely for any nonnegative n.As proved by Burkholder in [1℄, we have the following sharp estimate:(1.1) ‖fn‖p ≤ αp‖gn‖p, n = 0, 1, 2, . . . ,where αp = max{p, p/(p−1)}−1 for 1 < p <∞. If 0 < p ≤ 1, the inequalityfails to hold for any �nite αp.2000 Mathematis Subjet Classi�ation: Primary 60G42; Seondary 60H05, 31B05.Key words and phrases: martingale, di�erential subordination, stohasti integral,harmoni funtion, norm inequality.Partially supported by MEiN Grant 1 PO3A 012 29.[373℄ © Instytut Matematyzny PAN, 2007



374 A. Os�kowski
The above inequalities were the subjet of many papers in whih weakeror stronger assumptions on f , g were imposed and it was investigated how ita�ets the onstant αp (e.g. see [5℄ and the referenes therein). In partiular,Burkholder [4℄ proved that if we assume additionally that gn ≥ 0 almostsurely for all n, then (1.1) holds for 1 < p < ∞ and the optimal onstantequals

α′
p =

{

1/(p− 1) if p ∈ (1, 2],

p1/p[(p− 1)/2](p−1)/p if p ∈ (2,∞).We see that αp = α′
p for 1 < p ≤ 2 and αp > α′

p for p > 2.We ontinue this line of researh in two diretions. The inequality (1.1)still fails to hold if p ∈ (0, 1) and g ≥ 0, but it turns out that if the di�erentialsubordination is replaed by a slightly di�erent ondition, then we have thefollowing fat.Theorem 1.1. Suppose f is a martingale taking values in H and g is anonnegative martingale. Assume that for some deterministi β > 0 we have
β|f0| ≥ g0 and |dfn| ≤ |dgn|, n = 1, 2, . . . ,with probability 1. Then for p ∈ (0, 1),(1.2) ‖fn‖p ≥ Cp,β‖gn‖p, n = 0, 1, 2, . . . ,where Cp,β = 0 if β ≥ 1 and

Cp,β =

[(

p(1 − β)

2(1 + β − p)

)1−p 2(1 + β)(1 − p) + p2

p(1 + β − p)

]1/p

if β < 1. The inequality is sharp if 2β > p.By sharpness we mean that for any C > Cp,β , there exists a pair (f, g)satisfying the assumptions of the theorem and an integer n for whih wehave ‖fn‖p < C‖gn‖p.The seond result we obtain is the following.Theorem 1.2. Suppose g is an H-valued martingale and f is nonnega-tive and di�erentially subordinate to g. Then for 0 < p <∞,(1.3) ‖fn‖p ≤ Cp‖gn‖p, n = 0, 1, 2, . . . ,where
Cp =



















∞ if p ∈ (0, 1),

1 if p = 1,

p−1/p[2/(p− 1)](p−1)/p if p ∈ (1, 2),

p− 1 if p ∈ [2,∞).The inequality is sharp.Therefore, ompared to the general ase, the onstant dereases for p ∈
[1, 2).
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Let us omment upon the method of proof. In [1℄ (see also [2℄) Burkholderproves the inequality (1.1) for general f , g onstruting a quite ompliatedspeial funtion Up satisfying some onvex-type properties. It turns out thata ertain integration trik is available, whih enables one to build Up frommuh simpler funtions and to redue the omplexity of the proof signi�-antly (f. [5℄). In [4℄, the proof of (1.1) for nonnegative g follows the samepattern and the speial funtion U ′

p is even more ompliated than Up. Inthis paper we disover an integral identity whih expresses U ′
p in terms ofmuh simpler objets. Related identities yield speial funtions leading tothe inequalities (1.2) and (1.3).The paper is organized as follows. In the next setion we introdue thesimple speial funtions, study their properties and present the ruial in-tegral identities. Setion 3 ontains the proof of Theorems 1.1 and 1.2. Thelast two setions are devoted to appliations of these theorems to stohastiintegrals and harmoni funtions on Eulidean domains.

2. The speial funtions. For a �xed number s > 1, set
D =

{

(x, y) ∈ R
2
+ : y ≤ min

(

x+ 1,
s+ 1

s− 1
− x

)}

.

De�ne u1,s : H× R+ → R, u2,s : R+ ×H → R, u∞,s : H× R+ → R by
u1,s(x, y) =







s− 1

s+ 1
(|x|2 − y2) −

2

s+ 1
|x| +

2s

s+ 1
y if (|x|, y) ∈ D,

1 if (|x|, y) /∈ D,

u2,s(x, y) =











s− 1

s+ 1
(x2 − |y|2) if (x, |y|) ∈ D,

2

s+ 1
x−

2s

s+ 1
|y| + 1 if (x, |y|) /∈ D,

u∞,s(x, y) =







0 if (y, |x|) ∈ D,

s− 1

s+ 1
(|x|2 − y2) +

2

s+ 1
y−

2s

s+ 1
|x| + 1 if (y, |x|) /∈ D.It is easy to hek that these funtions are ontinuous. Furthermore, let φ1,s,

ψ1,s, φ2,s, ψ2,s, φ∞,s, ψ∞,s be de�ned by
(φ1,s(x, y), ψ1,s(x, y))

=







(

2(s− 1)

s+ 1
x−

2

s+ 1
x′,−

2(s− 1)

s+ 1
y +

2s

s+ 1

) if (|x|, y) ∈ D,

(0, 0) if (|x|, y) ∈ D,
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(φ2,s(x, y), ψ2,s(x, y)) =















(

2(s− 1)

s+ 1
x,−

2(s− 1)

s+ 1
y

) if (x, |y|) ∈ D,

(

2

s+ 1
,−

2s

s+ 1
y′

) if (x, |y|) ∈ D,

(φ∞,s(x, y), ψ∞,s(x, y)) =















(0, 0) if (y, |x|) ∈ D,
(

2(s− 1)

s+ 1
x−

2s

s+ 1
x′,−

2(s− 1)

s+ 1
y +

2

s+ 1

)

if (y, |x|) ∈ D,where x′ = x/|x| for x 6= 0 and x′ = 0 if x = 0.The key properties of the above funtions are desribed in the followinglemma.Lemma 2.1. Let s > 1 be a �xed number.(i) We have
u1,s(x, y) ≤ 1,(2.1)
u2,s(x, y) ≤

2

s+ 1
x−

2s

s+ 1
|y| + 1,(2.2)

u∞,s(x, y) ≤
s− 1

s+ 1
(|x|2 − y2) +

2

s+ 1
y −

2s

s+ 1
|x| + 1.(2.3)(ii) Suppose x, h ∈ H, y, y + k ≥ 0 and |h| ≤ |k|. Then

u1,s(x+ h, y + k) ≤ u1,s(x, y) + φ1,s(x, y) · h+ ψ1,s(x, y)k,(2.4)
u∞,s(x+ h, y + k) ≤ u∞,s(x, y) + φ∞,s(x, y) · h+ ψ∞,s(x, y)k.(2.5) Suppose x, x+ h ≥ 0, y, k ∈ H and |h| ≤ |k|. Then(2.6) u2,s(x+ h, y + k) ≤ u2,s(x, y) + φ2,s(x, y)h+ ψ2,s(x, y) · k.Proof. (i) It is easy to see that the inequalities (2.1)�(2.3) are equivalentand therefore it su�es to prove the �rst one. To this end, note that for

(|x|, y) ∈ D the partial derivative of u1,s with respet to y equals
2(s− 1)

s+ 1

(

s

s− 1
− y

)

≥ 0and the inequality follows by the ontinuity of u1,s.(ii) This is done by a well-known proedure (f. [2℄�[4℄). Consider a fun-tion
G1,s(t) = u1,s(x+ th, y + tk),de�ned on {t : y + tk ≥ 0}. The inequality (2.4) is equivalent to
G1,s(1) ≤ G1,s(0) +G′

1,s(0)(with (G1,s)
′
−(0), (G1,s)

′
+(0) or 0 instead of G′

1,s(0) if the latter does notexist) and will follow one we have established the onavity of G1,s. Consider
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the sets(2.7) E1,s = {t : (|x+th|, y+tk) /∈D}, F1,s = {t : (|x+th|, y+tk)∈D}.On E1,s we have G1,s ≡ 1, whih is learly onave, while on F1,s, G1,s(t)equals

s− 1

s+ 1
(|h|2 − k2)t2 +

s− 1

s+ 1
[|x|2 + 2tx · h− y2 − 2tyk]

−
2

s+ 1
|x+ th| +

2s

s+ 1
(y + tk)and the onavity follows from |h|2 ≤ k2 and the onavity of the funtion

t 7→ −|x+ th|. It remains to note that E1,s, F1,s are intervals and, by (2.1),
G(t) ≤ 1 on F1,s.For the funtions u2,s, u∞,s the argument is essentially the same; weintrodue the funtions G2,s and G∞,s in a similar manner and redue theproof of (2.5), (2.6) to the onavity of these funtions. The onavity islear on the sets E2,s, F2,s and E∞,s, F∞,s, de�ned as in (2.7), and theinequality for one-sided derivatives follows from (2.2), (2.3). The sets E2,s,
E∞,s may happen to be unions of two intervals, but this does not hangethe argument.Now let us introdue the speial funtions orresponding to the momentinequalites. For p ∈ (0, 1), x ∈ H, y ≥ 0, let(2.8) Up,s(x, y) =

p(1 − p)(2 − p)(s+ 1)

2

∞\
0

tp−1u1,s(x/t, y/t) dt,while for p ∈ (1, 2), x ≥ 0, y ∈ H,(2.9) Up,s(x, y) =
p(p− 1)(2 − p)(s+ 1)

2

∞\
0

tp−1u2,s(x/t, y/t) dt.Finally, for p ∈ (2,∞), x ∈ H, y ≥ 0, set(2.10) Up,s(x, y) =
p(p− 1)(p− 2)(s+ 1)

2

∞\
0

tp−1u∞,s(x/t, y/t) dt.The formulas for Up,s are as follows. Suppose p ∈ (0, 1). If y ≤ s|x|, then
Up,s(x, y) =

(

s− 1

s+ 1

)p−1

(|x| + y)p−1[y(s− 1 + p) + |x|(s− sp− 1)],while for y ≥ s|x|,
Up,s(x, y) = (y − |x|)p−1[y(s+ 1 − p) + |x|(sp− s− 1)].
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In ase p ∈ (1, 2), if |y| ≤ sx, then

Up,s(x, y) =

(

s− 1

s+ 1

)p−1

(x+ |y|)p−1[|y|(−s− p+ 1) + x(sp− s+ 1)],while for |y| ≥ sx,
Up,s(x, y) = (|y| − x)p−1[|y|(p− s− 1) + x(s− sp+ 1)].Finally, let p ∈ (2,∞). Then, if sy ≤ |x|,
Up,s(x, y) = (|x| − y)p−1[y(sp− s− 1) + |x|(s− p+ 1)]and for sy ≥ |x|,

Up,s(x, y) =

(

s− 1

s+ 1

)p−1

(|x| + y)p−1[y(s− ps− 1) + |x|(s+ p− 1)].The following funtions will also play a role. If p ∈ (0, 1) and s > 1, let
Vp,s : H× R+ → R be given by

Vp,s(x, y) = (s+ 1 − p)[yp −Kp,s|x|
p]and for p ∈ (1, 2), s > 1, de�ne Vp,s : R+ ×H → R by

Vp,s(x, y) = (s+ 1 − p)[−|y|p +Kp,sx
p].Here

Kp,s =

(

s− 1

2

)p−1

·
p

s+ 1 − p
.We will need the following fat about the funtions de�ned above.Lemma 2.2. Suppose p ∈ (0, 2), p 6= 1 and s > 1. Then(2.11) Up,s ≥ Vp,s.Proof. It su�es to prove the inequality in the speial ase H = R.Consider the funtions F,G : (0, 1) → R given by

F (t) = Vp,s(t, 1 − t), G(t) = Up,s(t, 1 − t).The funtion F is onvex on (0, t0) and onave on (t0, 1) for some t0 ∈ (0, 1),while G is onave on (0, (s+ 1)−1) and linear on ((s+ 1)−1, 1). Moreover,
F (0) = G(0), F ′(0) < G′(0),

F

(

2

s+ 1

)

= G

(

2

s+ 1

)

, F ′

(

2

s+ 1

)

= G′

(

2

s+ 1

)

.Thus F ≤ G, whih yields (2.11) by homogeneity.
Remark 2.1. If x = 0 or 2|y| = (s − 1)|x|, then Up,s(x, y) = Vp,s(x, y).This is a onsequene of F (0) = G(0) and F (2/(s+ 1)) = G(2/(s+ 1)).
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3. The proofs of the theorems. The inequalities (2.4)�(2.6) yield thefollowing estimates.Lemma 3.1. Let s > 1 and suppose f , g are martingales satisfying

|dfn| ≤ |dgn|, n = 1, 2, . . . ,with probability 1.(i) Suppose f is H-valued and g is nonnegative. Then(3.1) Eu1,s(fn, gn) ≤ Eu1,s(f0, g0), n = 0, 1, 2, . . . .(ii) Suppose f is H-valued and g is nonnegative. Furthermore, assumethat both f and g are square integrable. Then(3.2) Eu∞,s(fn, gn) ≤ Eu∞,s(f0, g0), n = 0, 1, 2, . . . .(iii) Suppose f is nonnegative and g is H-valued. Then(3.3) Eu2,s(fn, gn) ≤ Eu2,s(f0, g0), n = 0, 1, 2, . . . .Proof. We will only prove (i); the remaining statements an be estab-lished in the same manner. It su�es to show that for any 1 ≤ k ≤ n,(3.4) Eu1,s(fk, gk) ≤ Eu1,s(fk−1, gk−1).Sine |dfk| ≤ |dgk| almost surely, the inequality (2.4) gives
u1,s(fk, gk) ≤ u1,s(fk−1, gk−1) + φ1,s(fk−1, gk−1) · dfk + ψ1,s(fk−1, gk−1)dgk.Both sides of the inequality above are integrable; taking the onditionalexpetation with respet to Fk−1 gives

E[u1,s(fk, gk) | Fk−1] ≤ u1,s(fk−1, gk−1).This implies (3.4) and ompletes the proof.Proof of (1.2). If β ≥ 1, then Cp,β = 0 and the inequality is trivial.Assume that β < 1. The identity (2.8) together with Lemmas 2.2 and 3.1yields
(s+ 1 − p)E[gp

n −Kp,s|fn|
p] = EVp,s(fn, gn) ≤ EUp,s(fn, gn)(3.5)

≤ EUp,s(f0, g0)for any n. Now set
s =

1 + β − βp

1 + β − p
> 1.Then EUp,s(f0, g0) ≤ 0, whih follows from the fat that for x ∈ H and

y ∈ R+ satisfying β|x| ≥ y we have
Up,s(x, y) ≤ Up,s(x, β|x|) = c[β(s− 1 + p) + s− sp− 1] = 0for some nonnegative c. To omplete the proof, note that Kp,s = C−p

p,β .
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Proof of (1.3). It su�es to prove the inequality for p ∈ (1, 2), as for

p ≤ 1 it is trivial and for p ≥ 2 it holds for general f , g. We proeed aspreviously. The identity (2.9) and Lemmas 2.2 and 3.1 give
(s+ 1 − p)E[−|gn|

p +Kp,sf
p
n] = EVp,s(fn, gn) ≤ EUp,s(fn, gn)(3.6)

≤ EUp,s(f0, g0)for any n. Now the hoie s = p implies EUp,s(f0, g0) ≤ 0, sine Up,p(x, y) ≤ 0if x ≤ |y|. All that is left is to observe that C−p
p = Kp,p.

Remark 3.1. For p > 2, the funtion Up,p an be used to establish theinequality (1.1) for H-valued f di�erentially subordinate to g ≥ 0 (with theoptimal onstant α′
p). In [4℄, Burkholder uses a slightly di�erent funtion

U ′
p(x, y) =











Up,p(x, y) if (p− 1)y ≤ 2|x|,

p

(

p− 1

2

)p−1

|y|p − |x|p if (p− 1)y ≥ 2|x|,and proves EU ′
p(fn, gn) ≤ EU ′

p(f0, g0) ≤ 0 by showing an inequality anal-ogous to (2.4)�(2.6). Our approah (through identity (2.10)) enables us toavoid tehnial omputations.
Remark 3.2. The inequalities (3.5), (3.6) an be used to obtain varia-tions of (1.2), (1.3), involving the initial variables f0, g0. For example, as-sume that f is H-valued and di�erentially subordinate to a nonnegative gwith |f0| = g0. If 0 < p < 1, then (3.5) yields

Egp
n ≤

(s− 1)p−1

s+ 1 − p

[

p

2p−1
E|fn|

p +
2p−1(s− 1)(2 − p)

(s+ 1)p−1
E|f0|

p

]

for any s > 1. Take s→ ∞ to obtain
‖gn‖p ≤ 2

(

1 −
p

2

)1/p

‖f0‖p.Sharpness. This will be shown in a few steps. Assume H = R and p ∈
(0, 2), p 6= 1.
Step 1. Let us onsider the following proess, a modi�ation of the oneused by Burkholder in [4℄. Let s > 1, δ ∈ (0, 1) be �xed and set

xn =

(

1 +
2δ

s− 1

)n

, pn =

[

(1 − δ)(s− 1)

(1 + δ)(s− 1 + 2δ)

]n

for n = 0, 1, 2, . . . . Consider a Markov hain H = H(s, δ) with values in R
2
+,starting from (1, s), suh that for n = 0, 1, . . . ,
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P(H2n+1 = (xn(1 − δ), xn(s+ δ)) |H2n = (xn, sxn)) =

1

1 + δ
,

P(H2n+1 = (2xn, (s− 1)xn) |H2n = (xn, sxn)) =
δ

1 + δ
,

P(H2n+2 = (0, xn(s−1+2δ)) |H2n+1 = (xn(1−δ), xn(s+δ))) =
δ(s+ 1)

s− 1 + 2δ
,

P(H2n+2 = (xn+1, sxn+1) |H2n+1 = (xn(1 − δ), xn(s+ δ))) =
(1 − δ)(s− 1)

s− 1 + 2δwith the further ondition that all the states lying on the lines 2y = (s−1)xand x = 0 are absorbing. Then the proesses F = F (s, δ), G = G(s, δ),de�ned byHn = (Fn, Gn), are martingales suh that for n ≥ 1, dFn = ±dGn.
Step 2. Now we will show that the sequene (EUp,s(Hn))n≥0 is almostonstant. For any nonnegative integer n, let An = {Hn+1 6= Hn}. Note that

A2n = {H2n = (xn, sxn)}, A2n+1 = {H2n+1 = (xn(1 − δ), xn(s+ δ))}.Lemma 3.2. Let n be a nonnegative integer.(i) P(A2n) = pn.(ii) The following equalities hold true:
(3.7) EUp,s(H2n+2) = EUp,s(H2n+1),

(3.8) EUp,s(H2n+1) = EUp,s(H2n) − xp
nR(δ)P(A2n),for some funtion R = Rp,s : R+ → R+ satisfying Rp,s(δ)/δ → 0 as δ → 0.Proof. (i) We have P (A0) = 1 = p0 and P(A2k |A2k−2) = p1 for any

k ≥ 1.(ii) On A2n+1, the variable H2n+2 takes values (0, xn(s− 1 + 2δ)) and
(xn+1, sxn+1) =

(

xn

(

1 +
2δ

s− 1

)

, xn(s− 1 + 2δ) + xn

(

1 +
2δ

s− 1

))

.But the funtion t 7→ Up,s(t, xn(s − 1 + 2δ) + t) is linear on the interval
[0, xn(1+2δ/(s− 1))]; this proves the �rst estimate. For the seond one, theargument is similar: on A2n,
H2n+1 ∈ {(2xn, (s− 1)xn), (xn(1 − δ), xn(s+ δ))}, H2n = (xn, sxn)and the funtion t 7→ Up,s(xn + t, sxn − t) has a ontinuous derivative on

(−δ, xn) and is linear on [0, xn]. It remains to use the fat that Up,s is ho-mogeneous of order p to get the speial form of the remainder.
Step 3. Let us study the following estimate:(3.9) EVp,s(H2n) + εEF p

2n ≥ EUp,s(H0).
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Lemma 3.3. Let ε > 0 be �xed.(i) Suppose p ∈ (0, 1) and s > 1. Then there exists δ > 0 suh that theinequality (3.9) holds for large n.(ii) Suppose p ∈ (1, 2). Then there exist s < p and δ > 0 suh that theinequality (3.9) holds for large n.Proof. Outside A2n, the variable H2n takes values on one of the lines

2y = (s − 1)x, x = 0. Sine Up,s, Vp,s oinide on these lines, we have, byLemma 3.2,
EVp,s(H2n) = EUp,s(H2n) + P(A2n)[Vp,s(xn, sxn) − Up,s(xn, sxn)](3.10)

= EUp,s(H0) −R(δ)
n−1
∑

k=0

xp
kpk − cxp

npn,where c = −Vp,s(1, s) + Up,s(1, s) ≥ 0.On the other hand,(3.11) EF p
2n ≥

n−1
∑

k=0

(2xn)p pnδ

1 + δ
≥ 2−1δ

n−1
∑

k=0

xp
npn = 2−1δ

n−1
∑

k=0

rk,where(3.12) r = r(δ) = xp
1p1 =

(

1 +
2δ

s− 1

)p−1 1 − δ

1 + δ
.(i) Fix ε > 0, p ∈ (0, 1) and s > 1. By (3.11), there exists δ suh that(3.13) R(δ)

n−1
∑

k=0

xp
kpk ≤

2R(δ)

δ
EF p

2n ≤
ε

2
EF p

2nfor any n. Furthermore, sine p < 1, we have r(δ) < 1; hene cxp
npn = crn ≤

εδ/4 < 2−1εEF p
2n for large n. Combining this estimate with (3.10) and (3.13)yields (3.9).(ii) Fix ε > 0 and p ∈ (1, 2). We have r′(0) = 2(p − s)/(s− 1), so thereexist s ∈ (1, p) and δ(ε) suh that if δ ∈ (0, δ(ε)), then 1 < r(δ) < 1+ εδ/8c.Then, by (3.11),

cxp
npn = crn ≤ c

[

2(r − 1)

δ
EF p

2n + 1

]

≤
ε

4
EF p

2n + 1 <
ε

2
EF p

2nif n is large enough; the last inequality follows from EF p
2n → ∞ as n → ∞.We onlude the proof by observing that (3.13) holds for su�iently small

δ, and applying (3.10).
Step 4: sharpness of (1.2). Let β ∈ (p/2, 1), δ > 0, ε > 0 and set

s =
1 + β − βp

1 + β − p
> 1, a =

2β − s+ 1

1 + β
< 1.
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The inequality p < 2β implies a > 0. Consider martingales F = (Fn)n≥−1,
G = (Gn)n≥−1 satisfying(I) F−1 = 2 − a, G−1 = a+ s− 1 almost surely,(II) P((F0, G0) = (1, s)) = a = 1 − P((F0, G0) = (2, s− 1)),(III) on {F0 = 2}, the proess (Fn, Gn) is onstant,(IV) on {F0 = 1}, the onditional distribution of the proess (Fn, Gn) isthe distribution of H(s, δ) onstruted in Step 1.By the hoie of a, we have βF−1 = G−1 and EUp,s(F0, G0) = 0. Clearly,

EVp,s(F2n, G2n) = EVp,s(F2n, G2n)χ{F0=1} + EVp,s(F2n, G2n)χ{F0=2}.On the set {F0 = 1} we an use Lemma 3.3: a proper hoie of δ and nimplies
EVp,s(F2n, G2n)χ{F0=1} + εEF p

2nχ{F0=1} ≥ EUp,s(F0, G0)χ{F0=1}.On the set {F0 = 2} the pair (F2n, G2n) = (F0, G0) lies on the line 2y =
(s− 1)x, whih implies Vp,s(F2n, G2n) = Up,s(F0, G0). Combining these twofats we get(3.14) EVp,s(F2n, G2n) + εEF p

2n ≥ EUp,s(F0, G0),so
EGp

2n ≥

(

C−p
p,β −

ε

s+ 1 − p

)

EF p
2n > (C−p

p,β − ε)EF p
2n.This proves that (1.2) is sharp. For the ase β ≥ 1, observe that Cp,β isnoninreasing as a funtion of β and Cp,β → 0 as β ↑ 1.

Step 5: sharpness of (1.3). The ases p ≤ 1, p = 2 are trivial; for p ≥ 2,we use the example on page 669 of [1℄. The only ase left is p ∈ (1, 2).For ε > 0, let s ∈ (1, p) and δ > 0 be the numbers guaranteed by Lemma3.3. Consider martingales F, G satisfying (I)�(IV) with a = (3 − s)/2. Byarguments similar to those above, (3.9) leads to the inequality (3.14), validfor large n. Sine EF p
2n → ∞, we have EUp,s(F0, G0) ≥ −εEF p

2n for large n,whih ombined with (3.14) implies
EGp

2n ≤

(

Kp,s +
2ε

s+ p− 1

)

EF p
2n < (C−p

p + 2ε)EF p
2n.Therefore Cp is the best possible in (1.3).Remark 3.3. It is lear from the examples above that the inequalities(1.2) and (1.3) are sharp even in the ase of ±1 transforms, i.e. if we assumethat dfn = ±dgn for n = 1, 2, . . . .4. Sharp inequalities for stohasti integrals. Suppose X= (Xt)t≥0is a àdlàg martingale on a omplete probability spae (Ω,F ,P), whih is�ltered by a nondereasing right-ontinuous family (Ft)t≥0 of sub-σ-�elds
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of F . In addition, assume that F0 ontains all the events of probability 0.Let Y be the It� integral of H with respet to X, where H is a preditableproess:

Yt = H0X0 +
\

(0,t]

Hs dXs.The ontinuous-time versions of Theorems 1.1 and 1.2 are stated below.Theorem 4.1. Suppose p ∈ (0, 1), X is nonnegative and for any t > 0,the variable Ht takes values in a losed unit ball of H. If β > 0 satis�es
P(β|H0| ≥ 1) = 1, then for any t > 0,(4.1) ‖Yt‖p ≥ Cp,β‖Xt‖p,and the inequality is sharp if p < 2β.Theorem 4.2. Suppose p ∈ (0,∞), X is nonnegative and H takes valuesoutside the open unit ball of H. Then for any t > 0,(4.2) ‖Xt‖p ≤ Cp‖Yt‖p,and the inequality is sharp.The inequalities (4.1), (4.2) follow from (1.2), (1.3) by disretizing theargument; see [3℄, where an analogous submartingale inequality follows fromthe orresponding disrete-time version. The sharpness follows from the fatthat the onstants Cp,β, Cp are the best possible in (1.2), (1.3) in the asewhen f is a ±1 transform of g (see Remark 3.3).5. Inequalities for harmoni funtions. In this setion we studyharmoni extensions of inequalities (1.2), (1.3). Let N be a �xed positiveinteger and D be an open onneted subset of R

N . Fix ξ ∈ D and onsidertwo harmoni funtions u, v on D, taking values in Hilbert spaes H, K.Suppose u is di�erentially subordinate to v, that is,
|∇u| ≤ |∇v| on D.Let D0 be a bounded subdomain of D with ξ ∈ D0 ⊂ D0 ∪ ∂D0 ⊂ D.Let µξ

D0
stand for the harmoni measure on ∂D0 with respet to ξ, and

‖u‖D0,p =
[ \

∂D0

|u(z)|p µξ
D0

(dz)
]1/p

, 0 < p <∞.We now give some norm inequalities for smooth funtions.Theorem 5.1. Let u, v, D0 be as above.(i) Assume that p ∈ (0, 1) and v is nonnegative. Then(5.1) ‖u‖D0,p ≥ Cp,β‖v‖D0,p,where β = v(ξ)/|u(ξ)|.



Sharp Norm Inequalities for Martingales 385
(ii) Assume that p ∈ (0,∞), u is nonnegative and u(ξ) ≤ |v(ξ)|. Then(5.2) ‖u‖D0,p ≤ Cp‖v‖D0,p.Proof. We will prove only the �rst part, the seond one an be establishedsimilarly. As Cp,β = 0 for β ≥ 1, we may assume that β < 1. Let

s =
1 + β − βp

1 + β − p
> 1.It is easy to hek that the funtion u1,s(u, v) is superharmoni. Therefore\

D0

u1,s(u(z), v(z))µ
ξ
D0

(dz) ≤ u1,s(u(ξ), v(ξ)).Applying the identity (2.8) we obtain\
D0

Up,s(u(z), v(z))µ
ξ
D0

(dz) ≤ Up,s(u(ξ), v(ξ)) = 0,sine β|u(ξ)| = v(ξ). It su�es to use the inequality (2.11) to get (5.1).Aknowledgements. The results were obtained while the author wasvisiting Université de Franhe-Comté in Besançon, Frane. The author wouldalso like to thank the referee for the omments on the paper.
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